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Over the past years, distances and divergences have been extensively used not only

in the statistical literature or in probability and information theory, but also in other

scientific areas such as engineering, machine learning, biomedical sciences, as well as

ecology. Statistical distances, viewed either as building blocks of evidence generation

or as evidence generation vehicles in themselves, provide a natural way to create a

global framework for inference in parametric and semiparametric models. More precisely,

quadratic distance measures play an important role in goodness-of-fit tests, estimation,

prediction or model selection. Provided that specific properties are fulfilled, alternative

statistical distances (or divergences) can effectively be used to construct evidence

functions. In the present article, we discuss an intrinsic approach to the notion of

evidence and present a brief literature review related to its interpretation. We examine

several statistical distances, both quadratic and non-quadratic, and their properties in

relation to important aspects of evidence generation.We provide an extensive description

of their role in model identification and model assessment. Further, we introduce an

explanatory plot that is based on quadratic distances to visualize the strength of evidence

provided by the ratio of standardized quadratic distances and exemplify its use. In

this setting, emphasis is placed on determining the sense in which we can provide

meaningful interpretations of the distances as measures of statistical loss. We conclude

by summarizing the main contributions of this work.

Keywords: evidence functions, inference, kernels, model selection, quadratic and non-quadratic distances,

statistical distances, statistical loss measures

1. INTRODUCTION

What is evidence? The Oxford dictionary defines evidence as “the available body of facts or
information indicating whether a belief or proposition is true or valid.” The fundamental
knowledge of a science or an art, which at the same time embeds basic philosophical principles,
can also be characterized as evidence.

In the scientific world the concept of evidence is crucial as it accumulates all the pieces/sources
of information one has at hand and can assess in a variety of ways to judge whether something is
true or not. The term statistical evidence (Royall, 2004) refers to observations interpreted under a
probability model. To reject or support a hypothesis we use data obtained from the phenomena that
occur in the natural world or we perform experiments and combine/match with some background
information, resources and scientific tools such as theories, tests and models.
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How do we measure the strength of evidence? In statistics,
different strategies have been suggested to measure the strength
of evidence. Fisher’s method (Fisher, 1935) uses extreme value
probabilities known as p-values from several independent tests
which consider the same null hypothesis. Fisher’s p-value tests
may provide a measure of evidence (Cox, 1977); however, only
a single hypothesis is taken into consideration and no reference
to any alternative hypothesis is provided. On the contrary,
in Neyman-Pearson tests the decision rule is based on two
competing hypotheses, the null hypothesisH0 and the alternative
hypothesisH1. This approach divides all the possible outcomes of
the sample space into two distinct regions, the acceptance and the
rejection region. The specific data values that lead to the rejection
of H0 form the rejection region. The aim is to define the best
significant level a, that is the probability of rejecting the null
hypothesis when in fact it is true. According to Lewin-Koh et al.
(2004), Neyman-Pearson tests may not provide an appropriate
measure of evidence, in the sense that a decision should be made
between two hypotheses of which one is accepted and the other
is rejected. As a result, minor data changes could alter the final
decision making (Taper and Lele, 2004).

Under the Bayesian framework, the decision is made based on
some prior probabilities which try to quantify the scientist’s belief
about the competing hypotheses. The stronger the scientist’s
belief is that a hypothesis is true, the higher probability this
hypothesis is given. The use of Bayesian tests to measure the
strength of evidence has raised questions as the priors’ choicemay
not be objective (Lewin-Koh et al., 2004). Bayesianism as well as
likelihoodism are both based on the same principle, the law of
likelihood (Sober, 2008). Likelihood and, by extension, likelihood
ratio are basic statistical tools used for the quantification of the
strength of evidence. For instance, consider the case where there
are two hypotheses H0 : τ = mθ0 vs. H1 : τ = mθ1 ; then, the
likelihood ratio is defined by L(θ0; x)/L(θ1; x). The likelihood
ratio of H0 vs. H1 measures the strength of evidence for the first
hypothesis H0 vs. the second hypothesis H1. A likelihood ratio
takes values that are greater than or equal to zero; a value of
one indicates that the evidence does not support one hypothesis
over the other. On the other hand, a value of the likelihood
ratio substantially greater than 1, indicates support of H1 vs.
H0.

The evidential paradigm uses likelihood ratios as measures of
statistical evidence for or against hypotheses of interest. Royall
(1997, 2000, 2004) suggests that the use of likelihood ratio
to quantify strength of evidence of one model over another.
Although likelihood ratio is a useful measure of strength of
evidence, it has some practical limitations. More precisely, it is
sensitive to outliers and it requires the specification of a complete
statistical model (Lele, 2004).

However, all the basic theories of inference and evidence
described above have disadvantages. To overcome their
drawbacks, these techniques have been extended to address the
problem of multiple comparisons and composite hypotheses
testing, as well as to deal with situations where nuisance
parameters are present. In particular, Royall (2000) suggests
the use of profile monitoring for evidential inference purposes
when one has to cope with nuisance parameters and composite

hypotheses. A further, though quite challenging, generalization
would be the case of unequal nuisance parameter number
between the compared models (Taper and Lele, 2004). Moreover,
the idea of evidence and its measurement has been extended to
model adequacy and selection problems.

Fundamental to scientific work is the use of models. In
analyzing and interpreting data, the use of models, explicit or
implicit, is unavoidable. Models are used to summarize statistical
properties of data, to identify parameters, and to evaluate
different policies. Where do models come from? The literature
provides very little help on answering the question of model
formulation, yet this is arguably the most difficult aspect of model
building. Cox (1990) and Lehmann (1990) discuss this question
and offer various classifications of statistical models. Following
Cox (1990), we define a statistical model as:

(1) A specification of a joint probability distribution of a
single random variable or a vector of random variables,

(2) A definition of a vector of parameters of interest,
ideally such that each component of the vector has
a subject-matter interpretation as representing some
understandable stable property of the system under study,
and

(3) At least an indication of or a link with the process that
could have generated the data.

In this paper, we are not concerned with the origins of models.
We take as given that a class of models M is under consideration
and we are concerned with methods of obtaining evidence
characterizing the quality of an aspect of model assessment, that
is the adequacy of a model in answering questions of interest
and/or our ability to perform model selection. Measuring model
adequacy centers on measuring the model misspecification
cost. Lindsay (2004) discusses a distance-based framework for
assessing model adequacy, a fundamental tenet of which is that
one is able to carry out a model-based scientific inquiry without
assuming that the model is true and without assuming that
“truth” belongs in the model class under investigation. However,
we make the assumption that the “truth” exists and it is knowable
given the presence of data. The evidence for the adequacy of the
model is measured via the concept of a statistical distance.

