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Computational convenience has led to widespread use of Bayesian inference with vague

or flat priors to analyze statistical models in ecology. Vague priors are claimed to be

objective and to “let the data speak.” However, statisticians have long disputed these

claims and have criticized the use of vague priors from philosophical to computational

to pragmatic reasons. One of the major criticisms is that the inferences based

on non-informative priors are generally dependent on the parameterization of the

models. Ecologists, unfortunately, often dismiss such criticisms as having no practical

implications. One argument is that for large sample sizes, the priors do not matter. The

problem with this argument is that, in practice, one does not know whether or not the

observed sample size is sufficiently large for the effect of the prior to vanish. It intricately

depends on the complexity of the model and the strength of the prior. We study the

consequences of parameterization dependence of the non-informative Bayesian analysis

in the context of population viability analysis and occupancymodels and at the commonly

obtained sample sizes. We show that they can have significant impact on the analysis,

in particular on prediction, and can lead to strikingly different managerial decisions. In

general terms, the consequences are: (1) All subjective Bayesian inferences can be

masqueraded as objective (flat prior) Bayesian inferences, (2) Induced priors on functions

of parameters are not flat, thus leading to cryptic biases in scientific inferences, (3)

Unrealistic independent priors for multiparameter models lead to unrealistic priors on

induced parameters, (4) Bayesian prediction intervals may not have correct coverage,

thus leading to errors in decision making, (5) Reparameterization to facilitate MCMC

convergence may influence scientific inference. Given the wide spread applicability

of the hierarchical models and uncritical use of non-informative Bayesian analysis in

ecology, researchers should be cautious about using vague priors as a default choice

in practical situations.

Keywords: Bayesian analysis, flat priors, non-informative priors, occupancy models, parameterization invariance,
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Lele Issues With Non-informative Bayesian Analysis

1. INTRODUCTION

Hierarchical models, also known as state-space models, mixed
effects models or mixture models, have proved to be extremely
useful for modeling and analyzing ecological data (e.g., Bolker,
2008; Kery and Schaub, 2011). Although these models can be
analyzed using the likelihood methods (Lele et al., 2007, 2010),
the Bayesian approach is the most advocated approach for such
models. Many researchers even name hierarchical models as
“Bayesian models” (Parent and Rivot, 2013). Of course, there
are no Bayesian models or frequentist models. There are only

statistical models that we fit to the data using either the Bayesian
approach or the frequentist approach. The subjectivity of the

Bayesian approach is bothersome tomany scientists (Efron, 1986;
Dennis, 1996) and hence the trend is to use the non-informative,
also called vague or objective, priors instead of the subjective
priors provided by an expert. These non-informative priors
purportedly “let the data speak” and do not bias the conclusions
with the subjectivity inherent in the subjective priors. It has
been claimed that Bayesian inferences based on non-informative
priors are similar to likelihood inference (e.g., Clark, 2005, p. 3,
5) although such a result has never been rigorously established.

The fact is that it is not even clear what a non-informative
prior really means. There are many different ways to construct
non-informative priors (Press, 2003, Chapter 5). The most
commonly used non-informative priors are either the uniform
priors or the priors with very large variances spreading the
probability mass almost uniformly over the entire parameter
space. These priors have been criticized on computational
grounds (e.g., Natarajan and McCulloch, 1998) because they
can inadvertently lead to improper posterior distributions. Link
(2013) shows similar problems with using uniform prior on the
population size when fitting capture-recapture models. However,
how does one explain that a uniform prior on probability of
success in a Binomial experiment represents non-information
but a uniform prior on the population size does not? Gelman
(2006) discusses similar computational problems associated
with the non-informative priors for variance components and
concludes uniform prior is, in fact, a good choice and not
the commonly used inverse Gamma prior (e.g., King et al.,
2009). The issue of choice of default priors and its impact
on statistical inference has also been observed in genomics
(Rannala et al., 2012).

More fundamentally, one of the founders of modern statistics,
R.A. Fisher, objected to the use of flat priors because of their
lack of invariance under transformation (De Valpine, 2009; Lele
and Dennis, 2009). In Fisher’s words (Fisher, 1930, p. 528), use
of flat priors to represent ignorance is “fundamentally false and
devoid of foundation.” An excellent review of the problems with
various kinds of non-informative or objective priors is available
in Ronneberg (2017). For example, a uniform prior on (0,1) for
the probability of success in a Binomial model turns into a non-
uniform prior on the logit scale (see Figure 1). If a uniform
prior is supposed to express complete ignorance about different
parameter values, then this says that if one is ignorant about p,
one is quite informative about log(p/(1− p)). Similarly a normal
prior with large variance on the logit scale, that presumably

represents complete ignorance, transforms into a non-uniform,
informative prior on the probability scale (see Figure 1).

This makes no sense because they are one-one
transformations of each other; if we are ignorant about
one, we should be equally ignorant about the other.

