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Environmental DNA (eDNA) is becoming a standard tool in environmental monitoring

that aims to quantify spatiotemporal variation for the measurement and prediction of

ecosystem change. eDNA surveys have complex workflows encompassing multiple

decision-making steps in which uncertainties can accumulate due to field sampling

design, molecular biology lab work, and bioinformatics analyses. We conducted a

quantitative review of studies published prior to December 2017 (n = 431) that had

sampled eDNA from a variety of ecosystems and that had explicitly accounted for

variability and uncertainty associated with eDNA workflows, either in their study design

(e.g., replication) or data analysis (e.g., statistically modeling the spatiotemporal variation).

We recorded differences among research studies in their spatial and temporal study

design, the detected scales of natural variation in the study taxa, and how researchers

measured and addressed the multiple sources of variability and uncertainty associated

with the eDNA workflow. We show that relatively few studies used eDNA to understand

temporal variation in biodiversity compared to spatial variation, and fewer described

how uncertainties were addressed. We recommend increasing the number of temporal

studies and to account for both natural variation and sources of uncertainty, such

as imperfect detection, when undertaking eDNA surveys. Of studies that quantified

spatiotemporal variation, this review identified gaps in the scales over which researchers

have observed these patterns. Increasing the number of long-term and broad-scale

eDNA studies will improve understanding of how useful eDNA is at scales relevant for

monitoring the effects of environmental changes such as climatic shifts or land use

change. Even where sources of spatiotemporal variation and uncertainty were accounted

for, the effort in quantifying this variation differed among the different steps in the eDNA

process, from field, to laboratory and bioinformatics procedures, depending on the type

of community studied (micro- vs. macro-organism communities). We recommend more

consistent experimental and modeling methods, accounting for spatiotemporal variation,

and uncertainty in eDNA collection, and analysis, and incorporation of prior knowledge

of sources of variability via Bayesian modeling approaches to account for uncertainties

such as imperfect detection, to generate robust diversity estimates and increase the

comparability of eDNA datasets for environmental monitoring across space and time.

Keywords: bioinformatics, community, eDNA, experimental design, single taxon, spatiotemporal scale,

uncertainty, variability
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INTRODUCTION

Understanding spatial and temporal community patterns and
processes is fundamental for disentangling the processes
underpinning current and past biodiversity (Levin, 1992;
Eme et al., 2015), and for predicting future biodiversity
patterns (Sandel and Smith, 2009); it is thus fundamental
for conservation and environmental management (Levin,
1992). However, because organisms respond differently to
processes operating at a variety of spatial and temporal scales,
quantifying spatiotemporal patterns and making generalizations
about the causal processes remains challenging (Levin, 1992).
Our ability to fully and accurately estimate sources of
uncertainty in biodiversity measurements is key to advancing
our understanding of these spatiotemporal scales of variation.
Sources of variation in spatiotemporal data may be due to
natural variation in biodiversity through space and time, but
may also be due to errors introduced during field sampling
and other steps in the biodiversity estimation process (Chen
et al., 2013). The advent of new molecular tools, accessible
at an increasingly reasonable price, has facilitated the use of
environmental DNA (eDNA) to quantify biodiversity patterns
(Chave, 2013). This has been especially useful for improving
our understanding of spatiotemporal variation in environmental
microbial communities (Shade et al., 2018) since prior methods
to classify taxa based on traits such as morphology, frequently
group taxa that are unrelated by descent (Kysela et al.,
2016). For molecular biodiversity assessments, taxa are instead
normally identified by the analysis of short, but taxonomically
informative, DNA regions (Taberlet et al., 2018). In comparison
to traditional approaches in community ecology, DNA surveys
can allow detection of multiple taxa, including cryptic species,
simultaneously. Environmental DNA (or eDNA) that is excreted
or shed from live and dead organisms can be extracted from
environmental samples (such as soil, water, air, and feces) without
the need to isolate or even sight a specific taxon (Taberlet et al.,
2012) with the potential to improve detection of nocturnal,
rare and transient species, as well as species dwelling in less
visible habitats, such as underground. Consequently, eDNA
methods can be less environmentally damaging (Rees et al., 2014)
and more accurate than field sampling (Janosik and Johnston,
2015). Particularly following the development of next-generation
sequencing, eDNA methods can also be cheaper than some
traditional methods and are thus they are increasingly considered
as viable for the monitoring of bothmicro- andmacro-organisms
(Holdaway et al., 2017; Taberlet et al., 2018). While eDNA
methods have been applied to study microbial communities for
over two decades (Ranjard et al., 2000) leading to well established
methods and a wide range of studies, molecular research to
investigate macro-organisms is still in its infancy, with ongoing
method development and optimisation.