We discuss therefore statistical distances as evidence functions
in the context of model assessment. We show that statistical
distances that can be interpreted as loss functions can be used
as evidence functions. We discuss in some detail a specific class
of statistical distances, called quadratic distances, and illustrate
their use in applications. For ease of presentation, we only use
simple hypotheses, however these measures can handle both
simple and composite hypotheses. Methods based on distances
compare models by estimating from data the relative distance
of hypothesized models to “truth,” and transform composite
hypotheses into a model selection problem. Furthermore, if
multiple models are available, all models are compared on
the basis of the value of the distance to the truth (selecting
the model with the lowest distance as the best supported
by the evidence model). Section 2 presents the idea of an
evidence function as introduced by Lele (2004) and Lindsay
(2004). Section 3 illustrates the statistical properties of various
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statistical distances and discusses their potential in the context
of model adequacy. Section 4 compares, theoretically, some of
the presented distances, while section 5 provides illustrations and
examples of use of a specific class of distances, the quadratic
distances. Finally, section 6 offers discussion and conclusions.

2. EVIDENCE FUNCTIONS AND
STATISTICAL DISTANCES

A generalization of the idea of the likelihood ratio as a measure
of strength of evidence to the idea of comparing two different
competing models by comparing the difference in disparities
between the data and each competing model is discussed in Lele
(2004). The author formulates a class of functions, called evidence
functions, which can be exploited not only to characterize but
also to measure the strength of evidence. It should be mentioned
that the term evidence functions may have been introduced by
Lele, but as we shall see later on the concept of such functions
is not new. Incidentally, Royall (2000, pp. 8) defines implicitly
the concept of evidence function. Lele (2004) made an attempt to
provide a formal definition of evidence functions by describing
in detail several intuitive conditions that such a function should
satisfy. We briefly present these conditions below.

Let us denote by 2 the parameter space and by X the sample
space. Provided that an evidence function measures the strength
of evidence by comparing two parameter values (hypotheses)
that are based on the observed data, the domain of the evidence
function is X ×2×2. A real-valued function of the form
hn :X ×2×2→ R will be called evidence function. As an
example of an evidence function, we offer the likelihood function
which is a special case of the class of general statistical distances.
Given an evidence function, one could have strong evidence
of θ1 over θ2 if hn(X, θ1, θ2) < −K, for some fixed K > 0.
Alternatively, one could have strong evidence of θ2 compared
to θ1 if hn(X, θ1, θ2) > K, for some fixed K > 0 and weak
evidence if −K < hn(X, θ1, θ2) < K. Lele (2004) characterizes
this as indifference zone. An evidence function should at the same
time satisfy the following conditions:

C1. Translation Invariance
C2. Scale Invariance
C3. Reparameterization Invariance
C4. Invariance Under Data Transformation

The first condition is very important as it does not allow the
practitioner to change the strength of evidence by adding a
constant to the evidence function. The translation invariance of
the evidence function as well as hn(X, θ1, θ1) = 0 are implied due
to the antisymmetric condition hn(X, θ1, θ2) = −hn(X, θ2, θ1).
Without the second condition, one can change the strength
of evidence by simply multiplying an evidence function
by a constant. The scale invariance property is ensured
by the use of “standardized evidence functions” defined

as h̃n(X, θ1, θ2) = hn(X, θ1, θ2)/[I
1/2(θ1)I

1/2(θ2)], where the
function I(θ1) is assumed to be continuously differentiable up to
second order and 0 < I(θ1) <∞, I(θ1) is defined in R5 below.
The reparameterization invariance condition reassures that,

given a function ψ (where ψ :2→ 9 is a one-to-one mapping
of the parameter space), the comparison between (θ1, θ2) and
between the corresponding points in the transformed space
(ψ1,ψ2) is identical. In simple words, the quantification of the
strength of evidence cannot change by stretching the coordinate
system. Finally, the fourth condition implies that if g :X → Y
is a one-one onto transformation of the data and ḡ(·) is the
corresponding transformation in the parameter, the evidence
function satisfies the property hn(X, θ1, θ2) = hn(Y , ḡ(θ1), ḡ(θ2)).
As a result, the comparison of evidence is not affected by changes
in the measuring units.

Lele (2004) states that in order to obtain a reasonable evidence
function, the probability of strong evidence in favor of the true
hypothesis has to converge to 1 as the sample size increases.
Consequently, he presents the following additional regularity
conditions:

R1. Eθ1 (hn(X, θ1, θ2)) < 0 for all θ1 6= θ2.

R2. n−1(hn(X, θ1, θ2) − Eθ1 (hn(X, θ1, θ2))
P−→ 0, given that θ1

is the true value or the best approximating model.
R3. The evidence functions hn(X, θ1, θ2) are twice

continuously differentiable and the Taylor series
approximation is valid in the vicinity of the true value θ1.

R4. The central limit theorem is applicable; this implies that
there exists a function J(θ1) such that 0 < J(θ1) <∞ and

n−1/2

(

d

dθ
hn(X, θ1, θ)

∣

∣

θ1

)

D−→ N(0, J(θ1)).

R5. The weak law of large numbers is applicable and as a result

n−1

(

d2

dθ2
hn(X, θ1, θ)

∣

∣

θ1

)

p−→ −I(θ1), where 0 < I(θ1) <

∞ and the function I(θ1) is assumed to be continuously
differentiable up to second order.

The first regularity condition implies that evidence for the true
parameter is maximized on average at the true parameter only
and not at any other parameter. The first and the second
conditions impose that the probability of strong evidence in
favor of the true parameter compared to any other parameter
converges to 1 as the sample size increases

(

Pθ1 [hn(X, θ1, θ2) <
−K] → 1, for any fixed K > 0

)

; while the last three
regularity conditions are just provided for facilitating analytical
and asymptotic calculations.

Different evidence functions have been proposed in the
literature that satisfy conditions R1 and R2. For instance, the log-
likelihood-ratio evidence functions which are sensitive to outliers.
Additionally, disparity-based evidence functions such as functions
based on the Kullback-Leibler disparity measure, functions based
on Jeffreys’s disparity measure (Royall, 1983) or functions based
on Hellinger’s distance satisfy the first two regularity conditions.
The later functions are robust to outliers and they do not fail
to maintain their optimality property (Lindsay, 1994). Evidence
functions that overcome the problem of complete model
specification are the log-quasi-likelihood-ratio functions. Indeed,
as underlined by Lele (2004), additional evidence functions
can be constructed based on composite likelihood (Lindsay,
1988), profile likelihood (Royall, 1997), potential function (Li and
McCullogh, 1994) and quadratic inference functions (Lindsay and
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Qu, 2000). Therefore, Lele (2004) uses statistical distances or
divergencies as building blocks in the construction of evidence
functions to carry out model selection. Lele (2004) compares
evidence for two models by comparing the disparities between
the data and the two models under investigation. We note here
that, for simplicity reasons, we stated conditions R1–R5 for the
uni-dimensional parameter θ . However, the restriction to a uni-
dimensional parameter is unnecessary −the d-dimenional case
can be treated analogously.

Disparities or statistical distances (defined formally in section
3) can be used as evidence functions to study model assessment,
that is, model adequacy and model selection problems if they can
be interpreted as measures of risk. In this context, understanding
the properties of the distance provides for understanding the
magnitude of the incurred statistical risk when a model is
used. Two components of error are important in this setting.
One is due to model misspecification −this is the intrinsic
error made because the model we use can never be true.
The second is the parameter estimation error (Lindsay, 2004).
Within this framework, we discuss in the next section the
statistical properties of several statistical distances as measures of
model adequacy.

