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Plant-soil feedbacks (PSFs) are important drivers of vegetation composition in nature.

Whole-soil inoculations can help to steer plant-community assembly for nature

restoration success. However, it is unclear how subsequent colonization by ruderal

and late-successional plant species influences PSFs. Here we test the direction and

strength of the PSFs for ruderal and target plant species on differently inoculated soils.

We hypothesize that inoculation with late-successional field soil promotes positive and

negative PSFs for late-successional and ruderal plants, respectively. We conducted a

glasshouse experiment with three plant-growth phases. First, we inoculated a common

nutrient-rich ex-arable recipient soil with either a heathland, grassland or an arable soil,

and grew mixtures of three ruderal, and three late-successional target species in all soils.

Subsequently, we divided the experimental units over four new pots and planted half with

mixtures of three ruderal and half with mixtures of three late-successional plant species,

to simulate local colonization by these species groups. After 9 weeks, we removed the

plants and replanted the pots with ruderal and late-successional species mixtures in a

full factorial design to quantify the induced PSFs, after a further 9 weeks of growth. We

found that ruderal plants developed positive PSF on soils inoculated with arable soil and

neutral feedback when soils were inoculated with grassland or heathland inoculum. The

positive PSF was most pronounced for Myosotis arvensis, although all ruderal species

showed themost positive PSFs on arable-inoculated soils. There was no significant effect

of inoculation on the PSF of late-successional species. As a result of changing PSFs, the

relative performance of ruderal and late-successional target species becamemore similar

on soils inoculated with grassland or heathland inoculum, leading to higher evenness. We

conclude that soil inoculation on nutrient-rich ex-arable soils can affect PSFs. Inoculation

with grassland or heathland inoculum prevented ruderal species from developing positive

PSF and shifted the competitive balance in favor of late-successional plants. Future

studies need to address the longer-term dynamics of soil inoculation-induced shifts in

PSFs, particularly because these are expected to develop over longer timescales in the

slow-growing late-successional target species, as well as the impact of competitive

plant-plant interactions.
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INTRODUCTION

Plants and their associated soil biota are continuously interacting
and their interplay can lead to net positive and negative effects on
plant performance (survival, growth, and reproduction). These
phenomena are termed positive and negative plant-soil feedback
(PSF), respectively (Bever, 1994; Van der Putten et al., 2013). It
is clear that plant-soil feedback effects are important drivers of

plant community dynamics, both in the lab (Kulmatiski et al.,

2008; Lekberg et al., 2018) and in the field (Bennett et al., 2017;
Teste et al., 2017). However, it is becoming increasingly clear
that the realized plant-soil feedback is dependent on the local
conditions. For instance, plant-soil feedback strengths change
with soil type, fertilization and herbivory (Bezemer et al., 2006;
Veen et al., 2014; Heinze and Joshi, 2017; Wubs and Bezemer,
2018b). The realized plant-soil feedback is not a property of the
plant species per se, but arises through the interplay between
plants and their soil biota within the local biotic and abiotic
conditions. The latter is illustrated by the observation that PSFs
change importantly with the successional stage of the plant as well
as the soil (Kardol et al., 2006).

Recently, we applied this contextual knowledge on plant-soil
interactions to improve nature restoration success through soil
inoculation on sandy soils (Wubs et al., 2016). Previous studies
show that late-successional plant species, the typical target species
for restoration, develop positive PSF, measured as plant biomass
(De Deyn et al., 2003; Carbajo et al., 2011) and this is particularly
pronounced in late-successional soils (Kardol et al., 2006). In
field experiments it has been shown that introduction of late-
successional soil communities can facilitate the establishment
and growth of late-successional plant species (Vécrin andMuller,
2003; Pywell et al., 2011; Buisson et al., 2018) and can determine
the composition of the developing plant community for decades
(Wubs et al., 2016, 2019). While this approach can thus be a
successful intervention method, the areas to be restored are still
open to potential colonization by plant species from elsewhere
and it is unclear how soil inoculation affects the PSFs experienced
by subsequently colonizing plants.