Despite growing enthusiasm among the scientific community

for biodiversity analysis using eDNA methods, species
detection from eDNA studies is imperfect (Schmidt et al.,

2013). Environmental DNA surveys have complex workflows

encompassing multiple decision-making steps over which errors
can accumulate (Table 1). Detection errors can occur due to:

(1) the incorrect detection of target taxa when they are absent
(false positives) and (2) failing to detect the target taxa when
they are present (false negatives; Darling and Mahon, 2011).
These detection problems can be attributed to either method or
process errors. DNA-based method errors include all the errors
resulting from the multiple steps used in performing the eDNA
survey protocol (Zinger et al., 2019). This encompasses field
sampling, laboratory sample processing and bioinformatics steps.
DNA-based process errors comprise all the errors due to natural
variability in species’ DNA concentration in space and time
(Darling and Mahon, 2011). For instance, a site with a higher
concentration of DNA for the species α at time t should have
a higher probability of detection than another site, or than the
same site at time t + 1 if the DNA concentration decreases over
time. Consequently, the design and use of appropriate eDNA
surveys are highly context-dependent and so the development
of a standard protocol that can account for these uncertainties
(i.e., that measures the error due to the study design) for all
taxa and all conditions is challenging (Taberlet et al., 2018).
Nevertheless, some recommendations for reducing errors and
increasing research reproducibility have been made (Dickie et al.,
2018; Zinger et al., 2019). Improvement in our understanding
of how these sources of error vary over time and space is
necessary to avoid poor estimates of diversity (Carini et al.,
2017) and to correctly interpret ecosystem functioning. If not
properly accounted for, these sources of uncertainty can bias our
understanding of biodiversity patterns and potentially misinform
critical management and conservation decisions (Darling and
Mahon, 2011; Chen et al., 2013; Furlan et al., 2016). For example,
in invasive species surveillance and monitoring, the risk of false
positives is a significant concern for managers and stakeholders
who are concerned with minimizing both expenditure and any
inconvenience caused by having to implement unnecessary pest
control actions (Darling and Mahon, 2011).

In this systematic review, we conduct a gap analysis of
the literature to quantify scales of natural spatiotemporal
variation detected by eDNA studies and identify the uncertainties
introduced by field sampling design, laboratory choices and
bioinformatics procedures that may impact the accuracy and
reproducibility of present-day diversity assessments conducted
using eDNA. We reviewed empirical research that used eDNA
sampled from natural environments to assess (1) the disparity
among these studies due to differences in their spatial and
temporal scales of observation and (2) if, and how, researchers
have measured and addressed the multiple sources of uncertainty
associated with eDNA sampling, laboratory processing and
bioinformatics. Our approach was to follow a quantitative review
methodology (Pickering and Byrne, 2014) to detect trends and
gaps in how uncertainty and variability are detected and dealt
with in eDNA studies. Our review methods were designed
to capture the variety of research methods that have been
employed in eDNA studies (i) on macro-organisms (length
body ≥ 500µm) and micro-organisms (length body < 500µm)
(Martiny et al., 2006), (ii) across levels of organization, from
a single taxon to multi-taxon communities, and (iii) across
ecosystems, from above- and below-ground terrestrial systems,
to both freshwater and marine aquatic ecosystems. Our aim
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TABLE 1 | Steps and decisions required as part of a typical eDNA workflow, and the potential biases or uncertainties introduced at each of these steps.