In evidential statistics three quantities are of primary interest;
the strength of evidence, expressed in terms of likelihood ratios
of two hypotheses H1 and H2, the probability of observing
misleading evidence, and the probability of weak evidence. The
probability of observing misleading evidence is denoted by M
and it is defined as the probability of the likelihood of H2

over H1 being greater than a threshold k, where the probability
is calculated under H1. The constant k is the lower limit of
strong evidence. In other words, misleading evidence is strong
evidence for a hypothesis that is not true. We would then like to
have the probability of misleading evidence as small as possible.
An additional measure introduced by Royall (1997, 2004) is
the probability of weak evidence, defined as the probability
that an experiment will not produce strong evidence for either
hypothesis relative to the other.

In suggesting the use of statistical distances as evidence
functions, we propose, in connection with the use of quadratic
distances, a quantity analogous to the likelihood ratio. This
quantity is the standardized ratio of the quadratic distance of the
hypothesis H2 over the quadratic distance of hypothesis H1. The
squared root of this quantity can be interpreted as measuring
the strength of evidence against the hypothesis H2 and can be
used as a general strength of evidence function. Although we
propose an exploratory device to visually depict the strength of
evidence based on the aforementioned quantity, it may be of
interest to study the behavior of error probabilities analogous
to the probability of misleading evidence and weak evidence,
associated with statistical distances. We conjecture that, under
appropriate conditions, it is possible to calculate the probability
of misleading evidence for at least evidence functions of the
form suggested by Lele (2004, p. 198). These functions, using
our notation, have the form n[ρ(Pτ ,Mθ1 ) − ρ(Pτ ,Mθ2 )], where
n is the sample size, Pτ is the true probability model and Mθ1 ,
Mθ2 are the models under the two hypotheses H1 and H2. Our
current work consists of establishing conditions to carefully study

these probabilities. Alternatively, one may be able to construct a
confidence interval for the model misspecification cost along the
lines suggested by Lindsay (2004).

3. STATISTICAL DISTANCES AS EVIDENCE
FUNCTIONS IN MEASURING MODEL
ADEQUACY

In this section, we examine several classes of statistical distances
in terms of their suitability as evidence functions. After
presenting preliminaries on models and model adequacy, we
discuss statistical distances as evidence functions. Specifically, we
present the class of chi-squared distances and their extension
the class of quadratic distances, the class of probability integral
transform based distances and the class of non-convex distances.

3.1. Preliminaries
We construct a probability-based framework that mimics the
data generation process and it is reasonable in light of the
collected data. Our goal for this framework is to allow one
to incorporate all aspects of uncertainty into the assessment
of scientific data. We call this framework the approximation
framework (Lindsay, 2004) and offer a brief description of it
below. The interesting reader can find details in Lindsay (2004)
and Lindsay and Markatou (2002).

Our basic modeling assumption is that the experimental
data constitute a realization from a random process that has
probability distribution Pτ , where τ stands for “true.” That is,
the data generated from such a probability mechanism mimics
closely the properties of data generated from an actual scientific
experiment. We treat this modeling assumption as correct,
hence there exists a Pτ ∈ P, where P is the class of all
distributions consistent with the basic assumptions. Through a
set of additional secondary assumptions, we arrive at a class
of models M =

{

Mθ : θ ∈ 2
}

⊂ P. The individual
distributions, denoted as Mθ , are the model elements. Following
Lindsay (2004), we resist the temptation of assuming that the
true probability model Pτ belongs in M. Instead, we take
the point of view that Pτ does not necessarily belong in the
model class under consideration. Therefore, there is a permanent
model misspecification error present. Statistical distances can
be used to measure the model misspecification error; they can
reconcile the use of M while not believing it to be true, by
allowing one to carry out statistical analysis using models only
as approximations to Pτ . An important conceptual issue that is
raised by the approximation framework relates to the question
of the existence of a “true” distribution. Lindsay (2004) has
addressed this issue and we are in agreement, thus we do not
address this point here. However, it is important to address, albeit
briefly, the use of parametric models since it is possible to carry
out statistical analyses completely nonparametrically, without the
use of any model.

Models and modeling constitute a fundamental part of
scientific work. Models (deterministic or stochastic) are used
in almost every field of scientific investigation. A very general
statement is that we need models in order to structure our
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ideas and conclusions. Lindsay (2004) discusses the question
of why we need to use models when we know that they
can only provide approximate validity by offering examples
where the use of models provides insights into the scientific
problem under study. In general, we would like our models
to offer parsimonious descriptions of the systematic variation,
concise summary of the statistical (random) variation and point
toward meaningful interpretation of the data. We continue
to use models because we think, in some sense, that models
are still informative if they approximate the data generating
mechanism in a reasonable fashion. We take this as being a
general justification for continuing to use concise models. But the
word “approximation” needs a more formal examination. To do
so, we use statistical distances as evidence measures that allow
formal examination of the adequacy of a model.

3.1.1. Model Assessment
There are two aspects to the problem of model assessment. The
first aspect corresponds to treating the scientific problem from
the point of view of one fixedmodelM. For example,Mmight be
the family of binomial distributions, or the family of multivariate
normal distributions that is used to model the experimental data
of interest. In this case, model misspecification error occurs when
we assume that Pτ , the true distribution, belongs to M when it
does not. Our goal then is to measure the cost in uncertainty
due to specification of a restricted statistical model M relative to
the unrestricted global model. We call this the model adequacy
problem.

A different type of problem occurs when there are multiple
models of interest, indexed by a, say Ma, and one is interested
in selecting one or more models that are most descriptive
for the process at hand. In this case, we are interested in
minimizing the model misspecification error, and less interested
in assessing the model misspecification error for the sake of
determining overall statistical error. This problem is called
the model selection problem.

Both model selection and model adequacy problems are
closely linked because we are interested, in both cases, in
assessing the magnitude of the model misspecification error. In
this paper, we will focus on the model adequacy problem.

3.1.2. The Approximation Framework
The approximation framework (Lindsay and Markatou, 2002;
Lindsay, 2004) is a statistical distance-based framework that
allows one to carry out model-based inference in the presence
of model misspecification error. This involves the construction
of a loss function that measures both within model and outside
model errors. The construction of this loss function (or statistical
distance) is discussed in Lindsay (2004). In the model adequacy
problem, we will need to define a loss function ρ(Pτ ,Mθ ) that
describes the loss incurred when the true distribution is Pτ but
instead Mθ is used. Such a loss function will, in principle, tell us
how far apart, in an inferential sense, the two distributions are.