Here we test whether inoculation with soils from early- and
late-successional systems affect the direction and strength of the
PSFs, measured as plant biomass, of ruderal as well as restoration
target plant species. We use the sandy glacial deposits in the
central parts of the Netherlands as our model system (Kardol
et al., 2006; Carbajo et al., 2011; Wubs et al., 2016). In the
area, arable farming has been intensive in many places since
World War 2, but many farms are no longer economically
viable due to the low inherent soil fertility and limits on
spatial expansion. Species-rich grasslands and dry heathlands are
important national restoration targets for the region, harboring
important flora and fauna typical of dry habitats. Both ecosystems
are stages along the secondary succession on sandy soils,
but under different management regimes (Kardol, 2007). The
grasslands arise from the arable fields within a span of 10–30
years under mowing or grazing regimes. The dry heaths in this
system are the result of, historically prolonged, sod cutting and
grazing. We refer to the arable system as early-succession, and
the grassland and heathland both as late-succession.

Plant-soil feedbacks are typically studied using two-phase
experiments (Kulmatiski et al., 2008; Brinkman et al., 2010). In
the first phase, a plant species or group of species is allowed
to condition the soil by growing in it, which alters the local
soil biotic and abiotic conditions (Ehrenfeld et al., 2005; Van
der Putten et al., 2013): the conditioning phase. In the second
phase, the test phase, the same (or a different) group of plant
species is allowed to grow on that soil and metrics of their
performance on conditioned and control soil are recorded (e.g.,
survival, biomass, reproduction). Based on the difference in
plant performance on the conditioned and a control soil the
net PSF is calculated (Brinkman et al., 2010), with positive PSF
indicating better performance in the conditioned soil than in
the control and negative PSF the converse. In this study, we
couple a soil inoculation experiment (Phase 1) with a classical
PSF experiment, with a conditioning phase (Phase 2) and a test
phase (Phase 3). In the first phase we inoculated a common ex-
arable soil with either arable, grassland or heathland soil and
grew a common plant community of six species to simulate what
would happen in a soil inoculation based restoration project
(Wubs et al., 2018). After harvest, we then separately grew three
ruderal and three target plant species on all the inoculated soils
to allow soil conditioning by the ruderal and target species
groups, respectively (Phase 2). Finally, after harvest, we again
grew the same ruderal and target species groups on each of
the conditioned soils in a full factorial design and quantified
their performance as shoot biomass production (Phase 3). This
design allows us to quantify net PSFs, by comparing performance
of plants grown on soils conditioned by the same group of
plants to performance on soils conditioned by the other group
of plants, across the three different inoculation treatments. We
hypothesize that late successional plants experience positive PSF,
while ruderal species develop negative PSF (Kardol et al., 2006).
Furthermore, when inoculated with late-successional field soil
the positive and negative PSFs for late-successional and ruderal
plants, respectively, are expected to be exacerbated. This would
result in even higher and lower plant biomass for these groups.

MATERIALS AND METHODS

We conducted a glasshouse experiment with soils setup in a
prior study (Wubs et al., 2018). More details on this part of the
methods can be found there. Briefly, in the experiment inocula
of three ecosystem types, arable, grassland, and heathland, were
sourced from the field (January 2015), with three replicate fields
in each type. Within each field an area of 5 × 5m was selected
at least 20m from the edge of the field. At each corner of the
selected area, 5 kg of soil was collected from the upper 10–15 cm.
The soil was sieved over a 1 cm mesh to remove stones and
large roots. Upon return to the lab, the four samples per field
were pooled based on equal amounts of dry weight resulting in
homogenized inoculum material of 20 kg per field. These inocula
were introduced (1:9 w:w inoculum:soil ratio) into a common ex-
arable field soil (total 4 kg/container). The common ex-arable soil
was from a field that had been in intensive agricultural use at least
since World War 2 until 2004. Then, it was used for extensive
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wheat cultivation for 2 years prior to the implementation of large-
scale nature restoration measures in 2006 (Wubs et al., 2016).
The soil was collected from the central part of the field, where
the only management consisted of cattle grazing (25–30 cows
throughout the year, roaming freely in the entire 160 ha field)
and removal of tree seedlings (particularly Betula spp. and Prunus
serotina). We collected soil from the organic layer within 10–
50 cm depth (∼1,300 kg), which was subsequently sieved over a
1 cm mesh to remove major roots and stones and homogenized.
The common background soil was sterilized (>25 KGray gamma
radiation, Isotron, Ede, the Netherlands) to eliminate the resident
soil community. The inocula were not sterilized. The abiotic
conditions in the inocula and the common ex-arable soil have
been reported in Table S1 of Wubs et al. (2018). Likewise, soil
biotic composition data reported previously byWubs et al. (2016)
are available on Figshare (doi: 10.6084/m9.figshare.3435404). The
major difference were that bacterial and fungal biomass were
lower on the arable soil compared to grassland and heathland
(their Table S4) and the microbial and nematode community
composition was strongly different (their Figures 1f,g).