Fisher’s criticism was potent enough that it needed
addressing. Harold Jeffreys tried to construct priors that yield
parameterization invariant conclusions. They are now known
as Jeffreys priors. A full description of these priors and how to
construct them is beyond the scope of this paper (See Press, 2003
or Ronneberg, 2017 for easily accessible details). However, it
suffices to say that they are proportional to the determinant of
the inverse of the expected Fisher information matrix.

Despite its theoretical properties, there are practical issues
that hinder the use of Jeffrey’s priors. For example, in order
to construct them, one needs to know the likelihood function
and the exact analytic expression for the expected Fisher
information matrix. Because it is nearly impossible to write the
likelihood function explicitly for hierarchical models, computing
the expected Fisher information matrix is seldom possible for
hierarchical models. This makes the specification of Jeffrey’s prior
for a given hierarchical model difficult.

Let us look at Jeffreys prior for a simple, non-hierarchical
model where Y ∼ Bernoulli(p). The Jeffreys prior for the
probability of success p is the Beta(0.5, 05) distribution. The
density function of this random variable is U-shaped that is
highly concentrated near 0 and 1 with very small weight in
the middle (see Figure 2). It looks similar to the distribution
in the lower right hand panel. Even when Jeffreys prior can be
computed, it will be difficult to sell it as an objective prior to the
jurors or the senators on the committee.

Construction of Jeffreys and other objective priors for
multi-parameter models poses substantial mathematical
difficulties (Ronneberg, 2017). A commonly proposed solution
is to put independent Jeffreys or other non-informative
prior on each of the parameter separately. Why such prior
knowledge of independence of the parameters be considered
“non-informative” is unclear. Assuming two quantities are
independent of each other is considered to be a very strong
assumption in practice. The assumption of a priori independence
between parameters is more a matter of convenience than a
matter of principle and is not justifiable.

Press (2003, Chapter 5) provides an excellent review of
various problems associated with the definitions and use of
non-informative priors along with interesting historical notes.
It is clear that non-informative priors are chosen more for
their mathematical or computational convenience than for their
representation of no information or because they “let the
data speak.” Unfortunately, ecologists and practitioners tend to
dismiss these criticisms; considering them to be of no practical
relevance (e.g., Clark, 2005).

There are two prevalent notions, both false, about the non-
informative Bayesian analysis. The first false notion is that there
is no difference between non-informative Bayesian inference and
likelihood-based inference and the second false notion is that the
philosophical underpinnings of statistical inference are irrelevant
to practice. Some researchers (e.g., Kery and Royle, 2016) even
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FIGURE 1 | Non-informative prior on one scale is informative on a different scale. What is considered non-informative on the logit scale will be considered quite

informative on the probability scale and what is considered non-informative on the probability scale will be considered informative on the logit scale. For computational

convenience, the figures are density plots of the random numbers generated from the corresponding distributions, instead of using the analytic expressions.

claim that Bayesian inference is “valid” for all sample sizes,
but, unfortunately, without specifying the “validity” criterion. Of
course, as the information in the sample increases, effects of the
prior and consequences of lack of parameterization invariance
become negligible. Although, caveat of large sample size is
mathematically correct, whether or not the observed sample size
is large depends on the complexity of the model and the strength
of the prior (e.g., Dennis, 2004) and cannot be judged in practice.
To illustrate the falsity of these notions for sample sizes observed
in practice, we consider two important ecological problems:
Population monitoring and population viability analysis. We
show that, due to lack of invariance, analysis of the same data
under the same statisticalmodel can lead to substantially different
conclusions under a non-informative Bayesian framework. This
is disturbing because common sense dictates that same data
analyzed using the same model should lead to the same scientific
conclusions. The problem with the non-informative priors is that
they do not “let the data speak”; contrary to what is commonly
claimed, (absent large sample size) they bring in their own biases
in the analysis. We do not suggest that likelihood analysis, which
is parameterization invariant, is the only right way to do the data
analysis in applied ecology. That debate is subtle and potentially
unresolvable. Only goal of this paper is to show that implications
of the lack of invariance of non-informative priors are of practical
significance to wildlife managers.

2. POPULATION VIABILITY ANALYSIS (PVA)
FOR SAN JOAQUIN KIT FOX

Let us consider the San Joaquin kit fox data set originally analyzed

by Dennis and Otten (2000). This kit fox population inhabits
a study area of size 135 km2 on the Naval Petroleum Reserves

in California (NPRC). The abundance time-series for the years

1983–1995 was obtained to conduct an extensive population
dynamics study as part of the NPRC Endangered Species and

Cultural Resources Program. The annual abundance estimates

were obtained from capture-recapture histories generated by
trapping adult and yearling foxes each winter between 1983 and

1995. We refer the reader to Dennis and Otten (2000) for further
details on these data and abundance estimation technique.