If we adopt the usual convention that loss functions are
nonnegative in their arguments, are zero if the correct model
is used, and are taking larger values when the distributions
are dissimilar, then ρ(Pτ ,Mθ ) can be viewed as a distance

between the two distributions. Generally, if F, G are two
distributions such that ρ(F,G) ≥ 0 and ρ(F, F) = 0,
we will call ρ a statistical distance. As an example of a
statistical distance, we mention the familiar likelihood concept.
An extensively used distance in statistics is the Kullback-
Leibler distance. The celebrated AIC model selection procedure
is based on the Kullback-Leibler distance. Other examples
include Neyman’s chi-squared, Pearson’s chi-squared, L1 and
L2 distances, and Hellinger distance. Furthermore, additional
examples of statistical distances can be found in Lindsay (1994),
Cressie and Read (1984), and Pardo (2006). Note that we only
require that the distance is non-negative. We do not require
symmetry in the arguments because the roles of Pτ and Mθ (or
generally M) are different. Neither do we require the distance
to satisfy the triangle inequality. Thus, our measures are not
distances in the formal mathematical sense.

As a historical note, we mention that statistical distances or
divergences have a large history and are defined in a variety of
ways, by comparing distribution functions, density functions or
characteristic and moment generating functions.

3.1.3. Model Misspecification and Decomposition of

Model Fitting Error
Given a statistical distance between probability distributions
represented by Pτ and M, we can define the distance from the
model class M to the true distribution Pτ by

ρ(Pτ ,M) = inf
M∈M

ρ(Pτ ,M).

Therefore, the distance from a class of models M to the
true distribution Pτ equals the smallest distance generated by
an element of the model class M. This is called the model
misspecification cost. It corresponds to finding theminimal model
misspecification cost associated with the elements in the model
class M. If the true model Pτ belongs in the model class M, say it
is equal to Mθ0 , and M has density Mθ , then ρ(Pτ ,M) induces a

loss function on the parameter space via the relation L(θ0, θ)
def=

ρ(Mθ0 ,Mθ ). Therefore, if the true model belongs to the model
class M, the losses are strictly parametric (Lindsay, 2004).

However, if Pτ does not belong in the model class M, the
overall cost can be broken into two parts, as follows

ρ(Pτ ,Mθ̂
) = ρ(Pτ ,Mθτ )+ [ρ(Pτ ,Mθ̂

)− ρ(Pτ ,Mθτ )],

where ρ(Pτ ,Mθτ ) = inf
θ
ρ(Pτ ,Mθ ), that is Mθτ defines the best

model element in M that is closest to Pτ in the given distance.
Furthermore, θ̂ is the estimator of θ representing the particular
method of estimation used to obtain it.

The first term in the decomposition of the overall
misspecification cost is an unavoidable error that arises
from using M. This is the model misspecification cost. The
second term is nonnegative and represents the error made due to
point estimation. This is the parameter estimation cost (Lindsay,
2004). The way to balance these two costs depends on the basic
modeling goals.

In the problem of model adequacy discussed here, one has
a fixed model and interest centers in measuring the quality of
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the approximation offered by the model. In this case, it makes
sense to perform post-data inference on the magnitude of the
statistical distance to see if the approximation of the model to
the “true” distribution is “adequate” relative to some standard. In
what follows, we present specific classes of statistical distances (or
loss functions) that can be used to measure model adequacy, and
hence they can be used (potentially) as evidence functions.

3.2. Statistical Distances as Evidence
Functions for Model Adequacy
In this section, we study the characteristics, that is, the
mathematical properties of statistical distances to assess their
suitability as evidence functions for model adequacy. Our point
of view is that the choice of an appropriate statistical distance
to use as an evidence function for evaluating model adequacy
will depend on the aspects of model fit that a researcher is most
interested in and the ability of the statistical distance to have
a clear interpretation as a measure of risk. We note that Lele
(2004) constructed evidence functions of the form hn(x; θ1, θ2) =
n{ρ(pn, pθ1 )− ρ(pn, pθ2 )}, where ρ(·; ·) is a disparity or statistical
distance, pθ1 , pθ2 are two discrete probability models indexed by
the parameters θ1, θ2 and pn is the empirical probability mass
function. In this way, Lele generalizes the likelihood paradigm
and argues that the disparity-based evidence functions, under
appropriate conditions, satisfy the property of strong evidence.
We now examine three broad classes of statistical distances
with respect to their suitability as evidence functions for model
adequacy. To indicate the versatility of the methods, we work
with both, continuous and discrete distributions and denote by
X the associated sample space.

3.2.1. The Class of Chi-Squared Distances
Define τ (t) to be the “true” distribution and M =

{

mθ (t) : θ ∈
2

}

be a model class such as τ /∈ M, 2 is the parameter space

such that2 ⊆ R
d, d ≥ 1. If τ (t),m(t) are two discrete probability

distributions the generalized chi-squared distances are defined as

∑

t

(

τ (t)−m(t)
)2

a(t)
,

where a(t) is a suitable probability mass function (see Lindsay,
1994; Markatou et al., 2017). For example, when a(t) = m(t) and
τ (t) = d(t) the proportion of observations in the sample with
value t, we obtain Pearson’s chi-squared distance. Other choices
of a(t) result in different members of the chi-squared family.

The family of chi-squared distances has a very clear
interpretation as a risk measure (Lindsay, 2004; Markatou et al.,
2017). First, the chi-squared distance is obtained as the solution
of an optimization problem with interpretable constraints.
This result helps the interpretation of the chi-squared distance
measures as well as our understanding of their robustness
properties. To exemplify, note that Pearson’s chi-squared can be
obtained as

∑

t

(

d(t)−m(t)
)2

m(t)
= sup

h

[Edh(X)− Emh(X)]
2

Varm(h(X))
, (1)

where h(·) is a function that has finite second moments.
Furthermore, relationship (1) gives

∑

t

(

d(t)−m(t)
)2

m(t)
= sup

h

(

1
n

∑

h(Xi)− Emh(X)
)2

Varm(h(X))
= 1

n
sup
h

Z2
h,

that is, Pearson’s chi-squared is the supremum of squared Z
statistics. As such, Pearson’s chi-squared cannot possibly be
robust. On the other hand, Neyman’s chi-squared distance given

as
∑

t

(d(t)−m(t))2/d(t) equals (1/n) sup
h

t2h, the supremum of

squared t statistics and hence is more robust. In general, the chi-
squared distances are affected by outliers. However, a member of
this class, the symmetric chi-squared distance is obtained if we
use in place of a(t) the mixture 0.5m(t)+ 0.5d(t), and provides
estimators that are unaffected by outliers (see Markatou et al.,
1998; Markatou et al., 2017; Markatou and Chen, 2018). An
attractive characteristic of the symmetric chi-squared distance is
that it admits a testing interpretation. For details, see Markatou
et al. (2017).

The fact that it is possible to obtain the chi-squared
distances as solutions of a certain optimization problem with
interpretable as a variance constraint, allows us by analogy to
the construction of Scheffé’s confidence intervals for parameter
contrasts, to interpret chi-squared distances as tools that permit
the construction of “Scheffé-type” confidence intervals for
models. Therefore, the assessment of the adequacy of a model is
done via the construction of a confidence interval for the model.

In contrast with the class of chi-squared distances, distance
measures that are used frequently in practice do not arise
as solutions to optimization problems with interpretable as
variance constraints. For example, the Kullback-Leibler distance
or the Hellinger distance can be obtained as solutions of
similar optimization problems but with constraints that are
not interpretable as suitable variance functions (see Markatou
et al., 2017). As such, their interpretation as measures of risk,
as well as their suitability in constructing confidence intervals
for models is unclear. However, we note here that there is a
near equivalence between the Hellinger distance and chi-squared
distance, therefore justifying the use of Hellinger distance as a
measure for model adequacy.