Phase 1
The containers (17 × 17 × 17 cm) were planted with two
seedlings each of three ruderal and three late-successional
target species (12 plants per pot). Three species were early-
successional ruderals: Crepis capillaris (L.) Wallr. (Asteraceae),
Lolium perenne L. (Poaceae) and Myosotis arvensis (L.) Hill
(Boraginaceae), and three were late-successional, conservation
target species: Arnica montana L. (Asteraceae), Festuca
filiformis Pourr. (Poaceae) and Campanula rotundifolia L.
(Campanulaceae), with one grass and two forbs in each group.
Seeds were obtained from commercial suppliers of wild plant
seeds (Cruydthoeck, Assen, the Netherlands and B&T World
Seeds, Paguignan, France) and germinated (sterilized 1min.
in 5% NaClO solution) on moistened glass beads in a climate
chamber (12 h light/dark cycle, 20◦C by day and 15◦C at night).
The mixed plant communities were allowed to grow for 7
weeks (Phase 1) and subsequently shoot biomass was harvested
(oven-dried for 48 h at 75◦C). In the prior experiment the three
inocula types were mixed in different ratio’s and the effects of the
different ratio’s were assessed (Wubs et al., 2018). Here we only
used those experimental containers where 100% pure inoculum
(i.e., from one field) was introduced. The present experiment
used 36 containers (3 soil inoculum types x 3 replicate fields x 4
replicates per field) in Phase 1.

Phase 2
After the Phase 1 harvest, the soil from each container was
sieved (4mm mesh) to remove roots. From each original Phase
1 container, four smaller pots were filled with homogenized
soil (900 g, 10 x 10 x 11 cm pots). For each Phase 1 container,
two Phase 2 pots were randomly selected and planted with one
individual of each of the three ruderal plant species. The other
two pots per Phase 1 container were planted with one individual
each of the three target species (N = 36 Phase 1 containers × 2
Phase 2 treatments in duplicate = 144). Seeds were germinated
as before. Pots were placed in the greenhouse in a random

spatial design under the same conditions as described before.
Any seedlings that died in the first week were replaced. The
pots were hand-weeded every week to remove seedlings emerging
from the seedbank, and watered three times per week. The plants
were allowed to grow for 9 weeks. Subsequently, shoot biomass
of each species was cut and dried (48 h, 75◦C), before weighing
per species.

Phase 3
For the final phase (Phase 3), the soils of Phase 2 were again
sieved (4mm) to remove plant roots and put back in same size
pots. Next, one of the two pots conditioned by ruderals, per Phase
1 container, was randomly selected and planted with ruderals
and the other was planted with target plant species. The same
was done for the two pots conditioned by target species, again
per Phase 1 container. This led to a full factorial design of soil
inoculum type with Phase 2 and Phase 3 plant species groups
(ruderal or target; N = 36 Phase 1 containers × 2 Phase 2
× 2 Phase 3 treatments = 144) and the soils of independent
replicates were kept separate throughout the three phases of the
experiment. The samemethods were used as above and the plants
were allowed to grow for 9 weeks, after which shoot biomass of
each species was determined.

Data Analysis
Differences in seedling mortality among treatments were
analyzed using a generalized linear mixed model with a binomial
error distribution. The analysis was conducted at Phase 3 pot
level and in case any of the seedlings died this was scored as
a case of mortality. Fixed effects included Phase 3 and 2 plant
groups, soil inoculation and their interactions, while the random
effects consisted of the sampling field of the inoculated soil and
the original Phase 1 container.

