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Second-Generation P-Values,
Shrinkage, and Regularized Models

Thomas G. Stewart † and Jeffrey D. Blume*†

Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, United States

Second-generation p-values (SGPVs) are a novel and intuitive extension of classical

p-values that better summarize the degree to which data support scientific hypotheses.

SGPVs measure the overlap between an uncertainty interval for the parameter of

interest and an interval null hypothesis that represents the set of null and practically

null hypotheses. Although SGPVs are always in the unit interval, they are not formal

probabilities. Rather, SGPVs are summary measures of when the data are compatible

with null hypotheses (SGPV = 1), compatible with alternative hypotheses (SGPV = 0), or

inconclusive (0< SGPV< 1). Because second-generation p-values differentiate between

inconclusive and null results, their Type I Error rate converges to zero along with the Type

II Error rate. The SGPV approach is also inferentially agnostic: it can be applied to any

uncertainty interval about a parameter of interest such as confidence intervals, likelihood

support intervals, and Bayesian highest posterior density intervals. This paper revisits

the motivation for using SGPVs and explores their long-run behavior under regularized

models that provide shrinkage on point estimates. While shrinkage often results in a more

desirable bias-variance trade-off, the impact of shrinkage on the error rates of SGPVs

is not well-understood. Through extensive simulations, we find that SPGVs based on

shrunken estimates retain the desirable error rate behavior of SGPVs that we observe in

classical models—albeit with a minor loss of power—while also retaining the benefits of

bias-variance tradeoff.

Keywords: p-value, inference, bayes, shrinkage, regularization, second-generation p-value

INTRODUCTION

Despite decades of controversy, p-values remain a popular tool for assessing when observed data
are incompatible with the null hypothesis. While p-values are widely recognized as imperfect,
they continue to flourish in the scientific literature even when their shortcomings have real
consequences. This reluctance to change occurs, in large part, because p-values are being used
as quick-and-dirty summary assessments of the underlying data (instead of as a perfectly precise
measure of evidence for a statistical hypothesis). In some cases, p-values are undeniably misused,
abused and selectively misinterpreted. However, most researchers look to the p-value for an
objective assessment of when the data are worthy of further detailed inspection. Given the large
amount of information published on a daily basis, there is a critical role for a summary statistic
to do just that. Blume et al. (2018, 2019) proposed the second-generation p-value (SGPV) as an
improved p-value as used in practice. The SGPV is intended to serve as a summary measure of the
data at hand, regardless of the statistical approach.
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The SGPV is a formalization of today’s best practices
for interpreting data. According to the American Statistical
Association (Wasserstein and Lazar, 2016), “best practice”
amounts to de-emphasizing the magnitude of the p-value
and inspecting the associated uncertainty interval (typically
a confidence interval) to see if contains only scientifically
meaningful effects. That is, researchers are supposed to check to
see if the uncertainty interval rules out the null hypothesis and all
other trivial, scientifically uninteresting effects. The problemwith
this approach is that it is post-hoc; the assessment of scientific
meaningfulness is conducted after examining the data. As a
result, the researcher’s post-hoc assessments are influenced by
results at hand, and this leads to the embellishment of effectively
inconclusive data that supports practically null effects simply
because the classical p-value is small. Given this, it should be no
surprise that many “findings” fail to replicate; those “findings”
were often mischaracterized in the first place.

A straightforward remedy for this is to require researchers
to specify interesting and uninteresting effect sizes before the
data are collected. This is routinely done in clinical trials, for
example. The observed results can then be contrasted against
initial benchmarks, uncorrupted by the observed data. Findings
that fail to meet those benchmarks should still be reported, of
course. But now they will be correctly reported as exploratory
results and not as confirmatory ones. This is a critical step
toward reproducibility: requiring the experimenter to define
what constitutes a “successful experiment” before data are
collected and interpreted.

The second-generation p-value (SGPV) is an improved p-
value that has been adapted to this new level of exactness. It
depends on the researcher’s a priori definition of what constitutes
an interesting or uninteresting effect and it indicates when the
experiment has met that pre-specified benchmark. Blume et al.
(2018, 2019) showed that this formalization leads to improved
statistical properties in terms of a reduced Type I Error rate (it
converges to zero as the sample size grows, much like the Type II
error rate) and reduced false discovery rates.

The SGPV also depends on an uncertainty interval that
characterizes the effect sizes that are supported by the data. Blume
et al. (2018) shows how the SGPV’s frequency properties are
derived from the uncertainty interval. Blume et al. (2018, 2019)
show than if a (1 − α)100% confidence interval or properly
calibrated likelihood support interval is used, then the SGPV
has desirable error rate behavior, with a Type I Error rate that
remains bounded by α. The SGPV can just as easily be based
on a Bayesian credible interval. The ability to incorporate an
uncertainty interval from any of the three inferential schools
of thought is why the SGPV is “method-agnostic.” This also
highlights the SGPVs role as a global indicator of when the study
has collected sufficient data to draw conclusions, regardless of the
underlying inferential approach used in the analysis.