Dennis and Otten (2000) analyzed these data using the Ricker

model. The deterministic version of the Ricker model can be

written in two different but mathematically equivalent forms. It

may be written in terms of the growth parameter a and density

dependence parameter b as logNt+1 − logNt = a − bNt where
a > 0, b > 0 or in terms of growth parameter a and carrying

capacity parameter K as logNt+1 − logNt = a
(

1− Nt
K

)

where

a > 0,K > 0. We also know that K = a/b and b =

a/K. It is reasonable to expect that the conclusions about the
survival of the San Joaquin kit fox population would remain
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FIGURE 2 | Jeffreys prior for probability of success in a Binomial experiment;

This prior concentrates the probability mass near 0 and 1. It is difficult to justify

this as a prior that would be considered non-informative. Multivariate

extensions of Jeffreys priors can lead to inconsistent estimators and hence

seldom used in practice. For computational convenience, the figures are

density plots of the random numbers generated from the Uniform(0.5,0.5)

distribution, instead of using the analytic expression.

the same whether one uses the (a, b) formulation or the (a,K)
formulation. In statistical jargon, we call this change in the form
of the model “reparameterization” and we will use this term,
instead of the term “different formulation,” in the rest of the
paper. Following Dennis and Otten (2000), we use a stochastic
version of the Ricker model where the parameter a, instead of
being fixed, varies randomly from year to year. Furthermore,
the abundance values are themselves an estimate of the true
abundances and hence we consider the sampling variability in
the model as well. The variances for the abundance estimates
were nearly proportional to the abundance estimates and hence
the Poisson sampling distribution makes reasonable sense. The
full model can be written as a state-space model as follows. In
the following, Nt denotes the true abundance, Yt denotes the
estimated abundance and Xt = logNt .

We call the following form of the model the
(a, b) parameterization.

• Process model: Xt+1|Xt ∼ Normal(Xt + a− b ∗ exp(Xt), σ
2)

• Observation model: Yt|Xt ∼ Poisson(exp(Xt))

One can write this model in an alternative form that we call the
(a,K) parameterization.

• Process model: Xt+1|Xt ∼ Normal(Xt + a
(

1−
exp(Xt)

K

)

, σ 2)

where K is the carrying capacity.
• Observation model: Yt|Xt ∼ Poisson(exp(Xt))

These two models are mathematically identical to each other.
Our goal is to fit these models to the observed data and conduct

population viability analysis using the population prediction
intervals (PPIs) (Saether et al., 2000). To compute the one sided
PPIs, that is usually of interest to managers, we predict the future
values of the time series and connect the lower 10% values for
each year to get a curve, as a function of time, indicating the lower
envelope to the future population sizes. This lower envelope helps
guide the management decisions. Common sense dictates that
because the data are the same and the models are mathematically
equivalent to each other, the PPIs computed under the two
parameterizations should also be identical to each other.

We use Bayesian inference using non-informative priors to
compute PPIs under these two forms. For Bayesian inference, we
use the following non-informative priors for the parameters in
the respective parameterization.

• Priors for the (a, b) parameterization: a ∼ LN(0, 10), b ∼

U(0, 1), σ 2 ∼ LogNormal(0, 10)
• Priors for the (a,K) parameterization: a ∼ LN(0, 10),K ∼

Gamma(100, 100), σ 2 ∼ LogNormal(0, 10)

These are some of the commonly used distributions for
representing non-information on the appropriate ranges of the
parameters (e.g., Kery and Schaub, 2011). Although note that
there is no general agreement on what is a non-informative
prior distribution. A reader who wants to use different non-
informative priors can easily repeat the experiment by modifying
the R code (see link in the data availability statement)
appropriately. The qualitative conclusions will remain the same.
For comparison, we use the data cloning algorithm (Lele et al.,
2007, 2010) to compute the maximum likelihood estimators
(MLE) based frequentist predictions to obtain PPIs under these
two parameterizations. The analysis was conducted using the
package “dclone” (Solymos, 2010; R Development Core Team,
2011), that is based on commonly used JAGS software (Plummer,
2003), within the R software. The data and the R program
to conduct this analysis are available in the link provided in
the data availability statement. Both Bayesian analysis and data
cloning based maximum likelihood analysis are based on the

Markov Chain Monte Carlo (MCMC) algorithms. Convergence
diagnostics were based on the Gelman-Rubin Rhat statistics and

the trace plots. For all cases, the Rhat statistics was very close
to 1 and the trace plots showed good mixing of the chains (see

link in the data availability statement). The resultant parameter
estimates are given in the table below. To make the comparison

easy to interpret, we report the estimates for (a,K, σ ) under the
two parameterizations.

Notice that (Table 1) the Bayesian parameter estimates for the

two parameterizations, especially the estimates of the carrying

capacity K, are quite a bit different. On the other hand, the

data cloned maximum likelihood estimates (MLE) are nearly
identical to each other under both parameterizations, as they

should be. The small differences are due to theMonte Carlo error.
In Figure 3, we show the PPIs obtained under the likelihood and
the non-informative Bayesian approaches.