Decisions required at each step of the

eDNA workflow

Uncertainty or biases introduced Relevant references

Sample collection

Number of samples to collect

Volume of samples to collect

Spatial distribution of samples

Temporal distribution of samples

False negative detection of taxa due to:

• Insufficient number or volume of samples to capture the true

diversity

• Spatial or temporal design insufficient to capture true diversity

False positive detection of taxa due to:

• Cross contamination between samples during collection

Cantera et al., 2019

Davis A. J. et al., 2018

Dickie et al., 2018

Goldberg et al., 2016

Zinger et al., 2019

Molecular laboratory processes

Storage of samples after collection

Sample pre-processing

eDNA extraction method

PCR protocol to use (primer selection,

reagents, cycling conditions)

DNA sequencing methods

qPCR methods

False negative detection of taxa due to:

• Improper storage of samples leading to DNA degradation

• DNA extraction biases

• PCR inhibitors present

• Unsuitable primers or PCR protocol

False positive detection of taxa due to:

• Contamination, especially cross-contamination between

samples

• Relic DNA present

• Index/barcode jumping

Misleading abundance values due to:

• DNA extraction biases

• Preferential amplification of DNA from some organisms

over others

Clarke et al., 2014

Davis N. M. et al., 2018

Dopheide et al., 2019

Goldberg et al., 2016

Hermans et al., 2018

Schnell et al., 2015

Taberlet et al., 2018

Zinger et al., 2019

Bioinformatic processes

Quality control thresholds

Algorithms for chimera removal and sequence

clustering

Databases and thresholds to use for

taxonomic assignments

False negatives/lower biodiversity detection due to:

• Excessive quality filtering leads to too few sequences remaining

• Sequence clustering threshold inappropriate/too high

• Inadequate coverage of target taxa in databases

False positives/inflated biodiversity detection due to:

• Insufficient quality filtering steps passing too many reads with

sequencing errors

• Insufficient chimera removal

• Misclassification of reads, possible misclassification in database

Brown et al., 2015

Coissac et al., 2012

Nearing et al., 2018

Zinger et al., 2019

for identifying trends and existing knowledge gaps in the
understanding of spatiotemporal variability and uncertainty in
eDNA research was to provide clear recommendations as to
how researchers may adapt future study designs to best account
for spatiotemporal variation and uncertainty arising from the
collection and analysis of eDNA data.

MATERIALS AND METHODS

Systematic, quantitative reviews (i) identify the research question,
(ii) identify and test appropriate keywords by searching
databases, (iii) review and consistently record data from papers
identified in the searches, and (iv) summarize and record
patterns emerging from the resultant data (Pickering and Byrne,
2014). Following this approach, our research question, “How
are variability and uncertainty measured and accounted for in
eDNA studies?”, was answered by conducting four different
topic searches with ISI Web of Science Core Collection in
November 2017 to extract four types of studies from the
literature (Table 2): (topic 1) ecological studies using eDNA,
(topic 2) metagenomics studies applied in ecology, (topic 3)
studies of spatiotemporal variation and (topic 4) studies on
the quantification of uncertainty in the eDNA process. We

also included articles cited by six papers that have reviewed
eDNA methodologies (Jansson and Tas, 2014; Boetius et al.,
2015; Cavicchioli, 2015; Zeglin, 2015; Battin et al., 2016;
Fierer, 2017). We obtained in total an initial list of 2,589

articles, from which we excluded all studies without either any
spatial replication or temporal replication, and those without
measurements of variability detailed either in the main text or