In this paper, we examine what happens when the uncertainty
interval upon which the SGPV is based comes from a model
that is regularized. This is most easily thought of as using a
Bayes or credible interval with a pre-specified prior. The Bayes
approach provides shrinkage, which often results in reduced
mean square error because the added bias is offset by a larger

reduction of variance (confidence intervals, on the other hand,
are routinely based on unbiased estimates). The question of
interest is what happens to the frequency properties of the
SGPV when uncertainty intervals are derived from a procedure
that adds bias to reduce the variance. We investigate this by
examining the behavior of SGPVs based on Bayes uncertainty
intervals in a variety of simulations. We find that the SGPV easily
incorporates these intervals while maintaining the improved
Type I/Type II Error rate tradeoff. That is, the Type I error rate
still converges to zero and the associated reduction of power
tends to be minor. As a result, SGPVs based on Bayes intervals
are similarly reliable inferential tools.

BACKGROUND: THE
SECOND-GENERATION P-VALUE

Blume et al. (2018) present Figure 1 (below) to illustrate the
SGPV. The top diagram depicts the typical scenario: an estimated
effect (denoted by Ĥ), the traditional null hypothesis (denoted by
H0) and a confidence interval (CI) for the uncertainty interval.
Here we take the uncertainty interval to be a collection of
hypotheses, or effect sizes, that are supported by the data by some
criteria (in this case at the 95% level). Classical hypothesis testing
follows by simply checking if H0 is in the CI or not.

There will always be a set of distinct hypotheses that are
close to the null hypothesis but are scientifically inconsequential.
This group represents null effects and practically null results,
which we sometimes call trivial hypotheses, so it makes sense
to group them together. This collection of hypotheses represents
an indifference zone or interval null hypothesis. The bottom
diagram depicts what happens when the null hypothesis is an
interval instead of a single point. The null zone contains effect
sizes that are indistinguishable from the null hypothesis, due to
limited precision or practicality.

An interval null always exists, even if it is narrow, which is
why the inspection of a CI for scientific relevance is essential
and considered best practice. It is not sufficient to simply
rule out the mathematically exact null; one must also rule
similarly inconsequential scientific hypotheses/models. At its
core, the problem of statistical significance not implying clinical
significance boils down to this very issue. It is a matter of scale;
the SGPV forces the experimenter to anchor that scale. As we
will see, the reward for doing this is a substantially reduced false
discovery rate.

Note that the experimental precision, which is finite, can
serve as a minimum set for the interval null hypothesis. Finite
experimental precision means there is some resolution along the
x-axis (Figure 1) within which it is impossible to distinguish
between hypotheses. This is a constraint of the experimental
design, not the statistical methods. For example, whenmeasuring
income, hypotheses differing by <1 cent cannot be compared
because the data on income are only measured to within 1 cent.
Hypotheses differing by <1 cent are within the fundamental
measurement error of the experiment. Typically, however, we
are interested in hypotheses that are less precise than the
experimental precision, e.g., income differences at the level of 1
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FIGURE 1 | Illustration of a point null hypothesis, H0; the estimated effect that

is the best supported hypothesis, Ĥ; the a confidence interval (CI) for the

estimated effect [CI−,CI+]; and the interval null hypothesis
[

H−
0 H

+
0

]

.

dollar. It is this scientific determination that sets the indifference
zone around the null interval.

The SGPV is a scaled measurement of the overlap between
the two intervals. If there is no overlap, the SGPV is zero. The
data only support meaningful non-null hypotheses. If the overlap
is partial, so that some of hypotheses supported by the data
are in the interval null and some are out, we say the data are
inconclusive. The degree of inconclusivity is directly related to
the degree of overlap. But the general message is clear: more data
are required for a definitive result. If the uncertainly interval is
completely contained within the null zone—so the SGPV is 1—
then the data support only null or scientifically trivial effects. This
is how the SGPV indicates support for alternative hypotheses or
null hypotheses, or indicates the data are inconclusive.

An important side note is that a SGPV of 0 or 1 is an endpoint
in the sense that the study has completed its primary objective.
It has collected sufficient information to screen out/in the null
hypothesis. This does not imply that the data have achieved
sufficient precision for policy implementation; the resulting
uncertainty intervals can still be wide.

Formally, let interval I represent an uncertainty interval, e.g., a
95% CI or 95% credible interval, and letH0 represent the interval
null hypothesis. If I =

[

a, b
]

where a < b are real numbers, then
its length is |I| = b− a. The second-generation p-value, denoted
by pδ , is defined as

pδ =
|I ∩H0|

|I|
×max

{

|I|

2 |H0|
, 1

}

(1)

where I ∩ H0 is the overlap between intervals I and H0. The
subscript δ signals the reliance of the second-generation p-
value on an interval null. Often δ represents the half-width
of the interval null hypothesis. The value of δ is driven by
scientific context and should be specified prior to conducting the
experiment. The SGPV is often referred to as “p-delta.”

The first term in Equation (1) is the fraction of best
supported hypotheses that are also null hypotheses. The second
term is a small-sample correction factor, which forces the
second-generation p-value to indicate inconclusiveness when
the observed precision is insufficient to permit valid scientific

inferences about the null hypotheses. The second term applies
whenever the uncertainty interval is more than twice as long
as the null interval. It is this device that allows the SGPV to
distinguish inconclusive results from those that support the null
premise. See Blume et al. (2018) for a discussion of the correction
factor. When the uncertainty interval is a traditional confidence
interval, it is straightforward to determine the error rates and
subsequent false discovery rates. Blume et al. (2018, 2019)
provide these computations. Here we consider what happens
when one uses an uncertainty interval from a regularized model,
or a Bayes interval, for the basis of the SGPV and how that affects
the statistical properties of the SGPV.

