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Wildfires destabilize biocrust, requiring decades for most biological constituents to

regenerate, but bacteria may recover quickly and mitigate the detrimental consequences

of burnt soils. To evaluate the short-term recovery of biocrust bacteria, we tracked

shifts in bacterial community form and function in Cyanobacteria/lichen-dominated

(shrub interspaces) and Cyanobacteria/moss-dominated (beneath Artemisia tridentata)

biocrusts 1 week, 2 months, and 1 year following a large-scale burn manipulations in

a cold desert (Utah, USA). We found no evidence of the burned bacterial community

recovering to a burgeoning biocrust. The foundational biocrust phyla, Cyanobacteria,

dominated by Microcoleus viginatus (Microcoleaceae), disappeared from burned soils

creating communities void of photosynthetic taxa. One year after the fire, the burned

biocrust constituents had eroded away and the bare soils supported the formation

of a convergent community of chemoheterotrophic copiotrophs regardless of location.

The emergent community was dominated by a previously rare Planococcus species

(family Planococcaceae, Firmicutes) and taxa in the Cellulomonadaceae (Actinobacteria),

and Oxalobacteraceae (Betaproteobacteria). Previously burnt soils maintained similar

levels of bacterial biomass, alpha diversity, and richness as unburned biocrusts,

but supported diffuse, poorly-interconnected communities with 75% fewer species

interactions. Nitrogen fixation declined at least 3.5-fold in the burnt soils but ammonium

concentrations continued to rise through the year, suggesting that the exhaustion of

organic C released from the fire, and not N, may diminish the longevity of the emergent

community. Our results demonstrate that biocrust bacteria may recover rapidly after

burning, albeit along a different community trajectory, as rare bacteria become dominant,

species interconnectedness diminishes, and ecosystem services fail to rebound.
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INTRODUCTION

Fire may dramatically alter soil bacteria communities depending
on the biome being burned (Pressler et al., 2019); fire
characteristics [e.g., type (i.e., low-intensity vs. high-intensity,
Xiang et al., 2014; Koster et al., 2016) and frequency (e.g.,
single vs. multiple, Hawkes and Flechtner, 2002; Guenon and
Gros, 2013)], and depth of burned soil (Kim et al., 2004).
Following the fire, burned communities begin to recover, with
recovery defined as a return in biomass, community composition,
and/or function to original levels prior to the disturbance. The
rate of recovery, in any form, is moderated by a series of
interacting factors, such as soil hydrophobicity (Faille et al., 2002;
Fernelius et al., 2017), rainfall intensity and frequency (Guenon
and Gros, 2013; Hinojosa et al., 2019), nutrient concentrations
(Prendergast-Miller et al., 2017; Rodriguez et al., 2017), and soil
erodibility (Williams et al., 2012). Within deserts, the impact of
wildfires on soil bacteria is potentially immense. The surfaces of
desert soils are often covered with biocrusts, which are complex
mosaics of Cyanobacteria, other bacteria, green algae, lichens,
mosses, and fungi. Biocrusts are autochthonally driven with
photosynthate and fixed N2 from Cyanobacteria and organic C
from other photosynthetic organisms creating a nutrient-rich
zone, the “cyanosphere” (Couradeau et al., 2019; Warren et al.,
2019) that supports a relatively high level of bacterial biomass
and diversity (Chilton et al., 2018). However, these “living skins
of the desert” occupy soil surfaces in close proximity to fuels
(e.g., shrubs and grass litter, woody debris) that readily burn
(Hilty et al., 2003; Balch et al., 2013) and biocrust constituents
themselves are often desiccated and may burn during fire. If
burned, biocrusts may lose the ability to armor soils against wind
and water erosion (Eldridge and Leys, 2003; Rodriguez-Caballero
et al., 2015), enhance hydrologic function (Chamizo et al., 2016),
and fix N for chronically N-poor desert systems (Belnap, 2002).
Taken together, the loss of biocrusts to fire may detrimentally
alter desert ecosystem form and function.

Wildfires may kill many biocrust constituents, but bacteria, in

particular Cyanobacteria, may recover more quickly. A lichen-

or moss-dominated biocrust may require decades to fully recover
depending on disturbance type, intensity, and precipitation
variability (Johansen et al., 1984; Belnap, 2003; Root et al.,
2017). However, soil bacteria are relatively resistant to fire even
among other soil biota (e.g., fungi and mesofauna, Pressler et al.,
2019). For example, surviving bacteria in burnt soils may enter
a state of dormancy to weather the harsh conditions induced by
fire. Dormancy is extremely common bet-hedging strategy, with
upwards of 90% of microbial biomass and 50% of all bacterial
taxa potentially being dormant at a given time (Alvarez et al.,
1998; Lennon and Jones, 2011; Wang et al., 2014). Cyanobacteria
may become dormant (Rajeev et al., 2013) and survive fires
by potentially employing hydrotaxis to recolonize disturbed
soils (Pringault and Garcia-Pichel, 2004). Besides dormancy,
bioaerosols and unburned soils immediately below the burn may
serve as seed banks to aid in biocrust recovery. Bioaerosols
in dust harbor an immense diversity of bacteria (Choudoir
et al., 2018; Dastrup et al., 2018) and may retain a taxonomical
signature of the originating soil surfaces (Boose et al., 2016;

Weil et al., 2017; Dastrup et al., 2018). Further, Microcoleus
vaginatus, the foundational Cyanobacterium in many cold desert
biocrusts (Garcia-Pichel et al., 2013), is a pioneering primary
producer (Belnap, 2002) that may recolonize soils from dust,
provide photosynthate, and shape the heterotrophic bacterial
community. Soils millimeters below burnt soils harbor some of
the same taxa (Steven et al., 2013; Maier et al., 2014) and may
serve as inoculum for recovering biocrusts. In the short-term,
bacteria components of biocrusts have the potential to recover
relatively rapidly.