any supplementary material, i.e., those studies that did not take
replicate measurements and therefore, spatiotemporal variation
and uncertainties cannot be calculated (point samples). As this
review focused on the use of eDNA in environmental monitoring,
we also excluded studies that were reviews, meta-analyses,
laboratory-based experiments, within-organism (microbiome)
studies, relic DNA studies focusing on the composition of historic
communities, not on eDNA, and all studies where samples were
collected from living or artificial substrates from the initial list.
A number of papers (n= 31) conducted independent analyses to
address questions at multiple spatiotemporal scales [e.g., (Chen
et al., 2014) used differing approaches to assess spatial variation
occurring across small (i.e., cm) vs. large (i.e., km) spatial scales]
and were therefore entered as multiple studies in the final results
database. This resulted a final list of 399 papers, which provided
data for 431 studies. While this list contains the studies that

Frontiers in Ecology and Evolution | www.frontiersin.org 3 May 2020 | Volume 8 | Article 135

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Mathieu et al. Variability and Uncertainty From eDNA

TABLE 2 | Search strategies used for the selection of the reviewed studies.

Topic Targeted studies Keywords searched in web of science Additional articles from

recent review papers

1 Ecological studies using eDNA (eDNA OR “environmental DNA” OR metabarcoding OR barcoding)

AND (variation OR scale OR gradient OR change OR evolution OR dynamic)

AND (structure OR distribution OR pattern OR temporal OR spatial OR biogeography

OR macroecology OR geographic)

NOT (gut)

None

2 Metagenomic studies in applied ecology (metagenomic)

AND (ecology)

AND (variation OR scale OR gradient OR change OR evolution OR dynamic)

AND (structure OR distribution OR pattern OR temporal OR spatial OR biogeography

OR macroecology OR geographic)

NOT (gut)

None

3 Studies of spatial and temporal variation in

applied ecology

(“microbial ecology” OR “environmental ecology”)

AND (spatial OR “temporal variation” OR “temporal scale” OR scale OR temporal OR

dynamic)

AND (pattern OR distribution OR temporal OR spatial OR biogeography OR

macroecology OR geographic OR composition)

NOT (gut) NOT (virus)

Fierer, 2017,

Jansson and Tas, 2014

Boetius et al., 2015,

Battin et al., 2016,

Cavicchioli, 2015; Zeglin,

2015

4 Studies on improving eDNA methods (eDNA OR “environmental DNA” OR metabarcoding OR barcoding)

AND: (“Error detection” OR “uncertainty source” OR “eDNA relic” OR “uncertainty

level” OR “imperfect sensitivity” OR “probability of detection” OR detection OR

uncertainty OR “source of variation” OR “sources of variation” OR

“experimental variability”)

None

met our search criteria (Table 2) and conditions outlined above,
it is inevitable that some eDNA research was not captured, for
example due to them not including any of the keywords we used
in our search. Every article was read to a level sufficient to extract
all required data by the primary author (CM) with consultation
with other co-authors on specific methods or terminology, where
required. Data gathered from each article related to (1) the
spatial and temporal design of the study and (2) how sources
of uncertainty were accounted for. All articles included in the
quantitative review are contained in Table S1 and the raw data
extracted are included in Table S2.

We recorded the “type of variation” (spatial, temporal,
both, or none) and size of the organisms studied (micro-,
macroscopic, or both). Definition of the “type of variation”
was based on the results presented. For example, if a site was
sampled more than once over time, but the results presented
only spatial variation in the data, i.e., temporal variation was
averaged for each spatial replicate, or was otherwise ignored in
the analysis, it was scored as a spatial study. All “space-for-
time” a.k.a. chronosequence studies, i.e., studies using spatial
samples to infer temporal variation, were considered to be spatial.
For instance, three successional vegetation stages (grassland,
mosaic, and forest) of green alder (Alnus viridis) encroachment
were sampled by Schwob et al. (2017) at a single time to
study the temporal dynamics of microbial communities in
subalpine soils. Other attributes extracted were the type of
ecosystem (terrestrial or aquatic) and the taxonomic level
studied, namely “community” (studying more than 10 taxa),
“group of taxa” (studying fewer or 10 taxa) or a single taxon
(studying one unique taxon or unique species). The category
“group of taxa” represents a selection of taxa based on author

defined similarities in their morphology, life history traits, or
conservation status.