The use of an interval null hypothesis is not new in statistics.
It is featured in equivalence testing (Schuirmann, 1987), non-
inferiority testing (Wang and Blume, 2011), and the Bayesian
Region of Practical Equivalence procedure [ROPE; Kruschke,
2014, chapter 12; Kruschke and Liddell, 2017]. Despite 30+ years
of existence, equivalence tests have not garnered a large following
in the statistical community. Factors contributing to this are the
equivalence test’s general behavior and non-optimality (Perlman
and Wu, 1999) and a well-respected paper calling for the
abandonment of a popular variant of equivalence tests—the two
one-sided tests (Berger and Hsu, 1996). Of course, equivalence
and non-inferiority tests are classical hypothesis tests. As a result,
they inherit the shortcomings of the general approach. Flipping
the null and alternative hypotheses does not alleviate the ills of
hypothesis testing. For example, a p-value cannot measure the
evidence for a null hypothesis; flipping the null and alternative
hypotheses does not solve this problem, as support for the new
null (the old alternative) can no longer be assessed. On the
other hand, the SGPV is something different; it is not rooted in
classical testing. The similarity between equivalence testing and
SGPVs begins and ends in the mathematical formalization of the
hypotheses. To the point, the SGPV easily indicates when the data
support the null or alternative hypotheses, or when the data are
inconclusive; there is no need to flip the hypotheses.

BACKGROUND: REGULARIZED MODELS

Regularized models are commonly used in quantitative research.
These models can be generated using a wide variety of methods.
Some common examples are LASSO (Tibshirani, 1996), elastic-
net (Zou and Hastie, 2005), support vector machines (SVM)
(Cortes and Vapnik, 1995), Bayesian regression models (Gelman
et al., 2013), and even simple continuity corrections of 2 ×

2 tables. Because regularized models are now ubiquitous, it is
important to know how the SGPV performs when calculated with
an uncertainty interval generated from a regularized model.

Broadly speaking, regularization is the practice of
incorporating additional structure to a model beyond the
typical likelihood or loss function. The additional structure is
often incorporated into the model via (a) constraints on the
model parameters (LASSO, elastic-net), (b) direct addition of
model complexity terms to the loss function (SVM), (c) prior
distributions of the model parameters or Bayesian models, or
(d) augmented data. Operationally, the contribution of the
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additional structure—the regularization—relative to the typical
likelihood or loss function is controlled by tuning parameters
e.g., the severity of the constraint, the scale of the complexity
penalty, the variation in the prior distributions, or the amount
of augmented data. These tuning parameters are commonly
set by cross-validation, although this is not the only approach.
Such regularization helps to combat over-optimistic parameter
estimation in models that have sparse information relative to the
(number of) parameters of interest.

Consider, for example, the classical Bayesian model. The
impact of the prior distribution can be minimal if the variation of
the prior distribution is large enough that the prior distribution
looks essentially flat relative to the likelihood function. When
this happens the (flat) prior adds no additional structure to the
model. In these cases, the posterior distribution looks very similar
to the likelihood function. Conversely, the prior’s impact can be
substantial if the variation in the prior distribution is small and
discordant with the likelihood. Such a prior adds considerable
structure to the model; the resulting posterior is a weighted
average of the likelihood and that prior.

To illustrate, consider the comparison of two group means
using a Bayesian regression model. A detailed description of each
regularized model is beyond the scope of this paper, but a simple
summary is that the prior and likelihood are combined to yield
uncertainty intervals from the posterior (regularized credible
intervals). In this example, let β = µ1−µ0 denote the difference
in means between the two groups. In Figure 2, data collected
from two groups is displayed as overlapping histograms, and the

observed sample means are shown as X1and X0. In the bottom of
Figure 2, the impact of the prior on the posterior is evident. Note
that the 95% credible interval and posterior point estimate of β

(displayed as a blue line and point overlaid on the posterior) are
pulled toward zero. The data are not changing in this example;
the different credible intervals are the result of changing the
prior distribution.

The phenomenon evident in Figure 2, where posterior point
estimates are pulled toward to the mean of the prior (usually
0), is called shrinkage. Shrinkage is natural a consequence of
adding structure or information to the model. Notice also
that the interval widths become narrower as the degree of
regularization becomes larger. The shrunken point estimates are
statistically biased but the standard errors of the estimates are
smaller. The bias typically vanishes as the sample size grows
if the added structure does not change as data accumulate
(e.g., the prior is prespecified and remains fixed). Shrinkage
often reduces the mean squared error (MSE, i.e., bias2 +

variance), which is why regularized methods are typically used
on prediction models. The trade-off of bias and variance
is an important one; smaller MSE is often a desirable
operating characteristic.