One can make two important observations:

1. The PPIs obtained under the (a, b) parameterization and
the PPIs obtained under the (a,K) parameterization, under
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TABLE 1 | Parameter estimates for the kit fox data using different

parameterizations and non-informative priors and maximum likelihood.

Parameter Bayes (a,b) Bayes (a,K) MLE (a,b) MLE (a,K)

a 0.7542 0.4812 0.7404 0.7322

K 159.6425 141.39 160.1643 159.7164

σ 0.4916 0.5053 0.4360 0.4358

purportedly non-informative priors, are quite different.
Depending on which parameterization the researcher happens
to use, the scientific conclusions could be quite different.
For the non-informative Bayesian analysis, instead of the
Gamma distribution, we also used a uniform distribution
prior for the carrying capacity parameter. The results were
not only different from these but also very sensitive to
the choice of the upper bound of the uniform distribution.
This is at least disturbing, if not totally unacceptable. As
we said earlier, analyzing the same data with the same
model should lead to the same conclusions. However, non-
informative Bayesian analysis does not satisfy this common
sense requirement.

2. The MLE based PPIs are quite different than the non-
informative prior based PPI. Contrary to what is commonly
claimed, the non-informative priors do not lead to inferences
that are similar to the likelihood inferences.

3. OCCUPANCY MODELS AND DECLINE
OF AMPHIBIANS

One of the central tasks that applied ecologists are entrusted with
is monitoring existing populations. These populationmonitoring
data are the inputs to many further ecological analyses. We
consider the following simple model that is commonly used in
analyzing occupancy data with replicate visits (MacKenzie et al.,
2002). We denote probability of occupancy by ψ and probability
of detection, given that the site is occupied, by p. For simplicity
(and, to emphasize that these results happen even for simple
models), we assume that these do not depend on covariates. We
assume that there are n sites and each site is visited k times.
Other assumptions about close population and independence
of the surveys are similar to the ones described in MacKenzie
et al. (2002). In the following, Yi indicates the true state of the
ith location, occupied (1) or unoccupied (0). This is a latent, or
unobservable, variable. Observations are denoted by Oij. These
are either 0 or 1, depending on the observed status of the location
at the time of jth visit to the ith location. These can be different
from the true state Yi because of detection error. The replicate
visit model can be written as follows.

• Hierarchy 1: Yi ∼ Bernoulli(ψ) for i = 1, 2, ..., n
• Hierarchy 2: Oij|Yi = 1 ∼ Bernoulli(p) where j = 1, 2, ..., k

We assume that if Yi = 0, then Oij = 0 with probability 1 for
j = 1, 2, ..., k. That is, there are no false detections. This model
can also be written in terms of logit parameters as follows:

FIGURE 3 | Lower 10% Population Prediction Intervals (PPI) for the kit fox

data using non-informative Bayesian analysis under two different

parameterizations and the maximum likelihood analysis. Notice that

non-informative Bayesian analysis does not approximate the maximum

likelihood analysis and depends on the specific parameterization.

• Hierarchy 1: Yi ∼ Bernoulli(
exp(β)

1+exp(β)
) for i = 1, 2, ..., n where

β = log(ψ/(1− ψ))

• Hierarchy 2: Oij|Yi = 1 ∼ Bernoulli(
exp(δ)

1+exp(δ)
) for i = 1, 2, ..., n

where δ = log(p/(1− p))

The second parameterization is commonly used when there are
covariates and the logit link is used to model the dependence
of the occupancy and detection probabilities on the covariates.

Notice that p =
exp(δ)

1+exp(δ)
and ψ =

exp(β)
1+exp(β)

. If there are

covariates that affect the occupancy probability, the familiar

Logistic regression corresponds to ψ(Xi) =
exp(β0+β1Xi)

1+exp(β0+β1Xi)
.

We use the following non-informative priors for the
two parameterizations.

• The (ψ , p) parameterization: ψ ∼ Uniform(0, 1) and p ∼

Uniform(0, 1)
• The (β , δ) parameterization: β ∼ N(0, 1000) and δ ∼

N(0, 1000)

These are commonly used non-informative priors on the
respective scales (e.g., Kery and Schaub, 2011). One of the
important goals of occupancy studies is to compute the
probability that a site is, in fact, occupied when it is observed
to be unoccupied on all visits. This is different than ψ . To
compute this, we need to compute the probability that a site
that is observed to be unoccupied is, in fact, occupied. We can
compute it by using standard conditional probability arguments

as: P(Yi = 1|Oij = 0, j = 1, 2, .., k) =
(1−p)kψ

(1−p)kψ+(1−ψ)
.
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TABLE 2 | Simulation results for n = 30 and k = 2.

p = 0.3,ψ = 0.3 p = 0.8,ψ = 0.3 p = 0.3,ψ = 0.8

Prob Logit Prob Logit Prob Logit

p 0.3079 0.1864 0.7394 0.7855 0.3648 0.2950

(0.3295) (0.2391) (0.733) (0.7725) (0.3865) (0.3051)

ψ 0.4168 0.7786 0.3438 0.3240 0.6904 0.9174

(0.4085) (0.6865) (0.3356) (0.3297) (0.6696) (0.8666)

Occupancy 0.2535 0.7054 0.0324 0.0196 0.4581 0.8567

(0.2574) (0.5919) (0.04142) (0.0399) (0.4537) (0.7739)

Parameter estimates as well as predicted probability under probability scale and Logit

scale are quite different. Numbers in the parentheses are the standard errors.