The recovering Cyanobacteria-dominated biocrust may
mitigate the detrimental ecosystem consequences of burnt soil
surfaces. Cyanobacteria colonize the top millimeters of soils,
physically weaving soil particles together with sheathed filaments
and, along with other bacteria, produce exopolymeric substances
that glue soil particles together (Mazor et al., 1996; Costa
et al., 2018). For example, foundational Cyanobacteria like M.
vaginatus deters wind erosion (Kuske et al., 2012; Duniway et al.,
2019) by rapidly proliferating filaments through unconsolidated
surfaces ultimately increasing the threshold friction velocity of
surface materials (Hu et al., 2002). Additionally, exopolymeric
substance produced by cyanobacteria-dominated crust bacteria
may enhances soil structure, improves infiltration (Costa
et al., 2018), and may lower runoff and sediment loss due to
increased soil aggregation (Faist et al., 2017). Alternatively,
colonizing Cyanobacteria are often non-heterocystous incapable
of performing N-fixation (Belnap, 1996; Yeager et al., 2007).
Thus, once burgeoning Cyanobacteria-dominated biocrust
communities mineralize and exhaust the residual unburned
materials in soils (Prietofernandez et al., 1993), N availability
may limit the ecosystem benefits of bacterial function.

In this study, we evaluated the potential for a burgeoning
biocrust to recover and provide ecosystem services within a
year following fire. We experimentally burned tracked the form
and function of Cyanobacteria/lichen-dominated biocrusts and
Cyanobacteria/moss-dominated biocrusts in a cold desert (UT,
USA). Specifically, in a large-scale field manipulation, we burned
the plant community and soil surfaces and evaluated shifts in
bacterial community composition metrics such as richness, alpha
diversity and taxa co-occurrence patterns 1 week, 2 months, and
1 year after the fire. We also measured N fixation rates and soil
inorganic N availability, infiltration rates, and aggregate stability
over the same time scale. The two biocrust forms occupied
distinct locations across the landscape-Cyanobacteria/moss crust
dominated the surfaces beneath and adjacent to canopies of
Artemisia tridentata ssp. Wyomingensis shrub-islands, while
Cyanobacteria/lichen crust dominated the shrub interspaces,
which also supported a relatively low grass cover. We evaluated
the cover of lichens, mosses, and surface cyanobacteria in burned
and unburned plots. We hypothesized that, post-fire, a simplified
Cyanobacteria-dominant crust will form from M. vaginatus
and heterotrophic bacteria. We also hypothesized that bacterial
biomass, richness, and diversity will approach unburned crust
levels due to the resistance and resilience of soil bacteria to harsh
conditions and high dispersal capabilities. Last, we hypothesized
that within a year, along with a rudimentary crust, soil infiltration
and stability, but not N-fixation, will begin to recover.
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MATERIALS AND METHODS

Site Description
We conducted our study in the Great Basin Desert in Rush
Valley, UT (40◦05′27.43′′N−112◦18′18.24′′W). Rugose crusts
consisting of one moss, Syntrichia caninervis (9% cover) multiple
cyanolichen and green algal lichen species (26% cover), and one
Cyanobacterium, M. vaginatus (50% cover) were found in the
shrub interspaces, while S. caninervis (6% cover) M. vaginatus
(17% cover) and plant litter (70% cover) were found beneath
shrubs. The shrub community was dominated by A. tridentata,
ssp.Wyomingensis, and a native perennial grass Elymus elymoides
(Raf.) Swezey. Mean annual precipitation (MAP) at the site is
27 cm year−1 [±1.5, n = 30, (mean and SEM) years 1978–2018]
and mean annual temperature (MAT) is 8.8◦C [±0.16, n = 30,
years 1978–2018; Vernon Utah COOP Station 429133]. Based
on limited climate data available from the station during our
year-long experiment, the cold desert was slightly warmer and
drier in the fall and winter than the 30-year mean. For example,
monthly temperatures were within 1◦C of MAT (months:
October, November, August, September, and October), except in
December when the mean daily temperatures was 3◦C higher
than MAT. Cumulative precipitation was a total of 2.5 cm lower
in October, August, September, and October than the MAP levels
for these same months. Soils were derived from Lake Bonneville
sediments and are strongly alkaline. The series consists of well-
drained, fine-loamy, mixed, mesic Xerollic Calciorthids with 3 to
15% calcium carbonate.

Fire Manipulation and Biocrust Locations
To investigate the post-fire response of biocrust bacteria, we
created burned and unburned control plots. Treatments were
assigned in a complete randomized block design for a total
of 20 experimental plots (10 burned, 10 control plots), each
30m width × 30m length. Within each plot, we sampled
two biocrust locations: Cyanobacteria/lichen-dominated crusts
residing in interspaces ∼30 cm away from a shrub (interspace);
and, Cyanobacteria/moss-dominated crusts beneathA. tridentata
at the edge of the shrub canopy (shrub). We sampled plots
and crust locations 1 week (27th September), 2 months (4th
November), and 1 year (1st October) following the fire. To
facilitate a thorough and even burn, straw was spread onto the
soil surface before burning (Esque et al., 2010). Also, the ash
from burned straw blew away from soil surfaces within days,
reducing the likelihood of long-term increases of soil C substrates
or nutrients from burnt straw.

Bacterial Biocrust Community
Composition
To evaluate the effects of fire on Cyanobacteria and heterotrophic
bacteria, we characterized bacterial community composition
using target-metagenomics based on the 16S rRNA gene.
Bacterial communities were evaluated from a composite surface
soil sample from three subsamples (2 cm width × 2mm depth)
with a soil corer (2 fire treatments × 2 biocrust microsites ×