However, there is no guarantee that regularization will
generate smaller MSE. Figure 3 shows the impact on MSE
as outcome variation increases under various degrees of
regularization. (The operational definition of the degree of
regularization is described in section Methods: Simulation
Setup.) For a given level of regularization, MSE is improved

if the standard deviation of the outcome somewhat exceeds β

(in standard deviation units) as depicted in Figure 3. However,
regularization tends to increase MSE when the standard
deviation of the outcome was comparable to, or less than, the
effect size. This phenomenon becomes exaggerated as the degree
of regularization increases.

The take home message from Figure 3 is that regularization
works well when the magnitude of the noise is substantially
larger than the signal strength. But when the signal is larger
than the noise, regularization can be counterproductive and
increase the mean squared error (reduce predictive ability). It
should also be said that some models cannot be estimated
uniquely without regularization. That is, often the data do not
provide enough information to identify a model by themselves.
In such cases, adding structure to the model allows the enhanced
model to be fit with the data. For example, when the number
of predictor variables exceeds the number of observations,
regularization can add sufficient structure to permit unique
model estimation. LASSO regression and ridge regression are
often used in these settings.

Because the SGPV is predicated upon the concept of interval
estimates and interval nulls, the SGPV can be immediately
applied to parameter estimates and uncertainty intervals
constructed from regularized models. In the sections that follow,
we examine how the SGPV performs when applied to a
Bayesian regression model that estimates the difference in means
between two groups. The Bayesian setting is quite flexible and
generalizable, as virtually all popular regularization techniques
can be re-written as a Bayesian model (albeit sometimes with
empirical or specialized prior). Lasso, Ridge Regression, and
the James-Stein estimator are some prominent examples. Other
penalized likelihood formulations can be framed in a Bayesian
context, although the corresponding prior may not be proper,
smooth, or as well-behaved as the Lasso, Ridge, and JS estimation.

AN INTRODUCTORY EXAMPLE:
LOGGERHEAD SHRIKE AND HORNED
LIZARD

Data presented in Young (2004) and made public as part of the
textbook Analysis of Biological Data (Whitlock and Schluter,
2015) compared the horn length of 30 dead and 154 alive lizards,
Phrynosoma mcalli. Researchers hypothesized that larger horn
length might be protective against the attack of the loggerhead
shrike, Lanius ludovicianus. Here we present a reanalysis of the
data in the context of regularization and SGPVs.

The model for the difference in mean horn length can be
parameterized with β in the following linear model. In this
model, I(Alive) is an indicator variable which is equal to 1 if the
lizard was alive at the time of measurement and 0 otherwise.

E
[

Horn Length
∣

∣Alive
]

= α + β I
(

Alive
)

V [Y|G] = σ 2

Frontiers in Ecology and Evolution | www.frontiersin.org 4 December 2019 | Volume 7 | Article 486

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Stewart and Blume SGPVs and Shrinkage

FIGURE 2 | An illustration of shrinkage when additional structure is incorporated into a model by regularization. In this illustration, regularization is achieved with a

Bayesian prior, which ranges from flat to peaked. The top figure is the hypothetical data collected from two groups. N (per group) is 30. The observed sample means

are shown as X1 and X0. The bottom panel shows the posterior distributions (right column) resulting from the choice of prior for the difference in means (left column).

As variation in the prior decreases, the resulting interval estimate and point estimate (shown as a blue line and point overlaid on the posterior) are shrunk toward 0.

We set the Bayesian priors as follows:

β ∼ N (0, 4.25)

α ∼ Improper Flat Prior

Prior to the analysis, we set the null region from−0.5 to 0.5mm,
indicating that a mean difference <0.5mm is scientifically
equivalent to no difference. The null region should be based on
researcher expertise. It is not a quantity driven by data; rather
it is driven by scientific understanding of the subject matter.
In this example, it is quite possible that different researchers
will arrive at different null regions. The variance of the prior

for beta was selected to be wide enough to be non-informative,
but not so wide to allow implausible values of the treatment
effect. There are different approaches to selecting a prior in a
Bayesian analysis (Gelman et al., 2013). The approach used will
impact the degree of regularization, and it is not a primary

concern in this investigation because our focus is on the SGPV’s

behavior after regularization. However, in our experience, using

an empirically derived prior, as we done here, often provides
sensible shrinkage behavior.

In Figure 4, we show the prior, the likelihood for the observed
data, and the resulting posterior and 95% credible interval for

three different version of this analysis. Credible intervals were

Frontiers in Ecology and Evolution | www.frontiersin.org 5 December 2019 | Volume 7 | Article 486

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Stewart and Blume SGPVs and Shrinkage

FIGURE 3 | An illustration of the relationship between the conditional variance, the degree of regularization/shrinkage, and the change in MSE when estimating the

difference in means. The gray vertical line represents the effect size of the difference in means (1 SD). Shrinkage improves MSE when the conditional variance is large

relative to the effect size, but it may increase MSE when the conditional variance is relatively comparable or smaller to the effect size.