Plant biomass responses were evaluated at two levels, plant
group and individual plant species. The plant group level
responses were analyzed using a linear mixed model with the
same fixed and random effects as for the mortality model above.
In addition, we tested a model where we included Phase 2 shoot
biomass as a continuous predictor into the above model and we
included all possible interactions. Plant-soil feedbacks were tested
directly as planned contrast of biomass production on Phase
2-soils conditioned by ruderal and target species, respectively
(Adbi and Williams, 2010). For the individual plant species
model, PSF was calculated as the log-ratio of plant biomass in
own plant group to the other plant group (Brinkman et al.,
2010). The individual plant PSFs were analyzed using a linear
mixed effects model, with the same random factors as before. As
fixed effects plant species, soil inoculation and their interaction
were included.

All analyses were conducted in R v3.5.2 (R Core Team,
2019) and model assumptions were checked graphically. Model
heteroscedasticity was modeled explicitly using generalized least
squares (Pinheiro and Bates, 2000; Zuur et al., 2009). Linear
mixed models were analyzed using the nlme v3.1-137 package
(Pinheiro et al., 2017) and the GLMM in packageMASS v7.3-51.1
(Venables and Ripley, 2002).
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FIGURE 1 | Mean (± SE) plant species group PSFs in Phase 3 based on shoot biomass (a), boxplots showing PSF per species (b–g). The box extends from the

lower to the upper quartile, while the thick dot represents the median. The whiskers represent the 5th and 95th percentile. Any data points beyond these cut-offs are

individually presented. Plants grew in mixtures of ruderal and late-successional plant species, respectively, in pots in Phase 3. Significance of PSF effects are based on

planned contrasts (*p < 0.05,
‡
p = 0.0669; Tables S2, S3).

RESULTS

Ruderal plant species developed positive feedback on soil
inoculated with arable-soil inoculum, while on grassland and
heathland inoculated soil they showed neutral PSFs (Figure 1a;
Tables S1, S2). Plant species differed in their PSF responses
(Figures 1b–g). The positive PSF in arable-inoculated soil was
mostly associated with improved performance in M. arvensis
(Figure 1d;Table S3). On heathland soil,M. arvensis developed a
weakly negative PSF, which was unique among the tested species.

As a group, the late-successional target species did not develop
significant feedback in response to soil inoculation, although
most negative values occurred on heathland-inoculated soil. In
fact, F. filliformis showed a trend for positive PSF on arable-
inoculated soil (Figure 1f; Table S3).

Overall, ruderal biomass was higher than that of the late-
successional target species (Figure 2; Table S1). However, the
difference in performance between ruderal and target species
was smaller in heathland-inoculated soil than in arable-
inoculated soil (Figure 2A; P3 × Inoc interaction; Table S1).
There was no relationship between the pot biomass in Phase
2 and Phase 3 (Figure 3), and Phase 2 biomass did not
interact with any experimental treatment (Table S4). The
interaction between the two plant groups and inoculation
(P3 plant × P2 plant x Inoculation) remained significant,
indicating that the way the plant groups conditioned the soil
(Phase 2) and affected the test plants (PSF, Phase 3) was
dependent on the type of soil inoculated, also when accounting
for Phase 2 plant biomass. Seedling mortality was overall
low and was not affected by the experimental treatments
(Figure S1; Table S1).

DISCUSSION

Our results show that soil inoculation can alter plant-
soil feedbacks. However, contrary to our expectation,
positive PSFs for target species were not strengthened
by inoculation with late-successional soil. Instead, we
found that ruderal species had positive PSFs on arable-
inoculated soils, in terms of plant biomass. On soil inoculated
with late-successional soil, PSFs of ruderal plants became
less pronounced and not significantly different from no

effect (neutral feedback; Van der Putten et al., 2013). As
a group, the late-successional target species developed
no significant PSF in this experiment. In the heathland-
inoculated soil this led to the most even plant performance
between these two groups. Since the positive PSF of ruderal
species on arable-inoculated soil was suppressed in pots
inoculated with late-successional soil, this suggests that these
inoculated soils are robust to colonization by non-target
ruderal species.