We first present a simulation study where we show the
differences in the non-informative Bayesian inferences between
the two parameterizations. The R program used to conduct these
simulations is available in the link provided in the data availability
statement. We present the simulation results for the case of 30
sites and two visits to each site. We consider three different
combinations of probability of detection and probability of
occupancy; both detection and occupancy small, occupancy large
but detection small and occupancy small and detection large.

Table 2 shows that the Bayesian inferences about point
estimates of the probability of occupancy and detection and
more importantly about the probability that a site is, in fact,
occupied when it is observed to be unoccupied on both
visits (denoted by “occupancy” in the table for brevity) are
dependent on the parameterization. This has significant practical
implications: The total occupancy rate (defined explicitly in
the next paragraph), that is often needed by the managers,
depends on P(Yi = 1|Oij = 0, j = 1, 2, .., k), will be quite
different depending on which parameterization is used. The
biases observed here, although somewhat reduced, persisted as
the sample size was increased to 50 and 100 but with only
two visits per site. Notice also that variation under probability
scale and logit scale are quite different. For more detailed
simulations on the effect of prior distributions on the parameter
estimation (but not the prediction) when covariates are involved,
see Northrup and Gerber (2018) and comments that follow
the paper.

How does this work out in real life situation? Let us
reanalyze the data presented in MacKenzie et al. (2002). We
consider a subset of the occupancy data for American Toad
(Bufo americanus) where we only consider the first three visits.
The data and the R program for this analysis are provided
in the link provided in the data availability statement. As
in the previous example, we conducted standard diagnostic
tests such as the value of Gelman-Rubin statistics and trace
plots to judge the convergence of the MCMC algorithm. In
all case, we had excellent convergence. There are 27 sites
that have at least three visits. Number of sites that were
observed to be occupied at least once during the three visits
was 10. Hence, the raw occupancy rate, the proportion of
sites occupied at least once in three visits, was 0.37. We

TABLE 3 | Parameter estimates for the American Toad occupancy data using

non-informative Bayesian under different parameterization.

Parameter Bayes probability Bayes Logit

p 0.3245 0.2314

ψ 0.5770 0.8183

P(Yi = 1|Oij = 0, j = 1, 2, 3) 0.2960 0.6715

Total occupancy 0.5568 0.7932

fit the constant occupancy and constant detection probability
model using the two different parameterizations described
above. We report, in Table 3, the Bayesian point estimates
of: Probability of detection (p), probability of occupancy (ψ),
probability of occupancy when the site was never observed to
be occupied during the three visits, namely, P(Yi = 1|Oij =

0, j = 1, 2, .., k) under two different parameterizations. The
total occupancy rate is computed by adding the number of
sites that were observed to be occupied at least once during
the surveys (these are the sites that are definitely occupied) to
the probability of occupancy for those sites that were never
observed to be occupied during the surveys (these sites might
have been occupied but were not observed to have been
occupied due to detection error), namely P(Yi = 1|Oij =

0, j = 1, 2, .., k) and dividing the number by the total
number of sites. Total occupancy rate is often used to make
management decisions.

The differences in the two analyses are striking. According to
one analysis, we will declare an (observed to be) unoccupied site
to have probability of being occupied as 0.296 where as the other
analysis it is 0.672, more than double the first analysis. Given
the data, after adjusting for detection error, we will declare the
study area to have occupancy rate to be 0.56 under one analysis
but under the other analysis, we will declare it to be 0.79. Both
of these Bayesian estimates also differ from the ML estimate
of 0.55 (This is slightly different than the one reported, 0.49, in
MacKenzie et al., 2002 because, unlike the original analysis, we
have considered a subset of sites that were visited exactly three
times for ease of computation). The ML estimate is close to the
Bayesian estimate with a flat prior on the probability scale but not
to the one obtained by non-informative prior on the Logit scale.

In Figure 4, we show the posterior distributions for the total
occupancy rate under the two parameterizations.

The difference between the two posterior distributions is
shocking. Such posterior distributions form the basis for deciding
the status of the species. It is obvious that the decisions based on
these two posterior distributions are likely to be very different.
Now imagine facing a lawyer in the court of law or a politician
who is challenging the results of the wildlife manager who is
testifying that the occupancy rates are too low (or, too high for
invasive species). All they have to do, while still claiming to do
a legitimate non-informative analysis, is use a parameterization
that gives different results to raise the doubt in the minds of
the jurors or the senators on the committee. This is not a
desirable situation.
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FIGURE 4 | Posterior predictive distributions for the occupancy rates of

American Toad under different parameterizations: The logit scale leads to a

distribution that is highly skewed toward probability of occupancy close to 1.