FIGURE 4 | A demonstration of three possible study results in the context of the horned lizard data. The left column shows an interval estimate that does not overlap

with the null region, resulting in a second-generation p-value of 0. The middle column shows an interval estimate that straddles the null region, resulting in a

second-generation p-value of 0.4. The right column shows an interval estimate that falls entirely within the null region, so the second-generation p-value is 1. The left

column results from the unaltered data; whereas data for the middle and right column have been altered for demonstration purposes.

generated from 50,000 draws from the posterior distribution and
an empirical calculation of the 95% highest posterior density. The
null region is also shown. In the first panel (column), the null
region and the credible interval do not overlap, so the SGPV is

0. A larger null region from −1 to 1mm is needed to have any
chance of overlapping.

To demonstrate how the analysis might proceed for different
effect sizes, we artificially shifted the outcome values for the
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living lizards by 1.5mm so that differences in mean horn length
are much smaller than the original data. After shifting the data,
we see a different result, which is shown in the middle panel
(column). The regularized interval straddles the boundary of the
null region, so the analysis of this data generates an inconclusive
result. The data support both null and meaningful effect sizes,
and the second-generation p-value is 0.4.

We also artificially altered the dataset to demonstrate an
analysis that results in a conclusive similarity between groups
(last panel/column, Figure 5). First, we shifted the horn length
for living lizards to match the mean horn length of dead lizards.
Second, we increased the sample size of the dataset by a factor
of 8 by resampling rows. As one would expect, the likelihood
and posterior terms are tighter because of the increased sample
size. The resulting interval calculated from the posterior is
shorter and falls completely within the null region. The second-
generation p-value is 1 in this case, which is an indication of a
conclusive similarity.

We now understand how to compute and use SGPVs. The
question that remains is whether the SGPV is reliable in a
repeated sampling sense. In the following sections, we simulate
similar types of data and perform similar analyses under a
wide variety of settings in order to understand the operating
characteristics of the SGPV with (smooth) regularization.

METHODS: SIMULATION SETUP

In order to better understand the properties of SGPV, we
generated Gaussian outcome data for two groups of size N.
The difference in means between the groups was β , and
the conditional standard deviation was σ . Depending on the

simulation, we varied N, β , and σ . In mathematical notation, the
data generation procedure was:

For i = 1, . . . , N, . . . , 2N

Let Gi =

{

0, i ≤ N
1, i > N

Draw ǫi ∼ N (0, σ)

Calculate Yi = βGi + ǫ.

Gi is the group indicator and the linear regression model for
estimating β was

E [Y|G] = α + βG

V [Y|G] = σ 2.

When fitting a Bayesian regression model, the prior for the two
mean parameters (α,β) was

β ∼ N

(

0,
3σ̂

1.96
×

1

shrinkage

)

α ∼ Improper Flat Prior.

where shrinkage is a variable set for each simulation. Setting
shrinkage to 0 is equivalent to ordinary least squares. The prior
for β is calibrated so that 95% of its probability mass is within

± 3σ̂
shrinkage

(Gelman et al., 2008). The value σ̂ is the unconditional

standard deviation of the outcome. In a typical analysis setting,
the prior for the treatment effect coefficient would be driven
by expert opinion. In the simulation setting, we resort to an
empirically driven prior. The resulting prior without shrinkage is

FIGURE 5 | Simulation results showing the Type I and Type II Errors rates for the SGPV as the sample size (N) increases. Within the null region (i.e., all values of beta

less than delta), the probability that the SGPV = 0 gets increasingly small as N gets larger. In contrast, for beta values beyond the null region, the probability that the

SGPV = 0 goes to 1 as N gets larger. At delta, the boundary of the null region, the probability that SGPV = 0 is controlled at α = 0.05 or less. Hence, the Type I Error

rate goes to 0 as N increases. For non-zero values of beta within the null region, the Type II Error rate goes to 1.
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non-informative without admitting implausible values (Gelman
et al., 2008). As shrinkage increases, the probability mass becomes
more concentrated around 0. We varied the shrinkage parameter
from 0 to 9 in our simulations. For computing the SGPV, we used
a null interval of [−0.25, 0.25] or equivalently δ = 0.25 (we used
a relatively narrower null interval than in the example to account
for possibly strong shrinkage in the simulations).

For each combination of simulation parameters, 5,000
replicate datasets were generated and analyzed. Credible intervals
in each analysis were generated from 1,000 draws from the
posterior distribution and an empirical calculation of the 95%
highest posterior density. Power was calculated as the proportion
of replicates where the SGPV equaled zero. If the interval null had
been specified as a point, then this procedure would be equivalent
to a standard two-sided t-test. MSE was calculated as the mean
squared error of the difference between the known β (set by
simulation) and estimated β̂ (from simulated replicates).

RESULTS

Simulation 1: Power of SGPV as N
Increases
As a starting point, we consider the traditional case of least
squares to demonstrate the default trade-off of Type I and Type
II/power rates for the SGPV. Data were generated under a
range of effect sizes, β values, with an increasing number of
observations in each group. The conditional standard deviation
and null interval were held constant as indicated above.

The results are reported in Figure 5. The most noticeable
feature of the figure is that errors within the null region tend
toward 0, especially as N increases. Rather than an error rate
of 5% at β = 0, there is an approximate error rate of 5% at
β = δ, the boundary of the null region. Consequently, power
for values of β outside the null region is less than what would be
observed with the traditional t-test. This agrees with the results
in Blume et al. (2018). The SGPV’s reduction in power is traded
for a similar reduction in the Type I Error rate for clinically
meaningless effect sizes. The reduction in power here is not
substantial, but it might be larger in other cases. This is should
be checked when planning studies.