A classical distance for continuous probability models that
is very popular is the L2 distance (Ahmad and Cerrito, 1993;
Tenreiro, 2009) defined as

L22(τ ,m) =
∫

[τ (x)−m(x)]2dx. (2)

While the L2 distance is location invariant, it is not invariant
under monotone transformations. Moreover, scale changes
appear as a constant factor multiplying the L2 distance. However,
other features of L22 may not be invariant.

3.2.2. General Quadratic Distances
Lindsay et al. (2008) introduce the concept of quadratic distance
defined as

ρK(F,M) =
∫ ∫

KM(x, y)d(F −M)(x)d(F −M)(y), (3)

Frontiers in Ecology and Evolution | www.frontiersin.org 6 November 2019 | Volume 7 | Article 447

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Markatou and Sofikitou Statistical Distances as Evidence Functions

where KM(x, y) is a nonnegative definite kernel function that
possibly depends on the model M and F corresponds to the
distribution function of the unknown “true” model. An example
of a kernel function that is quite popular as a smoothing kernel
in density estimation is the normal kernel with smoothing
parameter h. We note that quadratic distances are defined for
both, discrete and continuous probability models. To calculate
ρK(F,M) we write it as

ρK(F,M) = K(F, F)− K(F,M)− K(M, F)+ K(M,M), (4)

where K(A,B) =
∫ ∫

KM(x, y)dA(x)dA(y). Since the true

distribution F is unknown, a nonparametric estimator of F, F̂,
can be used. We call ρK(F̂,M) the empirical distance between F̂
andM.

An example of a quadratic distance is Pearson’s chi-squared
distance. The kernel of this distance is given as

K(x, y) =
m

∑

i=1

I(x ∈ Ai)I(y ∈ Ai)

M(Ai)
. (5)

Here, I(·) is the indicator function and A1,A2, . . . ,Am represent
the partitioning of the sample space into m bins. The empirical
distance is then given by

m
∑

i=1

(F̂(Ai)−M(Ai))
2

M(Ai)
, (6)

where M(Ai) indicates the probability of the i−th partition
under the model M and F̂(Ai) is the corresponding
empirical probability.

Lindsay et al. (2008) showed that in order to obtain the correct
asymptotic distribution of the quadratic distance, the kernel K
needs to be modified. This means that the kernel needs to be
centered with respect to model M. Centering is also necessitated
by the need to obtain, for a given kernel, uniquely defined
distances. We define the centered kernel with respect to model
elementM by

Kcen(x, y) = K(x, y)− K(x,M)− K(M, y)+ K(M,M), (7)

where K(x,M) =
∫

K(x, y)dM(x) and the remaining terms are
defined analogously.

The centering of the kernel has the additional benefit to allow
one to write the quadratic distance as

ρK(F,M) =
∫ ∫

Kcen(M)(x, y)dF(x)dF(y). (8)

The two relations above [that is (7) and (8)] guarantee that
the expectation of the centered kernel with respect to the true
model is the same with ρK(Pτ ,M), the distance between the
true distribution Pτ and the modelM. Furthermore, relationship
(8) shows that, for a fixed model M, the empirical distance
ρK(F̂,M) = Kcen(M)(F̂, F̂) equals to

Vn = 1

n2

n
∑

i=1

n
∑

j=1

Kcen(M)(xi, xj), (9)

and hence it is easily computable. It can be calculated in a matrix
form as (1TKcen(M)1)/n

2, where 1T = (1, 1, . . . , 1) and Kcen(M)

is a matrix with ij−th elements being equal to Kcen(M)(xi, xj),
i, j = 1, 2, . . . , n.

We can also estimate unbiasedly the quadratic distance using
the formula

Un = 1

n(n− 1)

n
∑

i=1

n
∑

j 6=i=1

Kcen(M)(xi, xj), (10)

where the notation Kcen(M) indicates the centered, with respect
to the model M, kernel. The fundamental distinction between
Vn and Un is the inclusion (in Vn) of the diagonal terms
Kcen(M)(xi, xi).

Fundamental aspects of the construction of quadratic
distances are the kernel selection and the selection of the
kernel’s tuning parameter. This parameter in fact determines the
sensitivity of the quadratic distance in identifying departures
between the adopted model and the true model. Lindsay et al.
(2014) offer a partial solution to the issue of kernel selection and
an algorithm of selecting the tuning parameter h in the context of
testing goodness-of-fit of the modelM.

In section 5, we illustrate the use of quadratic distances in
the model adequacy problem, through the use of an explanatory
analysis device, which we call the ratio of the standardized
distances plot. This plot is based on the idea that when the
true model is not in the model class under consideration, the
standardized quadratic distance distribution can be proved to
be normal with mean zero and standard deviation σh(F). One
can then construct the quantities ρK(F,M)/σh(F), where h is
a tuning parameter of the kernel. If a variety models Mi are
under consideration, one can compute an estimate of the quantity
ρK(F,Mi)/σh(F) for eachMi.

To estimate ρK(F,M)/σh(F), we use the ratio
Un(M)/σ̂h(Un(M)), where σ̂h(Un(M)) is the exact variance
of Un under the true distribution F (estimated by F̂, the
empirical cumulative distribution function). The quantity
Un(Mℓ)/σ̂h(Un(Mℓ)), ℓ = 1, 2, . . . , L is computed for each of
the L model elements under consideration. This quantity is the
standardized distance corresponding to each model elementMℓ.

The ratio of the standardized distances plot is a plot where
the x−axis depicts different models Mℓ, ℓ = 1, 2, . . . , L and the
y−axis depicts the squared root of the ratios

Un(Mℓ)/σ̂h(Un(Mℓ))

Un(Mk)/σ̂h(Un(Mk))
, ℓ, k = 1, 2, . . . , L, ℓ 6= k.

This plot is analogous to the likelihood ratio plot that we define as
the plot of the standardized, by their maximum value, likelihood
functions L(Hi) vs. Hi. For more information about the use of
standardized likelihood functions, we refer the interested reader
to Blume (2002). We further discuss and interpret the introduced
distance plot in section 5. It graphically presents the strength of
evidence for the modelMk or the strength of evidence against the
modelMℓ, ℓ 6= k.

When the ratio of the standardized distances is approximately
1, then both models Mk, Mℓ fit the data equally well. A ratio
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greater than 1 indicates that the standardized distance in the
denominator is smaller than the standardized distance of the
numerator. Depending on themagnitude of this ratio, it indicates
that model Mk provides a better fit than the model Mℓ. The
greater this ratio is, the stronger the evidence against modelMℓ.

We close this section by noting that quadratic distances, as
defined above, can be thought of as extensions of the class of chi-
squared distances. They can be interpreted as risk measures, and
certain distances exhibit robustness properties. Additionally, they
are locally equivalent to Fisher’s information. As such, they can be
used as evidence functions.