Probability of occupancy often depends on habitat covariates and is modeled

with Logistic regression. This figure indicates that we might be biasing the

inferences about probability of occupancy under the non-informative Bayesian

analysis.

4. UNINTENDED CONSEQUENCES OF
OBJECTIVE PRIORS

Scientific and statistical inference is not limited to inference
about the parameters of the generating mechanism as it is
formulated. Inference also extends to inference on functions of
the parameters, including predictions. So far, we have studied in
concrete terms the consequences of the lack of parameterization
invariance in important ecological problems at commonly
observed sample sizes, especially in wildlife management. These
consequences, of course, vanish as the information in the data
increases. Unfortunately, whether or not the observed sample
size is large depends on the complexity of the model. In this
section, we provide general arguments against subjective and
objective priors in scientific inference in general.

Consequence 1: All subjective Bayesian inferences can be
masqueraded as objective (flat prior) Bayesian inferences.

This result is simply a converse of Fisher’s result that all flat
priors on one scale are not flat on any other scale. Let Y be a
random variable such that Y ∼ f (.; θ). Let θ ⊂ 2 be continuous
and 2 be a compact subset of the real line. Let π(θ) denote the
prior distribution. A basic probability result on transformation
(e.g., Casella and Berger, 2002) is the following: If θ ∼ π(θ), then
the probability density function of g(θ), a one-one, differentiable

transformation of θ is given by π(g−1(θ))|
dg−1(θ)

dθ
|.

Thus, if θ has uniform distribution on 2, any one-one,
differentiable transformation of it has a density function that is

proportional to |
dg−1(θ)

dθ
| which is not a uniform distribution.

This is the basis of Fisher’s criticism of the flat priors: What

is “non-informative” on one scale is “informative” on any
transformed scale.

The converse of the result, not noted in the literature to
the best of our knowledge, is equally devastating. Suppose
a researcher has a subjective prior in mind, say π(θ) that
is not a uniform distribution on 2. Let G(θ) denote the
cumulative distribution function corresponding to this density.
The researcher may have this particular prior in mind because
he truly believes it but he realizes that he may face the criticism
of being biased with an agenda to prove. To avoid the criticism,
he can easily rewrite his model in terms of ϕ = G−1(θ). This
transformation is also known as the probability transform and is
used to generate random numbers from univariate, continuous
random variables (Gentle, 2004). It is well known that ϕ has a
Uniform distribution on (0, 1). When presenting the results of
his analysis, the researcher simply presents his model in terms of
ϕ and a Uniform prior on (0, 1). Many Bayesian analysts would
consider this as an “objective” Bayesian analysis that is not tainted
by subjective priors and that it has “let the data speak.” This is
patently a false statement: The researcher started with a subjective
prior but was able to masquerade it as an “objective” analysis.

Consequence 2: Induced priors on functions of parameters are
not flat, thus leading to cryptic biases in scientific inference.

Scientific inference is usually not limited to the natural
parameters of the generating mechanism but may be based on
functions of parameters. Often these functions of the natural
parameters are really the parameters of scientific interest. For
example, in the PVA example that we studied, the natural
parameters of the Ricker model were (a, b) or (a,K). But
the analysis was not limited to conducting inference about
these parameters alone. We are interested in computing the
probability of extinction or the time to extinction or the PPI (e.g.,
Dennis et al., 1991). These are usually functions of the natural
parameters. Similarly for the occupancy model, the natural
parameters are (ψ , p) but quantities of interest are predicted
probability of occupancy when the site was never observed
to be occupied. As we saw earlier, this is also a function of
the natural parameters. When one specifies a prior distribution
on the natural parameters, it induces a prior distribution on
all transformations of the natural parameters including such
functions of the parameters.

In PVA, one of the quantities of interest is the probability
of (quasi)extinction, that is, the probability that the population
will dip below a threshold. For the stochastic versions of the
continuous time exponential growth models, Dennis et al. (1991)
compute this explicitly. The basic model (for discrete time case)
may be written as: Xt+1|Xt ∼ Normal(Xt + µ, σ 2). Let xe be
the log-threshold population size and x0 be the current log-
population. Let xd = x0−xe. The probability of (quasi)extinction
is given by π(xd,µ, σ

2) = exp(−2µxd/σ
2) for µ > 0. If

µ < 0, the population goes to extinction with certainty and
hence that case is not of interest. In Figure 6, we show the
priors induced on this quantity under different non-informative
priors on µ and σ 2 (without changing the parameterization).
The solid curve corresponds to using µ ∼ logNormal(0, 10) and
σ ∼ logNormal(0, 10) and the dotted curve corresponds to using
µ ∼ Uniform(0, 10) and σ ∼ Uniform(0, 10).
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FIGURE 5 | Induced priors on the quasi extinction probability: Different

non-informative priors on the parameters of a stochastic Exponential growth

model lead to different induced priors on the probability of quasi-extinction.