Simulation 2: Power, Interval Null,
Shrinkage
At the heart of this simulation study is the question of
how SGPVs generated with intervals from regularized models
compare to SGPVs generated without regularization. To that end,
we simulated power curves for all four possible combinations
of interval types and degree of shrinkage. In the top panel of
Figure 6 we see that mild shrinkage has negligible impact on
the Type I and Type II error rates. The primary feature in the
top panel is that SGPVs with an interval null spend power to
reduce the Type I error rate. In the bottom panel of the same
figure, the degree of shrinkage is exceedingly large, much larger
than one would typically use in an actual analysis. Interestingly,
even in this case, there is a real separation of the power curves
when comparing regularized and non-regularized approaches.

Given the extreme nature of the shrinkage, it is surprising that
the differences are not larger.

Simulation 3: MSE, Interval Null, and
Shrinkage
This final simulation reinforces that the MSE benefits of
regularization are retained when SGPV is used as a summary
measure. Because MSE is a function of the estimated and true
β–values which are not altered when calculating or interpreting
the SGPV—MSE will not change when a null interval is used for
inference. In the simulation results below (Figure 7), the red line
represents the difference between theMSE of a regularized model
with an interval null compared to the same regularized model
with a point null. As is clear from the plot, this difference in MSE
is 0. As a point of reference, the black line shows that in this
simulation setting, regularization does in fact lower MSE. This
shows that using an interval null also yields the typical benefits
seen with standard shrinkage estimators of improved prediction
via lower MSE.

DISCUSSION

The SGPV promotes good scientific practice by encouraging
researchers to a priori establish what are, and what are not,
scientifically meaningful effects. By establishing the null interval
at the start of the analysis, the SGPV can provide a summary
of how consistent the data are with the null hypothesis or how
consistent the data are with meaningful effects. Better Type I
Error rates are achieved at the expense of power in the region
outside the null interval. Because regularized models are now
widely used, it is important to understand how the SGPV
operates when applied to intervals impacted by shrinkage. Based
on our simulations, SPGVs based on credible intervals retain
their desirable Type I/Type II error rate tradeoff at a modest
cost in power. Likewise, the same gains in MSE observed with
Bayesian estimation are observed when a null interval and the
SGPV are used. Consequently, SPGVsmay be applied to Bayesian
analyses (where classical p-values are currently not available) and
to regularized models that exhibit some degree of natural and
smooth shrinkage.

The simulation study in this manuscript focuses on shrinkage
intervals constructed using a prior and a Bayesian posterior
distribution. Because regularized likelihood and regularized
machine learning methods can often be couched as special
cases of Bayesian modeling, the focus on shrinkage-by-prior is
a natural place to start. We note, however, that in focusing on
the Bayesian approach in the simulations, we are really focusing
on the subset of priors that induce shrinkage in the natural way;
overly informative priors or priors which lead to pathological
shrinkage are outside the scope of our investigation.

Statements regarding Type I or Type II error rates and
Bayesian credible intervals may seem odd to some readers
because some authors do not consider p-values or null hypothesis
testing to fit within the Bayesian paradigm. Likewise, it can
seem odd to estimate a posterior distribution in order to
calculate a second-generation p-value. However, this highlights
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FIGURE 6 | Results of the simulation study with the following factors: degree of shrinkage [mild vs. none (row 1) and extreme vs. none (row 2)] and type of null [point

(column 1) and interval (column 2)]. In each of the four graphs, the probability that the SGPV = 0 is plotted as a function of beta for both the shrinkage and no

shrinkage intervals. Comparing column 1 to column 2, the estimated probability curves cross 0.05 at the boundary of the respective nulls (0 for the point null and 0.25

for the interval null). For mild shrinkage (row 1), there is little noticeable difference between probability curve estimates with or without shrinkage (solid blue vs. dashed

green). More noticeable differences between shrinkage and no shrinkage occur with more extreme shrinkage (row 2).

an important point: the SGPV is not a probability. It is a
summary measure—applicable to any inferential framework—
for indicating the degree of conclusiveness of the analysis. An
SGPV of 0 indicates a conclusive difference, a value near 1
indicates a conclusive similarity, and values between 0 and 1
indicate differing degrees of inconclusive results with a value at
0.5 indicating a maximum degree of inconclusiveness.

One might wonder why this summary measure is called a
second-generation p-value if it is not a probability. It is our
contention that the practical, every-day use of traditional p-values
is as a marker for results deserving of increased scrutiny. That is,
the traditional p-value and 0.05 threshold is used to answer the

question: “Should I dive deeper into this hypothesis?” As many
have noted, the traditional p-value is not a good filter for this in
practice. The SGPV, in contrast, is designed to filter results that
deserve greater attention vs. results that need more data and are
currently inconclusive. So, the SGPV is a second generation of
the p-value as it is used in practice; it is not an extension of the
probability calculation for a null hypothesis test.