There was considerable variation in the responses of the
individual plant species within the two species groups. For
ruderals, the positive PSF on arable-inoculated soil was only clear
in the biomass of M. arvensis. The other two ruderal species
also had positive mean PSFs on those soils, but these effects
were non-significant. Next, we found a trend for a positive
PSF in one target species, F. filliformis, on arable-inoculated
soils, while we found no other significant responses for late-
successional target species. It is well-known that there is large
variation in PSF strengths among plant species (Van de Voorde
et al., 2011; Cortois et al., 2016) and among plant genotypes
(Schweitzer et al., 2008; Evans et al., 2016; Semchenko et al.,
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FIGURE 2 | Shoot biomass of ruderal and target plants in Phase 3 (A) and Phase 2 (B), for statistical analyses see Table S1. Phase 2 and Phase 3 indicate the plants

that had been grown in the soil, and Inoc indicates the soil type that was inoculated (Arable, Grassland, or Heathland soil). Other conventions follow Figure 1.

FIGURE 3 | Relationship between shoot biomass per pot in Phase 3 and Phase 2 for each of the four species groups. Significant effects in the mixed model with

Phase 2 biomass as a covariate are indicated using stars (*p < 0.05, **p < 0.025, ***p < 0.001), for statistical analysis see Table S4. As a visual aid the fitted

relationship of simple linear regressions per feedback group are given as dashed lines (mean ± SE). These analyses show that the effect of Phase 2 biomass was

non-significant in all feedback groups.
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2019). Broadly, plant traits associated with resource acquisition,
such as specific root length and root diameter, may explain
differences in plant-soil feedbacks among ecological groups,
directly or via their interaction with soil biota (Lemmermeyer
et al., 2015; Cortois et al., 2016; Semchenko et al., 2018).
However, the variation in PSFs within plant functional groups
and among genotypes of the same species are more likely to
be associated with plant traits that regulate the co-evolutionary
dynamics of plants and soil-organisms, e.g., via molecular
signaling compounds in the roots (e.g., MAMPs and PAMPs;
Jones and Dangl, 2006). The differences in these traits may
lead to differential susceptibility of plant species and genotypes
to the soil biota that are introduced via soil inoculation (Van
der Putten et al., 2013; Bardgett et al., 2014; Wubs et al.,
2016).

Earlier studies showed that late-successional species elicit
positive PSFs on late-successional soils and ruderal species
negative PSFs (De Deyn et al., 2003; Kardol et al., 2006;
Kulmatiski et al., 2017). In contrast, our results show that for
some species the PSF effects may act differently, i.e., via reduced
positive PSFs for ruderal species. Interestingly, the selected target
species are largely the same in our experiment and for De
Deyn et al. (2003) and Kardol et al. (2006). As we used seeds
from ex-situ cultivated populations, it could be that the plants
established plant-soil interactions that are weaker than those
produced by co-evolved plant and soil populations (Felker-
Quinn et al., 2011; Evans et al., 2016) leading to different
net PSFs. Alternatively, plant-soil feedbacks are known to vary
across environmental gradients (De Deyn et al., 2004; Bezemer
et al., 2006; Manning et al., 2008) and our common ex-
arable soil had substantially higher P-Olsen (78.3 ± 6.71mg
P kg−1 soil) and soil organic matter (5.9 ± 0.2%) content
than the soil used in these previous studies. At this point we
can only speculate about the causes underlying the differences
between these studies. Nevertheless, our results do highlight that
even though changes in species abundance in response to soil
inoculation (Carbajo et al., 2011; Wubs et al., 2016) may follow
the expectations derived from greenhouse PSF experiments (De
Deyn et al., 2003; Kardol et al., 2006; Kulmatiski et al., 2017),
there may be a different combination of feedbacks in operation
(Heinze et al., 2016).