3 time points × 3 replicates = 36 samples). Subsamples were:
composited by biocrust location and treatment combinations

within a plot, flash frozen in the field with liquid N, and stored
at −20◦C until DNA analysis We extracted genomic DNA from
0.5 g of soil using the PowerSoil DNA Isolation Kit (MoBio,
Carlsbad, CA) and amplified the V4–V5 region of the 16S
rRNA gene using the bacterial specific primer set 515F and
806R with a 12-nt error correcting Golay barcodes (Aanderud
et al., 2019). We used the following thermal cycle for PCR
reactions: an initial denaturation step at 94◦C for 3min followed
by 35 cycles of denaturation at 94◦C for 45 s, annealing at
55◦C for 30 s, and an extension at 72◦C for 90 s. The amplified
DNA was purified (Agencourt AMPure XP PCR Purification,
Beckman Coulter Inc., Brea, CA, USA), pooled at approximately
equimolar concentrations (Quant-iT PicoGreen dsDNA Kit,
Invitrogen Corporation, Carlsbad, CA, USA), and sequenced at
the Brigham Young University DNA Sequencing Center (http://
dnasc.byu.edu/) using a 454 Life Sciences Genome Sequence FLX
(Roche, Branford, CT, USA). We analyzed all sequences using
mothur (v. 1.29.2) to remove barcodes and short reads, chimeras,
and non-bacterial sequences (Schloss et al., 2009). Specifically,
we excluded sequences < 260 bp with homopolymers longer
than 8 bp, removed chimeras using UCHIME (Edgar et al.,
2011), and eliminated chloroplast, mitochondria, archaeal, and
eukaryotic 16S rRNA gene sequences based on reference
sequences from the Ribosomal Database Project (Cole et al.,
2009). We then aligned sequences against the SILVA database
(silva.nr_v128.align; Pruesse et al., 2007) with the SEED aligner
and created operational taxonomic units (OTUs) based on
uncorrected pairwise distances using a minimum coverage of
99% and minimum pairwise sequence similarity of 97%.

To analyze shifts in bacterial communities following the
burn manipulation, first, we used Principal Coordinates Analysis
(PCoA) and permutational multivariate analyses of variance
(PERMANOVA, Anderson, 2001). The PCoA was based on a
Bray-Curtis distance matrix using the “vegan” package in R
(R Development Core Team, 2017). The PCoA aided in the
visualization of communities, but we tested for the main effects
and interactions between burn treatment and time since the
fire with PERMANOVA using the adonis function also in the
vegan package of R. Second, we calculated the relative recovery
(i.e., relative abundance) of 10 phyla and three subclasses to
identify differences in the distribution of major taxonomical
groups (recovery ≥ 1.0%) among the burned and unburned
biocrust types through time. Next to further evaluated shifts in
bacterial communities, taxonomic trends of 20 families (recovery
≥ 1.0% in at least one replicate) were visualized in a heat map
with hierarchal clustering using the heatmap function in the
“gplot” package in R. Last, we quantified the alpha diversity
of communities as the inverse Shannon index and richness as
the total number of OTUs based on 1,000 iterations of 900
random resampled sequences from each replicate. We examined
differences in alpha diversity and richness among fire treatments
and biocrust locations through time using two-way, repeated
measures ANOVA (RM-ANOVA) in R.

Biomass Estimates of Biocrust Bacteria
To evaluate the recovery of bacterial biomass in the burn
manipulations, we estimated abundance of bacteria using
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quantitative PCR and a universal bacterial 16S rRNA primer
set [EUB 338 (forward) and Eub518 (reverse)] (Aanderud
et al., 2018). In 12.5 µl reactions using KAPA2G Robust PCR
Kits (KAPA Biosystems, Wilmington, MA, USA), we amplified
targeted genes using the thermocycler condition: an initial
denaturation step at 94◦C for 3min followed by 35 cycles of
denaturation at 94◦C for 45 s, anneal at 60◦C for 30 s, and an
extension at 72◦C for 90 s. We generated qPCR standards from a
crust soil bacterium using the TOPOTACloning Kit (Invitrogen)
and extracted plasmids from transformed cells (Qiagen Sciences,
Germantown, MD, USA). The coefficient of determination (r2)
for our assay was 0.98, while amplification efficiency was 1.5. We
evaluated shifts in biomass with two-way, RM-ANOVA in R.

Network Co-occurrence Models of
Biocrust Communities
To assess interactions among Cyanobacteria and other bacteria
taxa, we created network co-occurrence models for the burned
and unburned crust communities for each biocrust type
based on maximal information coefficient (MIC) analysis. We
calculated all possible linear and non-linear associations between
OTUs using “Minerva” package in R, which belongs to a
class of maximal information-based non-parametric exploration
statistics for identifying and classifying relationships (Reshef
et al., 2011). For all models, we included burned and unburned
biocrust from the 2-month and 1-year sampling dates (n = 6 for
each model), as the 1-week bacterial communities demonstrated
little difference between the treatments in the PCoA. The nodes
in the networks represented individual OTUs at 97% identity,
while edges corresponded to valid or robust co-occurrence
connections that occurred in at least 75% of all samples and
had a MIC that was both > 0.7 and statistically significant (P-
value = 0.01; Barberan et al., 2014). The filtering facilitated the
determination of the core soil community responding to fire and
removed poorly representedOTUs reducing network complexity.
To describe the topology of the networks, we calculated the
mean path length, mean degree, andmodularity (Freedman et al.,
2016). Network graphs in the graphml format were generated
using “igraph” package in R and were visualized with Gephi
(v. 0.8.2-beta).

Cyanobacteria/Lichen and Lichen Biocrust
Community Composition
To describe changes on the soil surface, we used a sixteen-
point grid and amodified, step point-intercept transect technique
(Bowker et al., 2008) to estimate the mean percent ground cover
of Cyanobacteria biocrusts; species of cyanolichen, green algal
lichen, and mosses; bare ground; plant material covering soil
surfaces, and rock in burned and unburned treatments. The
grids were placed in fixed locations for each sampling time point
to more accurately re-evaluate crust components through time.
Cyanobacterial biocrust cover was estimated visually, light and
dark surface coloration, and structurally by dropping a pin onto
the soil surface to ensure that the crust was in fact a crust
created by cyanobacterial colonies weaving through soil surfaces
(Rosentreter et al., 2007).