Evaluating the operating characteristics of the SGPV is
routine step that is intended to be paradigm-agnostic. It is
common these days to see a statistical approach, regardless
of paradigm of origin, evaluated in this long-run sense. The
Food and Drug Administration (FDA) which approves drugs
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FIGURE 7 | Simulation results showing that MSE is not altered when using a point null or a region null (red line). The black line is a reference to show the change in

MSE when incorporating shrinkage.

and medical devices for commercial use in the United States
requires evaluation of operating characteristics as part of drug
and device applications even when the submitted data analysis
is a set of posterior probabilities from a Bayesian analysis
(or set of likelihood ratios or p-values). In “Guidance for the
Use of Bayesian Statistics in Medical Device Clinical Trials1”
(Young, 2004), the FDA recommends and provides guidance
for computing Type I and Type II Error rates regardless of the
analysis paradigm. Note that even when prominent Bayesian
statisticians propose a new Bayesian clinical trial design, as
with the “Bayesian decision-theoretic group sequential clinical
trial design” (Lewis et al., 2007) or with “Phase II oncology
clinical trials” (Berry et al., 2013), the analysis is calibrated so
that the Type I Error rate is controlled. The SGPV is a tool
for deciding when an analysis shows a conclusive difference,
a conclusive similarity, or is not conclusive. As such, it is
appropriate to explore the operating characteristics of this tool
even if the interval is calculated from a Bayesian posterior or from
a statistical learning method with regularization.

The calculation of the SGPV is simple and intuitive. Specifying
the null region, however, is challenging. Ideally, the null region
should reflect subject matter expertise of effect sizes that are not
meaningful. Agreement among subject-matter experts on what
the null region should be is potentially hard to achieve. Further,
some research areas may be so new, there is no prior information
to guide the decision. Some users may want to punt on deciding
what the null region should be and may seek a “data-driven null
region.” Unfortunately, there is no such thing, at least not with
data from the same dataset that one intends to analyze. The

1Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials.

Available online at: https://www.fda.gov/regulatory-information/search-fda-

guidance-documents/guidance-use-bayesian-statistics-medical-device-clinical-

trials#7

challenge of specifying a null region is, in our opinion, the biggest
obstacle and limitation of the SGPV. However, it is the step that
anchors the statistical analysis to the scientific context; it is the
step that pushes that research team to decide what it means to
be similar and what it means to be different for their particular
research question, all prior to the analysis. These questions are
exactly where discussion should focus; and they are precisely the
questions that subject matter experts are best equipped to debate.
Specifying the null region is a challenging task, but it is a scientific
one worth the effort it requires.

There is still a lot to learn about the SGPV and a number

of potentially fruitful areas of investigation or expansion.

One outstanding question, for example, is what impact cross-
validation of shrinkage parameters may have on the operating

characteristics of the SGPV when used with intervals constructed

with machine learning methods. Dezeure et al. (2015) show

that this impact can be real. Another possible extension of

particular interest to those analysts that use Bayesian methods

is to expand the meaning of the null region. The null region
as currently used with the SGPV treats all values in the region
as equally unimportant. One may want to incorporate the idea
that some values in the null region are more null than others.
One approach would be to represent the relative “nullness” of the
values by borrowing structure from mathematical distributions,
similar in spirit to the likelihood. For example, the simple null
region of the current SGPV can be described as a uniform
null region in reference to the uniform distribution. A null
region in which the relative “nullness” is maximized at zero
but then fades to the interval endpoints might be represented
with a beta distribution. This is an intriguing next step
of research.

The SGPV is intended to be a method-agnostic indicator of
when a prespecified evidential benchmark is achieved. Assessing
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the overlap of the null and uncertainty interval is easily
mapped back to classical measures of statistical evidence like the
likelihood ratio. For example, a SGPV that is based on a 1/k
likelihood support interval is set to zero whenever the likelihood
ratio for the MLE vs. the nearest hypothesis in the null interval
is >k [most 95% CIs can be mapped to a 1/6.83 SI, see (Blume,
2002)]. A similar condition can be formulated for Bayes factors
when SGPVs are based on credible intervals. In this sense, the
SGPV just indicates when the observed evidence is sufficiently
strong against the hypotheses in the interval null hypothesis.

CONCLUSIONS

The second-generation p-value is an intuitive summary of
analysis results that is based on an uncertainty interval about the
parameter of interest and a pre-specified null region. Previous
publications on SGPVs focused on 95% confidence intervals
and 1/8 likelihood support intervals. In the current manuscript,
we explored the performance of SGPVs based on uncertainty
intervals from a regularized model, specifically Bayesian credible
intervals. While we considered intervals generated with Bayes

regression, this framework is readily generalizable to many

different types of regularization schemes. We saw nearly the
same trade-off of Type I and Type II Error rates in SGPVs
based on Bayesian credible intervals as SGPVs based on classical
confidence intervals. Our results indicate that SPGVs based
on regularized intervals retain this desirable error rate trade-
off, at a slight loss in power, while benefiting from the bias-
variance tradeoff imparted by regularization. Consequently,
the SPGV is a meaningful summary of study results, even
when applied in a Bayesian framework or other contexts that
incorporate regularization.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. These
data can be found here: http://whitlockschluter.zoology.ubc.ca/
wp-content/data/chapter12/chap12e3HornedLizards.csv.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

REFERENCES

Berger, R. L., and Hsu, J. C. (1996). Bioequivalence trials, intersection-

union tests and equivalence confidence sets. Stat. Sci. 11, 283–319.

doi: 10.1214/ss/1032280304

Berry, S. M., Broglio, K. R., Groshen, S, and Berry, DA. (2013).