The observed plant-soil feedbacks can in principle have
been mediated by both abiotic and biotic changes induced in
the soil through plant conditioning (Ehrenfeld et al., 2005;
Van der Putten et al., 2013). Nevertheless, we suggest that
the observed effects were biotically mediated for two reasons.
First, we inoculated a common nutrient rich background
soil with a limited amount of inoculum, so that differences
in abiotic factors were diluted, thus limiting the scope for
nutrient limitation. Secondly, Phase 2 plant biomass showed no
correlation with Phase 3 biomass, directly nor in interaction
with the experimental treatments, suggesting that abiotic factors
such as nutrient limitation did not have an overriding role
in our study (e.g., Kardol et al., 2006). The three ecosystem
types used to inoculate the soil differ in their soil biotic
community composition (Kardol et al., 2005; Van der Wal et al.,
2006; Wubs et al., 2016): the grassland and heathland have

higher microbial biomass than the arable soil, the grassland
has more arbuscular mycorrhizae than the heathland, and the
species composition of microbes and nematodes is distinct.
Furthermore, data from the same study system showed that
soil fungi better explain plant responses than soil abiotic
factors (Wubs and Bezemer, 2018a). This is in line with
results from other systems showing that the soil biota, and
particularly fungi, play a prominent role in determining plant-
soil feedback strengths (e.g., Kulmatiski et al., 2017; Mommer
et al., 2018; Semchenko et al., 2018). Based on these arguments,
we suggest that the effects observed in this experiment are
due to plant-induced differences in the different inoculated
soil communities, although we cannot rule out plant-induced
abiotic effects.

Our study was intended as a proof of principle of how
soil inoculations may alter plant-soil feedbacks for use in
restoration. There are however two important limitations for
direct translation of our results to restoration projects in the
field. Our experiment was conducted on a sterilized common soil
and it is well-known that establishment success of inoculated soil
biota depends on the abundance and diversity of the resident soil
community (Van Elsas et al., 2012;Mallon et al., 2015). The effects
may therefore be smaller when the resident soil community is
left intact by not sterilizing the common soil, as would be the
case in restoration projects. However, in previous soil inoculation
trials on undisturbed field soils, we did observe that novel soil
biota could be successfully introduced and alter local soil and
plant community composition (Wubs et al., 2016, 2019) and
therefore the local resident community may not be a strong
barrier to establishment of late-successional soil biota. Secondly,
as is the case with most plant-soil feedback studies (Kulmatiski
et al., 2008; Van der Putten et al., 2013), we only documented
plant biomass responses over a period of 9 weeks. It is unclear
how these short-term responses translate into longer-term fitness
differences in the field (Trinder et al., 2013; Heinze et al., 2016;
Kulmatiski et al., 2016) as plant-soil feedback strengths may
change with plant ontogeny and may take longer to develop in
later-successional species (Hawkes et al., 2013; Bezemer et al.,
2018; Dudenhöffer et al., 2018). Field observations suggest that
the reciprocal interactions among plants and soil biota strengthen
over time (Meyer et al., 2016;Wubs et al., 2019) and extrapolation
may thus be possible. Nevertheless, field based quantifications
of plant-soil feedback strength, e.g., using phytometer plants,
are needed to test our conclusions under conditions relevant
for restoration.

An important aspect of our study is that both in the
conditioning and in the response phases we used plant
communities rather than individual plants or monocultures
of plants. Most PSF studies have been carried out with
soil conditioned by individual plants or monocultures
(Kulmatiski et al., 2008). Plant competition can alter plant-
soil feedbacks (Casper and Castelli, 2007; Kardol et al., 2007;
Jing et al., 2015; Xue et al., 2018), for instance via altered
root exudation (Bais et al., 2006), the interaction between
resource depletion and defense (Lind et al., 2013), and because
of altered food web interactions driven by different species
mixtures (Bezemer et al., 2010; Bakker et al., 2013; Kulmatiski
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et al., 2014). In nature, plants typically do not grow in
isolation or in monocultures, and we urge that an important
step forward in PSF research is understanding these mixed
community feedbacks.

CONCLUSIONS

Our results show that soil inoculation alters the nature of
individual species’ plant-soil feedback (PSF) when these species
are grown in competition with other species. The effects were
species specific and differed from effects observed in other
experiments. This suggests that net inoculation effects on
natural vegetation depend importantly on the individual PSFs
induced by the soil inoculation, which in turn depend on
the soil biotic community and abiotic conditions the plants
are growing in. Inoculation with late-successional soil led to
suppression of the positive PSF of ruderal species found on
arable-inoculated soils. Thus, we conclude that inoculation
with late successional soil can reduce the colonization by
non-target plant species from elsewhere if our results can be
extrapolated to non-sterilized soils and long-term differences in
plant fitness.
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