Biocrust N Fixation and Inorganic N
To determine the effects of fire on soil N inputs, we measured
N fixation (µmol h−1 m−2) using the acetylene reduction assay
(ARA) and evaluated soil ammonium (mg N-NH+

4 kg soil−1).
The ARA assay was measured in intact soil core (2 cm width ×

1 cm depth), while inorganic N was assessed from a composite
surface soil sample from three subsamples (2 cm width × 2mm
depth) with a soil corer. Both N determinations were evaluated
on all 10 field replicates through time (2 fire treatments ×

2 biocrust microsites × 3 time points × 10 replicates = 120
samples). For ARA, we followed the protocols outlined by Belnap
(2002). Briefly, we: incubated cores for 2 days on a 12 h light,
12 h dark schedule with daily water additions of 1ml; sealed the
cores and created a 10% acetylene atmosphere in the headspace
by injecting 5ml of pure acetylene through a septum with a gas-
tight syringe; 4 h later, we removed a 4ml headspace gas sample
and measured the concentration (ppm) of ethylene with an
Agilent Technologies 6890A gas chromatograph with a PoraPak
R column (Agilent Technologies, Santa Clara, CA, USA) with an
attached flame ionization detector. We used the ideal gas law to
convert ppm ethylene to µmol ethylene h−1 m−2. We measured
ammonium in soil extracts (2 g soil) with 4ml 0.5M K2SO4 (1:2
w/v) and quantified the N-NH+

4 using a SpectraMax Plus 384
(Molecular Devices Corporation, Sunnyside, CA, USA; Miranda
et al., 2001). We tested for the effects of the fire treatment
and biocrusts location on N fixation through time using two-
way, RM-ANOVA.

Infiltration Rates and Soil Aggregate
Stability
To investigate the effect of fire on soil infiltration rates, we
measured changes in soil infiltration rates (cm s−1) with a
Decagon Device’s Mini Disk Tension Infiltrometer (METER
Group, Pullman, WA) and calculated infiltration following the
method outlined by Zhang (1997). Due to the rugose nature
of the Cyanobacteria/moss-dominated biocrusts at this site, we
added ∼10 g of quartz sand to help the infiltrometer form a
seal with the soil surface. To assess soil aggregate stability,
we measured soil aggregate (6–8mm in diameter) stability
according to the Jornada Experimental Range Test (Herrick et al.,
2001) with a kit designed by Synergy Resource Solutions, Inc.
(Montana, USA). Briefly, aggregates were assigned to a stability
class (1–6) based on a combination of visual observation of
slaking following the immersion of the aggregate in distilled
water and the percent aggregate remaining on a 1.5mm sieve
after five dipping cycles. We tested for treatment effects though
time using two-way, RM-ANOVA.

RESULTS

Fire Impact on Biocrusts
The impact of fire on Cyanobacteria/lichen- and
Cyanobacteria/moss-dominant crusts was dramatic, with
no visual recovery of biocrusts on burned soil surfaces during
any of our sample times. None of the Cyanobacteria (light or
dark surface coloration or surface structure), cyanolichens, green
algal lichens, or mosses that composed the visible portion of
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FIGURE 1 | Bacterial communities in burned Cyanobacteria/lichen-dominated

(interspaces) and Cyanobacteria/moss-dominated (shrubs) biocrusts

converged to a common composition 1 year after the fire. The multivariate

ordination was generated using principle coordinate analysis (PCoA) on a

sample × OTU matrix of 16S rRNA gene community libraries (97% similarity

cut-off).

biocrusts recovered in a year (Supplemental Table 1). One year
after the fire, bare soils covered 93% ± 5.1 of the interspaces
and 86% ± 5.4 of the surfaces beneath shrub canopies, with a
sparse cover of perennial grass, E. elymoides, annual exotic grass,
Bromus tectorum (interspace = 0; shrub = 3.8% ± 3.8) and/or
the noxious exotic annual forb Halogeton glomeratus (interspace
= 1.9%± 1.9; shrub= 3.1%± 1.4).

One year after the fire, burned soil biocrusts eroded away with
the wind. Burned mosses and lichens remained attached to soil
surfaces 2-months after the fire (data not shown); however, after
1 year all that remained was bare soil. Based on the new exposure
of burned A. tridentata stems 1-year after the fire and the barren
surfaces denuded of moss and lichen cover, anywhere from 0 to
2 cm of biocrusts constituents and some soil potentially eroded
away. The unburned biocrusts remained intact over the year.
Cyanobacteria/lichen crusts were dominated by one cyanolichen,
Collema tenax (16% ± 3.5), and a green algal lichen, Toninia
sedifolia (3.1%± 1.4).

Fire Caused a Convergence of Biocrust
Bacterial Communities
A year after the fire, the burned biocrusts, regardless of type,
converged to a common bacterial community. The PCoA
results clearly separated burned from unburned communities
in ordination space along axis 1, which explained 23.6% of the
variation (Figure 1). By the end of the year, the soil communities
residing in the now mostly barren soils of burned interspace
Cyanobacteria/lichen- and shrub Cyanobacteria/moss-
dominated crusts were similar and grouped together. Conversely,

unburned communities retained a signature of their biocrust
type in ordination space along axis 2 (15.6% of the variation)
with Cyanobacteria/lichen- and cyanobacteria/moss-dominated
crusts creating unique bacterial communities. PERMANOVA
results supported the ordination; there was a fire treatment
× time interaction on bacterial composition (PERMANOVA,
F = 2.39, R2 = 0.09, P = 0.001), suggesting that fire effect
persisted even 1 year, with limited recovery. Also, there was a
fire treatment × location on bacterial community composition
(PERMANOVA, F = 2.00, R2 = 0.04, P = 0.02), demonstrating
that fire altered bacterial communities differently in two
biocrust types. This interaction was highlighted as 2-month-old,
burned shrub communities were the first to shift from its
unburned crust counterpart. All community inferences were
based on the recovery of 127,616 quality sequences and 3,345
unique OTUs with samples possessing an average sequencing
coverage of 89% ± 0.004 (mean and SEM) and normalized to
3,345 sequences. All sequences are available through NCBI as
BioProject SUB6427289.