To study spatiotemporal design more specifically, studies
without either temporal or spatial replication, i.e., studies
simulating method uncertainties (n = 17), were excluded,
resulting in a subset of 414 studies out of the original 431.
From those articles remaining, the type of eDNA outputs used
were extracted, i.e., if researchers conducted taxon based analysis
[e.g., using a single qPCR assay as in (Erickson et al., 2016)],
community-based analysis [e.g., using “metabarcoding” as in
Dulias et al. (2017)] or assessed the diversity of a broader
array of genes [e.g., the analysis of functional gene or shotgun
metagenomics data as in Dopheide et al. (2015) and Jeffries
et al. (2016), respectively]. We also extracted both the spatial
and temporal extents of studies. The spatial extent was defined
as an area polygon (in km2) encompassing all samples collected
in the horizontal plane. For example, for a publication studying
fish along a depth gradient, the study extent was defined as the
maximal surface delimited by all the sampling sites (horizontal
surface); we did not take the depth (vertical plane) gradient into
account. If the sampling sites were not clearly identified, we used
the area or region given in the paper. If the area was not named,
but a map or satellite image provided, we used appropriate
tools (e.g., Google Earth Pro (https://www.google.com/earth) and
QGIS QGIS Development Team (2018) to identify and measure
the spatial extent. The temporal extent corresponded to the
duration of the study, i.e., the amount of time that elapsed
between the first and last temporal replicates.

The type of diversity used to describe a community was
also extracted. Three categories were defined based on the
number of taxa (taxonomic diversity), the evolutionary history
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(phylogenetic diversity), or the functional traits in a community
(functional diversity). We measured the scales of spatial and
temporal variation in the community, i.e., the distance in space
and/or time of a community when a shift was observed. The
temporal scale of community variations is the time elapsed (in
days) between t0 (initial time) and t1 (time when a community
shift was observed). The spatial variation scale corresponds to
the average distance between places (in km), where a community
shift was observed. For instance, if the authors reported a spatial
change at the site scale, the spatial scale variation here is the
average distance between sites. We used different tools including
the R software environment (R Core Team, 2019), Google Earth
Pro and QGIS to measure this spatial variation when it was not
clearly specified in the text. We also noted when the authors
did not observe any significant spatial or temporal variation
in the community metric (“no change”), or where the nature
of the spatial or temporal variation was not clearly significant
(“not clear”) or where there were “mixed effects”, e.g., dependent
on the taxon considered. In some other cases, authors noted
the presence of significant spatial and/ or temporal variation
in communities without providing the required information to
quantify it (“unquantifiable changes”).