3.2.3. Non-convex Statistical Distances and

Probability Integral Transformation Distances
Prominent among the non-convex distance functions is the total

variation distance defined as V(τ ,m) = (1/2)
∑

t

|τ (t)−m(t)|

when the probability distributions are discrete or

V(τ ,m) = (1/2)

∫

|τ (t)−m(t)|dt when the probability

distributions are continuous. An alternative representation of
the total variation distance allows us to interpret it as a measure
of risk and hence as a measure for model adequacy. A statistically
useful interpretation of the total variation is that it can be
thought of as the worst error we can commit in probability when
we use the model m instead of τ . This error has maximum value
of 1 that occurs when τ , m are mutually singular. Although the
total variation distance can be interpreted as a risk measure
assessing the overall risk of using a model m instead of the true
but unknown model τ , it has several disadvantages including
the fact that if V(d,mθ ) is used as an inference function it
yields estimators of the parameter θ that are not normal when
the model M is true. This is related to the pathologies of the
variation distance described by Donoho and Liu (1988). On
the other hand, of note here is that the total variation distance
is locally equivalent to the Fisher information number, and
it is invariant under monotone data transformations. Both of
these are desirable properties for evidence functions. Further
discussion of the properties of total variation can be found in
Markatou and Chen (2018).

The mixture index of fit distance is a nonconvex distance
defined as π∗(τ ,M) = inf

m∈M
π∗(τ ,m), where M is a model class

or model, and π∗(τ ,m) is the mixture index of fit that is
defined as the smallest proportion π for which we can express
the model τ (t) as follows: τ (t) = (1− π)mθ (t)+ πe(t), where
mθ (t) ∈ M and e(t) is an arbitrary distribution. The mixing
proportion π is interpreted as the proportion of the data that
is outside the model M. The mixture index of fit distance is
closely related to total variation, and for small values of the total
variation distance the mixture index of fit and the total variation
distance are nearly equal. See Markatou and Chen (2018) for
a mathematical derivation of the aforementioned result. The
mixture index of fit has an attractive interpretation as the fraction
of the population intrinsically outside the model M, that is,
the proportion of outliers in the sample. However, despite this
attractive interpretation, the mixture index of fit does not provide

asymptotically normal estimators in the case of M being the true
model, hence exhibits the same behavior with the total variation
when used as an inference function. This behavior makes it less
attractive for use as an evidence function.

Many invariant distances are based on the probability integral
transformation, which says that if X is a random variable that
follows a continuous distribution function F, then F(X) =
U is a uniform random variable on (0,1). Thus, it allows a
simple analysis by reducing our probabilistic investigations to the
uniform random variables. One distance that is used extensively
in statistics and can be treated using the probability integral
transformation is the Kolmogorov-Smirnov distance, that is
defined as

ρKS (Pτ ,M) = sup
x

|Pτ (x)−M(x)|, (11)

where Pτ , M are two probability models, with Pτ indicating the
true model distribution and M indicating a model element. This
distance can be thought of as the total variation analog on the real
line and hence it can be interpreted as a risk measure.

Markatou and Chen (2018) show that the Kolmogorov-
Smirnov distance is invariant under monotone transformations,
and that it can be interpreted as the test function that maximizes
the difference between the power and size when testing the null
hypothesis of the true distribution Pτ = F vs. the alternative
Pτ = M. A fundamental drawback however of the Kolmogorov-
Smirnov distance is that there is no obvious extension of the
distance and methods based on it to the multivariate case.
Attempts to extend the Kolmogorov-Smirnov test to two and
higher dimensions exist in the literature (Peacock, 1983; Fasano
and Franceschini, 1987; Justel et al., 1997), but the test based
on the Kolmogorov-Smirnov distance is not very sensitive in,
generally, establishing differences between two distributions
unless these differ in a global fashion near their centers. Since,
there is not a direct interpretation of these distances as risks
measures when the model is incorrect, they are not attractive for
use as evidence functions.

4. THEORETICAL COMPARISONS

We begin with some comparisons between different statistical
distances. We choose to compare the quadratic distance with
L2−distance and the total variation (or L1−distance). This choice
is based on the popularity of L1 and L2−distances, as well as on
the fact that L2 is a special case of the quadratic distance.

To better understand how these distances behave, and
before we apply those to data for judging the evidence for or
against hypotheses of interest, we present explicit theoretical
computations that aim to elucidate their performance as
functions of various aspects of interest, such as mean and/or
variability of distributions. To make the comparisons as clear as
possible, we concentrate in the uni-dimensional case.

Assume that we are interested in choosing between two
normal models for describing our data, and suppose those are
N(µ1, σ

2
1 ) and N(µ2, σ

2
2 ) with respective cumulative distribution

functions F1 and F2. We use two different scenarios, the case
of equal variances: σ 2

1 = σ 2
2 = 1 and in the case of unequal
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variances: σ 2
1 = 1, σ 2

2 = 4, for different values of the tuning
parameter h (h ∈ [0.5, 2]) and the mean difference µ1 − µ2

(µ1 − µ2 ∈ [0, 5]). To compute the quadratic distance between
the two normal models, we use a normal kernel with tuning
parameter h2. Therefore, the kernel is expressed as K(x, y) =
(1/2πh) · exp

[

− (x − y)2/(2h2)
]

. This produces the quadratic
distance between the two aforementioned normal distributions
given by

ρK(F1, F2) = 1√
2π

·
{

1
√

2σ 2
1 + h2

+ 1
√

2σ 2
2 + h2

− 2 ·
exp

[

− 1
2 ·

(µ1−µ2)
2

(σ 21+σ 22+h2)

]

√

σ 2
1 + σ 2

2 + h2

}

.

Lele (2004) lists as one of the desirable properties of an evidence
function the property of scale invariance. Quadratic distances
can be made scale invariant, and the scale-invariant quadratic
distance of the aforementioned two normal distributions
is given by

ρ
(inv)
K (F1, F2) = 1− 2 ·

exp

[

− 1
2 ·

(µ1−µ2)2
(σ21+σ

2
2+h2)

]

√
σ 21+σ 22+h2

1√
2σ 21+h2

+ 1√
2σ 22+h2

. (12)

Notice that, when the two distributions are equal, the two means
and variances are equal to the distance is 0. Furthermore, for fixed
variances σ 2

1 , σ
2
2 , the quadratic distance between the two normal

populations is an increasing function of the distance between
their respective means. For completeness of the discussion, we
also note that the L2 distance is a special case of the quadratic
distance when h = 0.

The aforementioned distances are presented in 3D−plots as
functions of h and µ1 − µ2 in Figures 1, 2. The blue color
indicates small values of the distances and the mean difference,
while graduate changes in the color indicate larger values. The
various values of h provide different levels of smoothness. In
practice, the selection of this parameter is connected to the
specific data analytic goals under consideration. For example,
Lindsay et al. (2014) select h such that the power of the goodness-
of-fit test is maximized (for details see Lindsay et al., 2014).