Dominant Cyanobacteria Replaced by Rare
Firmicutes Following Fire
Across both biocrusts, fire caused one dominant phylum
to disappear and another to appear. Beneath shrubs, the
abundance of Cyanobacteria was 72-times lower in the
burned (0.12% ± 0.11) than unburned treatment (8.4%
± 2.6) 2 months after the fire, and after 1 year, was
undetectable (Figure 2). Similarly, in interspaces, Cyanobacterial
abundance was thirteen-times lower in the burned (1.1%
± 0.31) than unburned treatment (14% ± 5.2) 2 months
post-fire, and after 1 year, was only barely detectable in
burned soils (0.01% ± 0.01). Within the Cyanobacteria, the
family Microcoleaceae, more specifically M. vaginatus, was the
foundational Cyanobacterial taxon, constituting 13% (± 2.7) of
bacterial abundance in Cyanobacteria/lichen crusts and 4.7%
(± 1.4) in Cyanobacteria/moss crusts, regardless of sampling
time (Figure 3). Nostoc and Chrooccoccidiopsis species also
occurred in crusts but their abundance rarely exceeded 1%
relative recovery. The resulting bacterial gap in burned biocrusts
was filled by rare Firmicutes (Figure 2). Firmicutes were not
detectable in unburned Cyanobacteria/lichen and only barely
present in Cyanobacterial/moss biocrusts (abundance across all
time points = 0.3% ± 0.2); however, 2 months following the
fire, Firmicutes constituted 12% ± 5.2 of burned interspace
bacteria and 35% ± 16 of burned shrub communities’ bacteria.
One year after the fire, Firmicutes remained a dominant phylum
in burned interspaces (13% ± 5.8) and beneath burned shrubs
(9.1% ± 6.0). The Planococcaceae, specifically a Planococcus
species, within the Firmicutes differentiated the two burned
community types and dominated burnt soils (Figure 3). The
recovery of the Planococcaceae in the 2-month- and 1-year-old
burnt communities = 12% ± 3.5 in interspace and 19% ± 7.5 in
shrub crusts).

Other heterotrophic bacteria distinguished burned from
unburned biocrusts, especially families from the Actinobacteria
(Figure 3). Burned soil conditions enhanced the recovery
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FIGURE 2 | Abundant Cyanobacteria were replaced by rare Firmicutes in burnt crusts. The distribution of OTUs (%) is presented for the 10 phyla and three

Proteobacteria subclasses that contributed ≥ 1% to the total recovery of biocrust communities. Values are means (n = 3) based on 16S rRNA gene libraries.

of the Cellulomonadaceae (Actinobacteria), which was at
least 9.0-times higher in burned than unburned biocrusts,
with recovery reaching 8.8% ± 3.1 and 8.3% ± 4.6 in 1-
year-old burned and now bare interspace and shrub soils
respectively. The Oxalobacteraceae (Betaproteobacteria)
also dominated burnt soils after 1 year, with abundance
increasing from 0.11% (± 0.09) in unburned to 5.7% (±
1.6) burned interspace and 0.33% (± 0.09) in unburned to
6.9% (± 4.1) burned shrub soils. One-year post-fire, the
abundance of the Micromonosporaceae (Actinobacteria),
Rubrobacteriaceae (Actinobacteria), and Chitinophagaceae
(Bacteroidetes) was at least 1.8-times lower in bare soils than
unburned biocrusts, regardless of type. In Cyanobacteria/moss-
dominated biocrusts the abundance of Sphingomonadaceae
(Alphaproteobacteria) was depressed 4.2-fold one year
after fire.

Biomass Recovered While Richness and
Diversity Remained Unchanged Post-fire
Bacterial biomass in the bare surface soils recovered 1 year
after the fire, in contrast to richness or diversity that remained
relatively stable. In burned shrub soils, bacterial biomass (16S
rRNA gene copy number) declined an order ofmagnitude 1 week,
and two orders of magnitude 2-months post-fire but recovered
after 1 year (two-way RM-ANOVA, interaction: fire × time,
F = 296, P < 0.004, df = 2, Figure 4). In interspace soils,
bacterial gene copy numbers were consistently lower in burned
than unburned cyanobacteria/lichen-dominated biocrusts. In
both crust types, OTU richness in all biocrusts and burnt
soils was lowest 1 week (273 ± 34.7), highest 2 month (461
± 27.51), and moderate 1 year (357 ± 13.5) following the
fire (two-way RM-ANOVA, main effect: time, F = 6.9, P =

0.004, df = 2, data not shown). No trend was visible for

diversity, which ranged from 2.7 (± 0.77) in 2-month, burnt
shrub to 4.2 (± 0.05) in 2-month, unburned shrub crusts (data
not shown).

Fire Deconstructed Biocrust Bacterial
Communities
Fire reduced the network complexity and connectedness present
in Cyanobacteria/lichen- and Cyanobacteria/moss-dominated
biocrusts. For example, network models for both burned
compared to unburned biocrust types contained: 40–75%
reduction in the number of significant correlations or edges
between nodes or OTUs, up to a 57% increase in mean path
length (number of steps between each node and any other
node), and at least a 1.4-times smaller mean degree (average
number of edges connected to a node, Figure 5, Table 1).
Within the network models, 70–80% of the “hub” OTUs or
the top 10 highest connected nodes (Table 1) were different
between burned and unburned biocrusts. Species belonging
to the Acidobacteriaceae (Acidobacteria), Chloroflexaceae,
Thermomicrobia (Chloroflexi), and Gemmatimonadaceae
(Gemmatimonadetes), were unique hubs in burned shrub
soils, while species from the Acidobacteriaceae (Acidobacteria),
Acidomicrobineae, Microbacteriaceae Micrococcacaceae,
Micromonosporaceae, Solirubrobacteriaceae (Actinobacteria),
Chitinophagaceae (Bacteroidetes), and Trueperaceae
(Deinococcus) were unique hubs in burned interspace soils
(Supplemental Table 2).