We are biasing the result even before any data are conducted. The induced

prior on the probability of quasi-extinction, the parameter of interest, is not

uniform. One induced prior (red) is implicitly assuming that probability of

extinction is highly likely to be zero whereas another induced prior (blue)

implicitly assumes the probability of extinction is mostly between 0 to 0.2 or

0.8 to 1 but not much in between.

Let us look at the induced prior distribution for P(Yi =

1|Oij = 0, j = 1, 2, .., k) =
(1−p)kψ

(1−p)kψ+(1−ψ)
, the predicted

occupancy, under different non-informative priors of p andψ for
k = 2. The solid curve in Figure 5 corresponds to the induced
prior on the predictive occupancy using ψ ∼ Uniform(0, 1)
and p ∼ Uniform(0, 1) and the dotted curve corresponds to
using non-informative prior commonly used on the (β , δ) scale as
described previously in the discussion of the occupancy problem,
namely, β ∼ Normal(0, 10) and δ ∼ Normal(0, 10).

It is clear that different versions of the non-informative priors
on the natural parameters induce different priors (and, hence
biases) on the induced parameters that are of scientific interest.
In Lele (2004) and Lele and Allen (2006), it was argued that even
if one can elicit priors from the experts on the natural parameters,
expert may not be aware of, and in fact, may not even agree with
the prior distributions induced by his own priors on the natural
parameters. In a recent paper, Seaman et al. (2012) point out the
same issues but in the context of flat priors, extending Fisher’s
criticism of the flat priors.

There is a hidden danger of using flat priors uncritically.
Unwittingly the researcher might be biasing the conclusion about
the interesting functions of the parameters while falsely claiming
the mantle of “objectivity.” Even when we have flat priors on
the natural parameters, the induced priors on the quantities

FIGURE 6 | Induced priors on the occupancy probability: Different

non-informative priors induce different priors on the parameter of interest,

namely, probability that a site is occupied given that we have not observed it to

be occupied while surveying due to detection error. We are biasing the results

of the survey even before conducting the survey. One induced prior (black) is

implicitly assuming that probability of occupancy is more likely to be zero

whereas another induced prior (red) implicitly assumes the probability of

occupancy is near 0 or 1 but not much in between.

of inferential interest are extremely likely to be biased to one
conclusion or the other.

Consequence 3: The assumption of independent parameters,
although convenient for MCMC calculations, creates
unrealistic priors.

Most ecological models involve multiple parameters with
complex parameter spaces. Because of the interdependencies
between these parameters, the valid parameter values are
dependent on each other. It is usually quite difficult to specify
flat priors or almost flat priors as in priors with large variability
on such non-trivial parameter spaces. Even Jeffreys priors
(e.g., Ronneberg, 2017) that address Fisher’s objection and are
invariant to parameterization, or Bernardo’s reference priors
(e.g., Ronneberg, 2017) are extremely difficult to construct for
multiparameter situations. In practice, most of the Bayesian
analysis for multiparameter models is conducted with priors that
assume that parameters are a priori independent. For example,
in simple Capture-Recapture models, it is often assumed (e.g.,
Parent and Rivot, 2013) that probability of recapture and
population size are independent of each other. Similarly in
regression analysis, it is assumed that the regression parameters
are independent of the each other a priori. In fact, as is clear
from any analysis of Capture-Recapture experiments that the
parameters are intricately related to each other. The assumption
of prior independence of parameters is seldom justified but is
taken as a convenient assumption. Questions one must ask are:
What are the consequences on the distribution of the functions
of parameters that are of real interest? What effect would this
have if we reparameterize the model where new parameters
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are functions of the original parameters? For example, if we
assume (a, b) are independent of each other, it is clear that
(a,K) are bound to be correlated parameters because K, the
carrying capacity, is a function of both a, growth parameter and
b, the density dependence parameter. Is this correlation sensible
a priori?

Ecologists are justifiably skeptical of the assumption that
the data are independent of each other and are well aware
of the consequences of such assumption; the famous pseudo
replication problem in ecology (Hurlbert, 1984). However, they
seem to accept, somewhat uncritically, the assumption of a
priori independence between the parameters. Computational
convenience should not be the driving force behind choosing
prior distributions. Prior distributions have consequences;
sometimes they are intended but most of the times they are
unintended and not understood explicitly.

Consequence 4: Bayesian prediction intervals may not have
correct coverage

Management decisions are based not only on the parameter
estimates but also, and perhaps more importantly, on prediction
of future events. In an important recent paper, Shen et al. (2018)
consider the problem of prediction and predictive densities from
the Classical and Bayesian perspective. They define a predictive
density in a general form as: f P(y) =

∫

f (y; θ)dQ(θ). They
show that such predictive density will lead to correct predictive
coverage provided Q(θ) is a valid confidence distribution that
has correct frequentist coverage properties. As a consequence,
the Bayesian predictive density that uses posterior distribution as
Q(θ), will lead to valid predictive coverage only if the posterior
distribution has correct frequentist properties. Unfortunately,
posterior distributions do not always have, in fact seldom have,
correct frequentist coverage properties unless the information in
the data is substantial. Of course, in that case, there remains no
difference between a Bayesian and a frequentist inference.