In the sequel, we take into account only the case of equal
variances: σ = σ 2

1 = σ 2
2 = 1, and we plot three distances as a

function of the mean difference µ1 − µ2 (µ1 − µ2 ∈ [0, 5]). The
solid lines in Figure 3 illustrate the scale-quadratic distance for
two different values of the tuning parameter (h = 0.5 and h = 1).
When the variances are equal, Equation (12) reduces to

ρ
(inv)
K (F1, F2) = 1− exp

[

− 1

2
· (µ1 − µ2)

2

(2σ 2 + h2)

]

.

The non-solid lines illustrated in Figure 3 represent the L1
distance (also known as total variation), which is given by

the formula

TV(F1, F2) = 1− 28

(

− |µ1 − µ2|
2σ

)

,

and the scaled L2 distance, which, as mentioned before, can be
derived from Equation (12) by setting h = 0.

The graphs illustrated in Figures 1–3 were created using
the Wolfram Mathematica 11.1 program. For this purpose and
in order to calculate the values of the depicted points, code
was written in Wolfram Language by exploiting the formulae
presented above.

In summary, the quadratic distance between two normal
populations is an increasing function of the difference between
the two parameter means when the two normal populations
have equal variability. The shape of the distance does depend
on the smoothing parameter that is selected by the user and
provides different levels of smoothing, with higher values of h
to correspond to greater smoothing. On the other hand, smaller
values of h produce quadratic distances that are closer (in shape)
to the L2 distance, for which h = 0.

The results presented in this section provide guidance on
the performance of these distances in practical applications.
The following section presents data examples with the purpose
of illustrating these distances as evidence functions for
model adequacy.

5. ILLUSTRATIONS AND EXAMPLES

In this section, we present different examples using both
simulated and real-world data with two or six dimensions. Our
aim is to provide illustrations related to distances computed
under different models so that the interested reader will get
a better understanding on how the evidence functions and
distances work in practice. Figures 4–6 and the numbers
described in Table 1 were generated using the Wolfram
Mathematica 11.1 program exploiting multivariate formulae
analogous to the (univariate) ones presented in section 4.

5.1. Example # 1
The purpose of this illustration is to understand the behavior
of quadratic distances as measures of evidence for model
adequacy in various data structures arising when experimental
data are generated.

We generate a single sample of size n = 400 from a
mixture of two bivariate normal distributions as follows; 200
data points follow a bivariate normal distribution with mean
0 and covariance matrix I (abbrev. MVN2(0, I)). Another 200
data points are generated form a bivariate normal with the
same covariance matrix I and mean µT = (6, 8). The different
hypotheses postulate that the data are from models Mi, i =
1, 2, 3, 4, 5, where M1 corresponds to a bivariate normal with
mean µT

1 = (0, 0) and covariance matrix I and the remaining
models are bivariate normal with covariance matrix I and
corresponding means µT

2 = (−1,−2), µT
3 = (3, 4), µT

4 = (6, 8)
and µT

5 = (10, 20). For each case, we compute an estimate of

the distance ρK(F̂,Mi), i = 1, 2, 3, 4, 5 denoted by Un(Mi) and its
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FIGURE 1 | Quadratic Distances of two univariate normal distributions, as a function of the tuning parameter h and the mean difference µ1 − µ2. Graph (1) shows the

distance between N(µ1, 1) & N(µ2, 1), while Graph (2) shows the distance between N(µ1, 1) & N(µ2, 4). Blue color corresponds to small distances (as measured by the

magnitude of µ1 − µ2), with the change of color indicating a larger difference in means.

FIGURE 2 | Scale-Invariant Quadratic Distances of two univariate normal distributions, as a function of the tuning parameter h and the mean difference µ1 − µ2.

Graph (1) shows the distance between N(µ1, 1) & N(µ2, 1), while Graph (2) shows the distance between N(µ1, 1) & N(µ2, 4). Blue color corresponds to small distances

(as measured by the magnitude of µ1 − µ2), with the change of color indicating a larger difference in means.

associated variance. The kernel used to carry out the computation
is the density of a multivariate normal with mean the observation
xj, j = 1, 2, . . . , n and covariance matrix h · I. We use h2 = 0.5.

Figure 4 plots the squared root of the standardized estimates
of the quadratic distances between data expressed as F̂ and the
various fitted models. The plot indicates that models M1 and
M4 provide an equally good fit to the data (the corresponding
standardized distances are equal to 0.032), with the other models
providing a worse fit to the data. This is actually expected
because 50% of the sample comes from a bivariate normal with
mean vector 0 (model M1) and 50% of the sample comes from

a bivariate normal with mean µ4 (model M4). The quadratic
distance, interpreted as an evidence function, provides evidence
that supports equally well the use of modelsM1 andM4.

Figure 5 presents a plot of the squared root of the
standardized distance (

√

SDHi/SDH1 ) vs. the models fitted.
This second plot is analogous to the log-likelihood plot of
a hypothesis of interest vs. other competing hypothesis. The
likelihood function is graphed to provide visual impression of the
evidence over the parameter space. In analogy, we plot the ratio
of the square root of the standardized distance for the different
hypothesis over the standardized distance of the hypotheses of
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FIGURE 3 | L1, L2 and Scale-Invariant Quadratic Distances between two univariate normal distributions N(µ1, 1) & N(µ2, 1), as a function of the mean difference

µ1 − µ2.

FIGURE 4 | Squared root of the standardized estimates of the distances

between model F̂ and the various fitted models.

interest. Given that a small distance provides evidence of the
model fit, the greater the value of the aforementioned ratio the
stronger the evidence against the hypotheses Hi, i = 2, . . . , 5.
A ratio of approximately 1 indicates that both models are
almost equally supported by the data, hence both hypotheses are
approximately equally supported by the data, so the evidence
does not indicate any preference for one hypothesis over the
other. For example, the squared root of the standardized distance
of model M4 vs. model M1 equals 0.995107, indicating that both
models M4 and M1 are equally supported by the data. This is
indeed the case since, by design, 50% of the data points come
from MVN2(0, I) with the remaining 50% of the data coming
from aMVN2(µ, I), where µ

T = (6, 8).

FIGURE 5 | Squared root of the ratio of the standardized distance vs. the

various fitted models.

5.2. Example # 2
A second illustration of quadratic distances as evidence functions
for model adequacy is provided below. We generate a single
sample of size 250 from a MVN2(0, I). We use this single sample
as our baseline data and fit ten different models to obtain
estimates of the standardized distances. The fitted models have
a covariance matrix I and corresponding means as follows: µT

0 =
(0, 0), µT

1 = (0.3, 0), µT
2 = (0.5, 0), µT

3 = (−3, 1), µT
4 = (1, 3),

µ
T
5 = (3, 1), µT

6 = (−3,−2), µT
7 = (5, 4), µT

8 = (−5,−5) and
µ
T
9 = (6, 9). We use h2 = 0.5 and a normal kernel as before.

Table 1 presents the estimates of the distances for the different
models and their associated standard deviations.
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FIGURE 6 | Squared root of the standardized estimates of the distances

between model F̂ and the various fitted models.

TABLE 1 | Estimates of the distances for ten different models and their associated

standard deviations.