To study if and how researchers measured and explicitly
addressed the multiple sources of uncertainty associated with
eDNA sampling in their data analysis and interpretation,
we considered only those studies accounting for sources of
uncertainty (164 studies out of the original 431), i.e., (a) the
studies measuring uncertainty by experimentation, modeling or
statistical analysis (quantification) and (b) the studies comparing
eDNA survey results with previous knowledge or traditional
surveys (comparison). We extracted (1) the type of errors studied
(false negative, false positive, or both), (2) their sources (error
process or method), and (3) the workflow step at which the
errors were studied (sample collection, molecular laboratory
work, or bioinformatics processing). For the studies quantifying
sources of uncertainty, we categorized the type of uncertainty
measured following the workflow steps outlined in Table 1.
More details about each category are given in Table S3. If
several sources of uncertainties were quantified in the same
study, the study was counted more than once. For instance, if
a study measured sources of uncertainty due to DNA temporal
variability and storage conditions, then this study was counted
twice. We also extracted the suggestions given by authors where
possible (if there were none, we recorded “no clear suggestion”)
and categorized them by their degree of generalization, i.e.,
“weakly” (case-specific suggestions), “moderately” (suggestions
only applicable to a large group of taxa) and “strongly”
generalizable (suggestions that are potentially applicable to all
studies). In the count of the studies providing suggestions, we
counted any study providing at least one suggestion in any of
these categories. In addition, based on the highly generalizable
suggestions made by articles quantifying eDNA uncertainty, for
all the studies (431 articles), we extracted four parameters for
communities to see how these main suggestions were applied to
decrease uncertainty; namely (1) the number of studies using an
occupancy model (yes, no, or other), (2) the number of genes
and primer sets used, (3) the sampling intensity in relation to

the study extent (temporal and spatial), and (4) the number
of replicates used during the lab work process (PCR and DNA
extraction replicates). Non-parametric tests were used to test for
significant differences among taxonomic levels and communities
studied (macro- and micro-organisms) in terms of the number
of genes, primer sets, and number of replicates used (Wilcoxon
test and Kruskal-Wallis test with a Bonferroni correction). All
analyses were conducted and figures generated within the R
environment for statistical computing (R Core Team, 2019)
implementing the tidyverse, dplyr, ggplot, ggalt, and gridExtra
packages. Since molecular methods have changed radically over
the years, substantially increasing the number of temporal and
spatial samples that can be feasibly collected and analyzed,
we not only undertook our analyses on the full dataset, but
also on a datasets restricted only to next-generation sequencing
and qPCR studies to ensure that that any observations and
recommendations made for historical data are still accurate for
interpretations of modern day methods; these additional analyses
made little difference to the pattern of results and so are presented
in Figures S1–S3.

RESULTS

The 431 research studies that accounted for spatiotemporal
variation and/ or uncertainty in their eDNA workflow in some
way spanned 21 years. The number of publications using
eDNA increased over time (Figure 1), but remain dominated by
microbial research (66%), compared to studies focusing on larger
organisms (34%). Aquatic ecosystems (marine and freshwater)
were the most frequently studied (76%), compared to terrestrial
ecosystems (23%). Only 1% of studies sampled both ecosystem
types. After 2010, the selected literature consisted mostly of
studies at the community level (Figure 1B); most community
analysis used high throughput DNA sequencing, whereas most
single taxon studies used qPCR or targeted multiple genes to
provide information the abundance of multiple taxa. Taxonomic-
based investigations were used most frequently (92%); only
a few studies used a metagenomic approach (3%). Where
diversity patterns were assessed, these community level studies
most often explored taxonomic diversity (92%), with functional
and/or phylogenetic diversity less often reported (Figure 2).
Additionally, most studies reported only one (69%) or two (27%)
types of diversity measures.

Scales of Spatial and Temporal Variation
Most studies investigated spatial variation (67.8%); papers
focusing only on temporal changes represented 4.2% of the
studies, whereas 27.7% considered both spatial and temporal
variation (Figure 3). Of those studying temporal variation, 68.7%
were short-term studies (a year or less), while medium- (2–5
years) and long-term (>5 years) studies represented 25.4 and
6.0%, respectively. In contrast, spatial variation was studied more
consistently across a range of scales.