Whether information in the data is substantial or not is
not a simple function of the sample size; it also depends on
the complexity of the model. The more complex the model
is, the larger is the sample size required (e.g., Dennis, 2004).
As a consequence, the objective, flat prior based analyses may
not even lead to predictions that are valid. Why should we
expect them to lead to management decisions that are sensible
in practice?

Consequence 5: Reparameterization to facilitate MCMC
convergence may influence scientific inference.

Markov Chain Monte Carlo algorithms have made it feasible
to analyze highly complex, hierarchical models. One of the major
difficulties in the application of the MCMC algorithms is the
convergence of the underlying Markov chain to stationarity.
When the parameters in the model are highly correlated
(also, termed weakly estimable) or if the parameters are non-
identifiable or non-estimable (See Ponciano et al., 2012; Campbell
and Lele, 2014), it is difficult to obtain convergence and good
mixing of the MCMC chains.

To alleviate this problem, one needs to reparameterize the
model so that the parameters are orthogonal or weakly correlated
with each other. Such reparameterization of the model will have
no consequences if the inferences are based on the likelihood
function which is invariant to such reparameterization but,

as shown above, can have serious consequences for a non-
informative Bayesian inference.

As an aside, such orthogonalization of the parameters is
feasible only if the parameters are identifiable. Diagnostics for
non-estimability and non-identifiability of the parameters is
automatic under the data cloning based likelihood estimation
(Lele et al., 2010; Ponciano et al., 2012; Campbell and Lele, 2014),
however such diagnostics is not possible under the Bayesian
approach (Lele, 2010).

5. DISCUSSION

Using different parameterizations of a statistical model
depending on the purpose of the analysis is not uncommon.
For example, in survival analysis the exponential distribution is
written using the hazard function or the mean survival function
depending on the goal of the study. They are simply reciprocals
of each other. Similarly Gamma distribution is often written
in terms of rate and shape parameter or in terms of mean and
variance that is suitable for regression models. Beta regression is
presented in two different forms: regression models for the two
shape parameters or a regression model for the mean keeping
variance parameter constant (Ferrari and Cribari-Neto, 2004).
All these situations present a problem for flat and other non-
informative priors because same data and same model can lead
to different conclusions depending on which parameterization is
used. One can possibly construct similar examples in the Mark-
Capture-Recapture methods where different parameterizations
are commonly used.

Indeed, as the sample size increases, effect of the prior
diminishes and Bayesian and likelihood inferences become
similar. However, in practice, hierarchical models are fairly
complex and involve substantially more parameters than in the
models considered in this paper. Dennis (2004) illustrates that as
number of parameters increases, effects of the choice of a prior
linger even for large samples.

Hierarchical models in ecology tend to be complex and can
easily lead to non-identifiable parameters (Lele et al., 2010;
Ponciano et al., 2012; Campbell and Lele, 2014). If there are non-
identifiable parameters, effect of the prior never vanishes. Owhadi
et al. (2015) explore effect of the priors on Bayesian inferences in a
mathematically rigorous fashion and conclude that the Bayesian
inference is very brittle. Hence, the results presented here are
likely to be far more common in practice than may be imagined.

To summarize, we have shown that non-informative priors
neither “let the data speak” nor does the analysis based on them
correspond, even roughly, to likelihood analysis for the sample
sizes feasible in ecological studies. Non-informative priors add
their own cryptic biases to the scientific conclusions. Just because
the terms objective priors, non-informative priors or objective
Bayesian analysis are used, it does not mean that the analyses are
not subjective. A truly subjective prior based on expert opinion is,
perhaps, preferable to the non-informative priors because in the
former case the subjectivity is clear and well quantified, and, may
even be justified, whereas in the latter the subjectivity is hidden
and not quantified.

Hierarchical models in themselves are extremely useful to
model complex ecological phenomena. The many successes of
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the so called “Bayesian” approach are actually attributable to
sensible uses of hierarchical models for pooling information, e.g
across different studies or resolutions. These success stories have
nothing to do with the use of the Bayesian philosophy or use
of priors.

Many applied ecologists are using the non-informative
Bayesian approach as a panacea to deal with hierarchical models,
erroneously believing that they are presenting objective, unbiased
results and that there are no alternative approaches. Hierarchical
models can be and are analyzed using the likelihood and
frequentist methods. Given the complexity of these models,
the number of parameters involved and the different ways the
same model potentially can be formulated; the resultant analysis,
because of the lack of invariance to parameterization, may
have unstated and unqualified biases. Hence it may be easily
challenged in the legislature and in the court of law.
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