Bayesian hierarchical modeling of patient subpopulations: efficient

designs of Phase II oncology clinical trials. Clin. Trials 10, 720–734.

doi: 10.1177/1740774513497539

Blume, J. D. (2002). Likelihood methods for measuring statistical evidence. Stat.

Med. 21, 2563–2599. doi: 10.1002/sim.1216

Blume, J. D., D’AgostinoMcGowan, L, Dupont,W. D., and Greevy, R. A. Jr. (2018).

Second-generation p-values: improved rigor, reproducibility, & transparency in

statistical analyses. PLoS ONE 13:e0188299. doi: 10.1371/journal.pone.0188299

Blume, J. D., Greevy, R. A. Jr., Welty, V. F., Smith, J. R., and Dupont, W. D.

(2019). An introduction to second-generation p-values. Am. Stat. 73, 157–167.

doi: 10.1080/00031305.2018.1537893

Cortes, C., and Vapnik, V. N. (1995). Support-vector networks. Mach. Learn. 20,

273–297. doi: 10.1007/BF00994018

Dezeure, R., Bühlmann, P., Meier, L., and Meinshausen, N. (2015). High-

dimensional inference: confidence intervals, p-values and R-software Hdi. Stat.

Sci. 30, 533–558. doi: 10.1214/15-STS527

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D., Vehtari, A., and

Rubin, D. B. (2013). Bayesian Data Analysis, 3rd Edn. Boca Raton, FL:

Chapman & Hall/CRC.

Gelman, A., Jakulin, A., Pittau, M. G., and Su, Y. S. (2008). A weakly informative

default prior distribution for logistic and other regression models. Ann. Appl.

Stat. 2, 1360–1383. doi: 10.1214/08-AOAS191

Kruschke, J. (2014).Doing Bayesian Data Analysis, Second Edition: A TutorialWith

R, JAGS, and Stan, 2nd Edn. Boston, MA: Academic Press.

Kruschke, J., and Liddell, T. M. (2017). The Bayesian new statistics: hypothesis

testing, estimation, meta-analysis, and power analysis from a Bayesian

perspective. Psychon. Bull. Rev. 25, 178–206. doi: 10.3758/s13423-016-1221-4

Lewis, R. J., Lipsky, A. M., and Berry, D. A. (2007). Bayesian decision-theoretic

group sequential clinical trial design based on a quadratic loss function:

a frequentist evaluation. Clin. Trials 4, 5–14. doi: 10.1177/17407745060

75764

Perlman, M. D., andWu, L. (1999). The Emperor’s new tests. Stat. Sci. 14, 355–369.

doi: 10.1214/ss/1009212517

Schuirmann, D. J. (1987). A comparison of the two one-sided tests procedure and

the power approach for assessing the equivalence of average bioavailability. J.

Pharm. Biopharm. 15, 657–680. doi: 10.1007/BF01068419

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat.

Soc. Ser. B 58, 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x

Wang, S. J., and Blume, J. D. (2011). An evidential approach to noninferiority

clinical trials. Pharm. Stat. 10, 440–447. doi: 10.1002/pst.513

Wasserstein, R. L., and Lazar, N. A. (2016). The ASA’s Statement on

p-values: context, process, and purpose. Am. Stat. 70, 129–133.

doi: 10.1080/00031305.2016.1154108

Whitlock, M. C., and Schluter, D. (2015). The Analysis of Biological Data.

New York, NY: W.H. Freeman and Company.

Young, K. V. (2004). How the horned lizard got its horns. Science 304, 65–65.

doi: 10.1126/science.1094790

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic

net. J. R. Stat. Soc. Ser. B 67, 301–320. doi: 10.1111/j.1467-9868.2005.00503.x

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Stewart and Blume. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 11 December 2019 | Volume 7 | Article 486

http://whitlockschluter.zoology.ubc.ca/wp-content/data/chapter12/chap12e3HornedLizards.csv
http://whitlockschluter.zoology.ubc.ca/wp-content/data/chapter12/chap12e3HornedLizards.csv
https://doi.org/10.1214/ss/1032280304
https://doi.org/10.1177/1740774513497539
https://doi.org/10.1002/sim.1216
https://doi.org/10.1371/journal.pone.0188299
https://doi.org/10.1080/00031305.2018.1537893
https://doi.org/10.1007/BF00994018
https://doi.org/10.1214/15-STS527
https://doi.org/10.1214/08-AOAS191
https://doi.org/10.3758/s13423-016-1221-4
https://doi.org/10.1177/1740774506075764
https://doi.org/10.1214/ss/1009212517
https://doi.org/10.1007/BF01068419
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1002/pst.513
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1126/science.1094790
https://doi.org/10.1111/j.1467-9868.2005.00503.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	Second-Generation P-Values, Shrinkage, and Regularized Models
	Introduction
	Background: The Second-Generation p-value
	Background: Regularized Models
	An Introductory Example: Loggerhead Shrike and Horned Lizard
	Methods: Simulation setup
	Results
	Simulation 1: Power of SGPV as N Increases
	Simulation 2: Power, Interval Null, Shrinkage
	Simulation 3: MSE, Interval Null, and Shrinkage

	Discussion
	Conclusions
	Data Availability Statement
	Author Contributions
	References