Models Distances Standard Deviations

Un(Mi ) σn(Un(Mi ))

M0 :µ
T
0 = (0, 0) 0.03772 0.06354

M1 :µ
T
1 = (0.3, 0) 0.15479 0.11774

M2 :µ
T
2 = (0.5, 0) 0.52944 0.18271

M3 :µ
T
3 = (−3, 1) 10.95950 0.43770

M4 :µ
T
4 = (1, 3) 11.10480 0.42908

M5 :µ
T
5 = (3, 1) 11.16740 0.40285

M6 :µ
T
6 = (−3,−2) 11.94250 0.37171

M7 :µ
T
7 = (5, 4) 12.78660 0.33466

M8 :µ
T
8 = (−5,−5) 12.79010 0.33421

M9 :µ
T
9 = (6, 9) 12.79020 0.33422

A single sample of size 250 was used as the baseline sample coming from a MVN2 (0, I).

Distances and their standard deviations are multiplied by 100.

Notice that when the mean of the fitted model is µ
T
0 = (0, 0)

the estimate of the distance is close to 0 with a very small standard
deviation. Further, the more different the means are, the bigger
the value of the distance estimate. Figures 6, 7 plot the squared
root of the standardized distance estimates and the standardized
ratio distance estimates. Interpretation of these plots is similar to
the ones presented before.

5.3. Example # 3
This example uses a real experimental data set and illustrates
that the quadratic distance evidence functions can be easily
computed in higher than two dimensions and offer meaningful
results. We use a multivariate data set introduced by Lubischew
(1962). This data set contains three classes of Chaetocnema,
a genus of flea beetles. Each class refers to a different
type of species: Chaetocnema Concinna Marsh, Chaetocnema

FIGURE 7 | Squared root of the ratio of the standardized distance vs. the

various fitted models.

Heikertingeri Lubisch, and Chaetocnema Heptapotamica Lubisch
of n1 = 21, n2 = 31 and n3 = 23 instances each. Six
features/characteristics were measured from each species: the
width of the first and the second joint of the first tarsus inmicrons
(the sum of measurements for both tarsi), the maximal width of
the aedeagus in the fore-part (in microns), the front angle of the
aedeagus (1 unit= 7.5◦), the maximal width of the head between
the external edges of the eyes (in 0.01 mm), the aedeagus width
from the side (in microns).

In this example, we take two of the chaetocnema species,
Chaetocnema Heikertingeri Lubisch and Chaetocnema
Heptapotamica Lubisch. Measurements are taken on six
dimensions. There are 31 observations in the first group
of species and 22 observations in the second group
(Heptapotamica), in total 53 observations. To estimate the
mean vector µi and the covariance matrix 6i for each group we
use the maximum likelihood. Each group, therefore, is described
by a six-dimensional normal distribution with corresponding
means given as µ

T
Hr = (201, 119, 49, 125, 14, 81) for the

Heikertingeri species and µ
T
Hp = (138, 125, 52, 138, 10, 107) for

the Heptapotamica species with their associated covariance
matrices. In this case, we use the models MVN6(0, I),
MVN6(µHr ,6Hr) and MVN6(µHp,6Hp) and computed
their distance from the data set of 53 observations. Again,
we used the multivariate normal kernel with h = 0.1. Notice
that the standard multivariate normal model is also used in
order to clearly indicate the difference in the values of the
distance calculations. The fitting of the MVN6(µHr ,6Hr) and
MVN6(µHp,6Hp) offers estimators of the distance of 3.52× 10−8

and 8.63 × 10−8, while the fitting ofMVN6(0, I) gives a distance
of 0.0005, indicating an estimate several orders of magnitude
greater than the one obtained from the previous two cases.
That is, the largest quadratic distance observed corresponds
to the six-dimensional multivariate standard normal model.
Furthermore, the squared root of the ratio of the standardized
distances between the fitted Heptapotamica normal model
(numerator) and the Heikertingeri normal model equals 1.57,
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implying that the evidence is inconclusive as to what model is
supported. On the other hand, the corresponding quantities
when the multivariate normal MVN6(0, I) model is used in
the numerator and the Heptapotamica model is used in the
denominator is 76.11, and when the Heikertingeri is used the
corresponding ratio is 119.18, clearly indicating that the data
does not support theMVN6(0, I) model.

6. DISCUSSION AND CONCLUSIONS

In this paper, we discuss the role of statistical distances as
evidence functions. We review two definitions of evidence
functions, one proposed by Lele (2004) and a second proposed
by Lindsay (2004).We then examine the mathematical properties
of some commonly used statistical distances and their suitability
as evidence functions for model adequacy. Our investigation
indicates that the class of the chi-squared distances and their
extension, the class of quadratic distances introduced by Lindsay
et al. (2008) and Lindsay et al. (2014) can be used as evidence
functions for measuring model adequacy. This is because they
can be interpreted as measures of risk, certain members of
each class exhibit robustness properties, and if used as inference
functions produce estimators that are asymptotically normal.

We propose also an explanatory analysis tool, namely the
standardized distance ratio plot, that can be used to visualize
the strength of evidence provided for, or against, hypotheses of
interest and illustrate its use on experimental and simulated data.
Our results indicate that quadratic distances perform well as
evidence functions for measuring model adequacy. Furthermore,
quadratic distances are of interest for a variety of reasons
including the fact that several important distances are quadratic
or they can be shown to be distributionally equivalent to a
quadratic distance.

One of the reviewers raised the question of error probabilities
associated with the use of statistical distances. Specifically,
the reviewer asked whether the probabilities of misleading
evidence and weak evidence are relevant in our context. We
believe that measurement of model misspecification is an
important step toward clarifying the suitability of a model
class to explain the experimental data. However, we also think
that a careful study of the behavior of these probabilities
may shine additional light on distinguishing between different
distances. The careful study of these questions is the topic of a
future paper.

A second reviewer raised the question of potential connections
of our work with work on the Focused Information Criterion
(FIC) (Jullum and Hjort, 2017). The focus of our paper is on

articulating the properties and illustrating, via data examples,
the potential of statistical distances in assessing model adequacy.

Connections with other model selection methods such as FIC
will constitute the topic of future work. Finally, we would like
to mention here that statistical distance concepts and ideas can
be adapted to address model adequacy and model selection
problems in many settings including linear, nonlinear and mixed
effects models. Dimova et al. (2018) discuss in detail the case of
linear regression and show that AIC and BIC are special cases
of a general information criterion, the Quadratic Information
Criterion (QIC).

Model assessment, that is, model adequacy and model
selection is a fundamental and very important stage of any
statistical analysis. Different techniques of model selection have
been proposed in the literature describing how one could choose
the best model among a spectrum of other competing models
which best captures reality. However, provided that data were
generated according to that specific model, the next logical step
of a statistical analysis is to make statements about the study
population. This implies making statistical inferences about the
parameters of the chosen (data-dependent)model. Indeed, model
selection strategies may have a significant effect or impact on
inference of estimated parameters. Consequently, it is also crucial
attention to be given to inference after model selection. For more
information on estimation and inference after model selection,
the interested reader is referred to Shen et al. (2004), Efron
(2014), Fithian et al. (2017) and Claeskens and Hjort (2008,
Chapters 6,7).
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