M. vaginatus (Cyanobacteria) was present in both unburned
models; however, it was not a hub species. The Firmicutes that
dominated communities following fire failed to influence any
OTU in the burned interspace model and was only slightly
connected to several other nodes in burned shrub model.
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FIGURE 3 | Burning and time since fire selected for specific bacterial families based on heat map analysis and hierarchical clustering of the relative recovery of 20

bacterial families. Values are based on means with hierarchal clustering of the burned treatments, and shrub and interspace microsites (top) and families (left). Only

families that contributed ≥ 1.0% to the total recovery of communities are presented with recovery based on 16S rRNA gene libraries. Values are means (n = 3).

Fire Depressed N Fixation in
Cyanobacteria/Lichen-Dominated
Biocrusts
Fire reduced the capacity of Cyanobacteria/lichen-dominated
biocrusts to fix N, but inorganic N did accumulate in all burned
crusts over time. In interspaces, N fixation rates were 6-times
and thirty-one-times lower in burned than unburned treatments
1 week and 2 months after the fire, respectively (RM-ANOVA,
interaction: fire × microsite × time, F = 10.4, P < 0.0001, df =
2, Figure 6A). Interspace N fixation rates were still depressed 1
year after the fire, being 3.5-times lower in burned than unburned
cyanobacteria/lichen-dominated biocrusts. N fixation rates in
all cyanobacteria/moss-dominated crusts were consistently low
regardless of the fire. Fire increased N-NH+

4 concentrations in
both burned biocrust types over the 1-year experiment (RM-
ANOVA, interaction: fire × time, F = 60, P < 0.0001, df = 2)
with N-NH+

4 concentrations slightly higher in interspace than
shrub surface soils (RM-ANOVA interaction: microsites × time,
F = 3.7, P = 0.03, df = 2, Figure 6B).

Fire Depressed Infiltration Rates While Soil
Aggregate Stability Was Insensitive
Fire depressed soil infiltration rates, especially shortly after the
burn. Although infiltration was variable in unburned crusts,
infiltration rates were at least 5.5-times lower in burned than
unburned interspace and shrub soils 1 week after the fire (RM-
ANOVA, interspace, fire × time, F = 31, P < 0.0001, df = 2,
Figure 7). During the remainder of the year, infiltration rates in
both biocrust types were only slightly depressed, at most 1.5-
fold. Soil stability was barely impacted by fire, as stability was
only depressed at the 1-week sample time in burned under-shrub
Cyanobacteria/moss biocrusts (4.0 ± 0.70) compared to control
treatment (7.1± 0.67, RM-ANOVA, interaction: fire× time, F =

3.0, P < 0.05, df = 2, data not shown).

DISCUSSION

Following fire, surviving taxa, colonizing species from soils
immediately below the burn, and/or pioneering bacteria attached
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FIGURE 4 | Bacterial biomass declined following fire in both biocrust types.

Values are means (n = 2–3) ± SEM, measured with quantitative polymerase

chain reaction (qPCR) and reported as rRNA gene copy number. Differences

between burned and unburned soils through time are based on two-way,

repeated-measures RM-ANOVA.

to bioaerosols may rapidly create unique communities in
multiple ecosystems (Williams et al., 2012; Ferrenberg et al.,
2013; Xiang et al., 2014; Li et al., 2019). Our cold desert
was no different. Although aspects of the community (i.e.,
bacterial biomass, alpha diversity, and richness) recovered in
the short-term, we found no evidence of the burned bacterial
community becoming a burgeoning biocrust. After 1-year, the
fire facilitated the formation of a unique convergent community
of chemoheterotrophic copiotrophs in the resulting bare surface
soils that were once the burnt shrub and interspace biocrusts.
The emergent community still helped glue soil aggregates
together, but N fixation and soil infiltration were depressed.
Taken together, the loss of much of the photosynthetic and N2

fixation potential due the disappearance of Cyanobacteria and/or
higher plants calls into question the longevity of the emergent
community. The burgeoning community of chemoheterotrophic
copiotrophs may only persist until the C and N released from
the burn are exhausted. Our results demonstrate that biocrust
bacteria may recover rapidly after fire, albeit along a different
trajectory that results in fewer ecosystem services.

Dominant Foundational Cyanobacteria
Disappeared After Fire
Contrary to our hypothesis, a simplified Cyanobacteria crust
failed to form. M. vaginatus, the foundational Cyanobacteria in
our unburned biocrusts, disappeared or was barely detectable
in burned soils after 1 year. M. vaginatus did persist 2
months after the fire as an active member, dormant cell, or
persistent exogenous DNA. The loss of Cyanobacteria was
accompanied by a reduction in chemoheterotrophic copiotrophs,
often associated with the “cyanosphere” (Couradeau et al., 2019).
The cyanosphere is a nutrient-rich zone, analogous to the
rhizosphere, where cyanobacteria enhance fertility of surface

soils, primarily through increasing organic C availability via
the addition of photosynthate, inorganic N through fixation,
and soil moisture due to the specific ecohydrological benefits
of crusts. Taxa from three of our families, in particular,
were abundant in our unburned cyanosphere and likewise
major components of other Cyanobacteria-, lichen-, and/or
bryophyte-dominated crusts, Rubrobacteriaceae (Actinobacteria,
Nagy et al., 2005; Gundlapally and Garcia-Pichel, 2006; Angel
and Conrad, 2013; Maier et al., 2018), Chitinophagaceae
(Bacteroidetes, Kuske et al., 2012; Maier et al., 2018), and
Sphingomonadaceae (Alphaproteobacteria, Maier et al., 2014).
Our sampling technique did not explicitly identify taxa in
direct contact with Cyanobacterial filaments but captured taxa
within the cyanosphere and in soil immediate surrounding
the filaments. Even with our more course sampling, the
cyanosphere and other biocrust constituents seem to generate
a predictable set of soil conditions that may favor specific
bacterial taxa.

Rare Firmicutes Dominated Burnt
Heterotrophic Communities
The emergent community was dominated by a previously rare
Planococcus species (family Planococcaceae, Firmicutes) that
dominated all burned soils. In general, Firmicutes are favored
in soils following fire, especially in the short-term (Ferrenberg
et al., 2013). Our Planococcus species was no exception. This
species appears able to occupy, rapidly populate, and dominate
the same location as biocrusts constituents (the uppermost
millimeters of soil), perhaps by exploiting nutrient-rich shifts
in soils induced by fire. Planococcus are moderately halophilic
heterotrophic (Ventosa et al., 1998) present in cold deserts
around the world capable of hydrolyzing starch (Reddy et al.,
2002; Mayilraj et al., 2005). In this instance, Planococcus appeared
able to rapidly utilize relatively labile starches released after the
burn fire without influencing other taxa, as this species was
not a hub species in any network or only slightly connected
to several other taxa in the shrub model network. Thus,
Planococcus are most likely a copiotroph scrambler (Hibbing
et al., 2010), better suited to capitalize on emerging resources
by scrambling for nutrients instead of contesting/competing
for existing ones. Other copiotrophs dominated burned soils,
specifically a Cellulomonas species in the Cellulomonadaceae
(Actinobacteria) and Massilia species in the Oxalobacteraceae.
Both species were also not hub species, but may capitalized on
partially burned plant/algal materials remaining in soils. The
Massilia genera houses facultative anaerobes that are able to
degrade long chain hydrocarbons in oil contaminated soils (Ali
et al., 2016; Ren et al., 2018) and reduce nitrate in biocrusts
(Bailey et al., 2014). The Cellulomonas generate houses Gram-
positive, aerobic bacteria able to degrade cellulose (Anderson
et al., 2012). The emerging dominant bacteria in our converged
desert communities were presumably copiotrophs utilizing C
resources released after fire. Once the partially burned and
available organic C sources are consumed, we project that the
community will shift once again, especially if there are no new
inputs of C from photosynthetic organisms.
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FIGURE 5 | Network co-occurrence models using maximal information coefficient (MIC) analysis of unburned and burned biocrusts after fire. Nodes (circles) in the

network models represent OTUs from 16S rRNA gene community libraries (97% similarity cut-off) with edges (connecting lines between nodes) representing significant

co-occurrence connections that occur in at least 75% of the samples for a given microsite and have an MIC that is both > 0.7 and statistically significant (P < 0.01, n

= 6). Colors represent different phyla as shown in the figure key. The size of the nodes indicates the number of significant connections between the given node and

other taxa.

TABLE 1 | Metrics from network co-occurrence models of burned and unburned

of Cyanobacteria/lichen-dominated crusts occupying relatively plant-barren

interspaces (interspaces) and Cyanobacteria/moss-dominated crusts the beneath

shrub-islands (shrub).

Shrub Interspace

Metrics Unburned Burned Unburned Burned

Nodes 148 95 167 140

Edges 614 152 514 307

Mean path length 3.5 5.5 4.3 5.2

Mean degree 8.3 3.2 6.2 4.4

Modularity 0.61 0.76 0.69 0.71

Firmicutes are often only minor constituents in biocrusts but
may become more abundant in disturbed biocrusts. In multiple
metagenomic surveys of biocrust communities from hot and
cold deserts, Firmicutes are relatively uncommon (Steven et al.,
2014; Karaoz et al., 2018; Warren et al., 2019). Following multiple
forms of disturbance however, these aerobic, desiccation-tolerant
copiotrophs may dominate. For example, following rewetting
in Cyanobacteria-dominated biocrusts, Microcoleus species were

displaced by large blooms of Firmicutes from three families
(i.e., Alicyclobacillaceae, Bacillaceae, and Planococcaceae) one of
which, the with Planococcaceae houses our Planococcus species
(Karaoz et al., 2018). Further, once Cyanobacterial-dominated
crusts are disturbed due to grazing, bacterial communities
in now bare soils associated with hoofprints contain a high
contribution of Firmicutes (Abed et al., 2019). Firmicutes are
often spore-formers and the ability of these taxa to weather
adverse environmental conditions as endospores most likely
contributes to their success in disturbed biocrusts. Our dominant
Firmicutes, a Planococcus species, however, is from a non-spore
forming genera. The ability of the Planococcus to exploit
disturbed biocrusts may reside in their protein flexibility,
resource efficiency, genomic plasticity, and osmotic-specific
adaptive mechanisms that likely compensate for the desiccation
and cold stresses present in cold deserts (Mykytczuk et al., 2013).

Recovered Burned Communities Poorly
Interconnected
As hypothesized, bacterial biomass, richness, and diversity
recovered to approximately unburned levels 1 year after the fire
even in bare soils, but the resulting community was more diffuse
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FIGURE 6 | N fixation rates (A), and ammonium concentrations (N-NH+

4 ) (B) in

unburned and burned biocrusts following fire. N fixation (µmol day−1 m−2) and

inorganic N (µg N-NH+

4 g−1 soil) values are means (n = 10) ± SEM.

Differences between treatments are based on RM-ANOVA results from three

time intervals following fire (1-week, 1-month, and 1-year).

and sparsely interconnected. In soils, disturbances that alter the
quantity and quality of C and other resources may exert immense
control over bacterial communities and microbial-mediated
processes (Ma et al., 2015; Zechmeister-Boltenstern et al., 2015).
With desert wildfires may come a flush of resources (Fuentes-
Ramirez et al., 2015). Depending on fire severity, partially burnt
plant materials deposited on soil surfaces and/or leached into
the profile, along with defunct root systems, offers copious
amounts of relatively labile and recalcitrant C for bacteria
to harness. Additionally, fire may release phosphorus and
other non-combustible nutrient potentially alleviating nutrient
limitations and the availability of water may rise in the absence
of transpiration by higher plants. In deserts, soils surrounding
burned A. tridentata supported higher levels of bacterial biomass
and increased concentrations of total organic C, total N, and
dissolved organic C (Halvorson et al., 1997). Thus, burned

FIGURE 7 | Soil infiltration rates through biocrusts declined after fire. Values

(cm min−1 ) are means (n = 5), ± SEM, reported in cm s−1. Differences are

based on RM-ANOVA with attending F statistics and P-values for significant

interactions.

soils may offer relatively nutrient-rich soil conditions and/or
new niches for recovering bacteria to exploit. The dominant
Planococcus species (Firmicutes) was not one of the top-ten most
interconnected bacterial species in burnt soils. Fire created a
unique set of interconnected hub species of chemoheterotrophic
copiotrophs commonly found in biocrusts and/or other taxa
well-adapted to weather and thrive in desert soil conditions.
For example, new hubs, Acidobacteriaceae (Acidobacteria),
Solirubrobacteriaceae (Actinobacteria), Chitinophagaceae
(Bacteroidetes), are common copiotrophs within biocrusts
(Kuske et al., 2012; Angel and Conrad, 2013; Maier et al.,
2018) and potentially contribute/influence a consortium of taxa
consuming cellulose, hemicellulose, and chitin within burnt
soils. The Chloroflexi commonly associated withM. vaginatus in
biocrusts are thermotolerant and non-photosynthetic scavenging
organic acids derived from Cyanobacterial photosynthates
(Maier et al., 2018). In burned soils beneath shrubs, the hub
members of the Chloroflexaceae and Thermomicrobia were
most likely thermophilic and cellulolytic taxa demonstrating
photoheterotrophic and/or chemoheterotrophic metabolism
(Houghton et al., 2015; Klatt et al., 2015). Thus, both hubs
were possibly reliant or linked to other taxa generating
organic acids in burned soils. Last, the Actinobacteria are
desert cosmopolitan species, hosting taxa that are acidtolerant,
alkalitolerant, psychrotolerant, thermotolerant, and halotolerant
(Mohammadipanah and Wink, 2016), and able to produce
dormant endospores under harsh conditions. Thus, we are
assuming that our Gram-positive Actinobacteria hubs (i.e.,
Acidomicrobineae, Microbacteriaceae Micrococcacaceae,
and Micromonosporaceae) were extremely well-adapted
to weather the environmental extremes often present in
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deserts and potentially compete for resources under burned
soil conditions.

Recovering Community Provided an
Abbreviated Set of Ecosystem Services
Our last hypothesis was predicated on the services provided by
a rudimentary M. vaginatus-dominated crust. In the absence
of Cyanobacteria; however, the recovered bacterial community
provided only an abbreviated set of ecosystem services. Soil
aggregate stability was only marginally impacted by the burn,
dipping slightly in Cyanobacteria/moss-dominated crusts 2
months after the fire. Bacteria commonly produce exopolymeric
substances that glue soil particles together (Costa et al., 2018).
Our data suggest that the post-fire soil community aggregated
soils into particles or at least helped maintain aggregation in now
surface soils as proficiently as either biocrust type. The benefits
of soil aggregation by biota are substantial (Bronick and Lal,
2005), but the emerging soil communities we observed after fire
are unlikely able to withstand the high erosional forces of desert
winds. Well-developed biocrusts, those with high biomass of
crust constituents, reduce soil erodibility, and armor soils against
wind erosion (Belnap and Gardner, 1993; Mazor et al., 1996).
Our burned soils support similar amounts of bacterial biomass
but the surfaces are void of crusts. Thus, substantial erosion is
likely, regardless of soil aggregate stability. Alternatively, both
infiltration and N fixation failed to recover following fire. We
found some evidence of a hydrophobic layer forming on the
burned soil surfaces, as infiltration plummeted 1-week after the
fire and remained depressed through the year. We expect that the
burning of biocrusts, A. tridentata, or the straw that we added
to carry the fire and released hydrophobic organic compounds
or rearranged amphiphilic molecules (e.g., phytanols and fatty
acids) already present in the soil (Ravi et al., 2007; Uddin et al.,
2017). N fixation was basically non-existent in burned soils,
but soil ammonium continued to accumulate in burned surface
soils, suggesting that the emergent community had adequate
access to N.

Bromus tectorum and Halogeton

glomeratus Invaded Burnt Biocrusts
Our burnt soils will most likely never recover into a fully-
developed biocrust. Although the burnt soils were only sparsely
covered with exotic, annual grass B. tectorum and noxious
invader H. glomeratus 1 year after the fire, both species had fully
encroached into the disturbed soils after only 4 years (St. Clair
et al., 2016). Cover of B. tectorum increased from 3.8% (± 5.2)
to 23% (± 5.2) and H. glomeratus increased from 0.9% (± 1.1) to
13% (± 1.1) in unburned compared to burned plots. Fully formed
biocrusts often inhibit exotic but not native plant establishment
(Slate et al., 2019), but disturbance may suppress this process
(Hernandez and Sandquist, 2011).

Such invasion results in a greater percentage of vascular
plant cover and subsequent litter on the soil surface, both of
which reduce light levels reaching the soil surface, effectively
threatening essential phototrophic component of crusts (Brooks
and Matchett, 2006). Additionally, increased plant cover may

compete for essential nutrients (e.g., N and phosphorus) and
soil moisture necessary for crust recovery (Evans et al., 2001;
Ryel et al., 2010). Thus, if fire occur in close proximity
to exotic plant seed sources and the disturbed soils are
readily invaded, the probability of a fully-developed crust
is unlikely.

CONCLUSION

An intensive wildfire inhibited the recovery of even a
rudimentary biocrust in 1 year’s time. Although wildfires
changed biocrusts into bare soils with vastly different community
composition, both bacterial communities supported similar
level of bacterial biomass, alpha diversity, and richness
1 year after the fire. Rather than being dominated by
the Cyanobacterium M. vaginatus, the two burned biocrust
types converged to a common community dominated by
heterotrophic copiotrophs most likely benefiting from the release
of partially burned biocrust and plant materials. The fire
created more diffuse and poorly connected communities than
their unburned biocrust counterparts disrupting upwards of
75% of species interactions present in unburned crusts. One
common ecosystem service supported by biocrusts potentially
returned (i.e., exopolymeric substances gluing soil aggregates
together); however, the seminal biocrust services of N fixation
and improved soil ecohydrology, measured here as soil
infiltration rates, remained substantially reduced 1 year after
the burn. Our results suggest that the absence of the
dominant and foundational taxa of biocrusts opened multiple
new niches for rare bacteria to exploit creating poorly
connected communities that provided only an abbreviated set of
ecosystem services.
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