A total of 272 articles working at the community level
quantified the scale of variation across space and/or time.
Among these, the majority assessed communities of microscopic
organisms (∼90%). Significant spatial variation was observed
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FIGURE 1 | (A) Spatiotemporal scales and (B) taxonomic levels studied (community, group of taxa, and single taxon) over time using eDNA. “Group of taxa” is defined

as a group of fewer than 10 taxa clustered based on similarities in their morphology, life history traits, or conservation status. Numbers on the histogram bars

represent the number of studies during that year. Black dashed lines show the beginning of eDNA studies on macro-organisms, with the exception of one study

targeting macro-organisms by Bhadury et al. (2006). Black and red lines show the percentage of published papers in all scientific journals from 1996 to 2017 about

micro- (n = 26,535) and macro-organisms (n = 152,288), respectively; data extracted from Web of Sciences using the key words “Microbiology” and “Ecology NOT

Microbiology” respectively.

in both micro- and macroscopic communities (Figure 4, inner
rings). In microscopic communities, significant spatial variation
was observed at small (within 10 km), medium (between 10
and 1,000 km) and large (from 1,000 to 100,000 km) spatial
scales (Figure 4A, outer ring). Macroscopic communities mostly
showed spatial variation at small and medium scales (Figure 4B,
outer ring). Few studies reported no change, unclear, or
unquantifiable changes, or mixed effects depending on the
specific taxa, land-uses, treatments, regions, sites or genes
studied, or mixed effects depending on the laboratory, or
bioinformatic methods, or the type of diversity measured
(Figure 4, intermediate rings).

From the 29% of articles studying temporal changes within
microbial communities, most quantified community changes
occurring over short time scales (within 1 year). A few studies
observed mixed effects depending on taxa, biome, site, or the
gene studied (Figure 4A, intermediate ring). Temporal shifts
in the composition of communities of macro-organisms were
reported only across short timescales (1–6 months) in seven
articles (Figure 4B, intermediate and outer rings).

Identifying Uncertainties Introduced
During the eDNA Workflow
Our research identified 164 studies that explicitly measured

and/ or modeled sources of uncertainty in their eDNA data.
Of these, 50% measured uncertainty by quantification (using

experimentation, modeling or statistical analysis), 42% by

comparison (eDNA survey results vs. previous knowledge or
traditional survey results; such data are easier to obtain for some

groups of macro-organisms) and 8% using both approaches.
The proportions of articles accounting for uncertainty in

each ecosystem type were 44 and 17% for aquatic and
terrestrial ecosystems, and 80% for both. Most studies measured

uncertainty either at the community (41%) or single taxon (38%)
level compared to 21% of studies that focused on a group of taxa

(e.g., bony fish; Clusa et al., 2017). In 45% of the articles, the

type of error measured was not clearly specified. However, 39% of

articles reported examining both false positive and false negative

detections compared to fewer articles which reported examining
false positive (5%) and negative (10%) detections separately.
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Within the sampling phase, both the spatiotemporal
variability of the eDNA and uncertainty introduced by the
experimental design were considered (Figure 5). Publications
studying microbial communities paid more attention to
experimental sampling design, sources of uncertainty due to size
of the samples (volume/area sampled) and the number of field

FIGURE 2 | Percent of reviewed community eDNA spatiotemporal studies that

used different numbers and types of diversity measure (total number of studies

= 293). Single diversity measures recorded were (bottom layer of stacked bar)

taxonomic diversity, (center) phylogenetic and (top) functional diversity;

combinations of two diversity measures studies included (bottom) taxonomic

and phylogenetic diversity, (center) taxonomic and functional diversity and (top)

functional and phylogenetic diversity. A similar plot, excluding studies that

included no high-throughput DNA sequencing or qPCR data is available in

Figure S1.

replicates. In contrast, papers studying communities of macro-
organisms were focused on the detection of spatiotemporal
variability related to sample collection. Sources of uncertainty
due to the effect of pooling samples and the presence of positive
controls were tested only for communities of macro-organisms
(Figure 5). Within the laboratory work phase, the sources of
uncertainty due to the storage conditions, selection of molecular
parameters, extraction, and amplification protocols, as well as
the sequencing were quantified; errors produced by sample
pre-processing were only studied for macro-organisms [e.g.,
differences in eDNA detection comparing the collection of
sample DNA that had been either filtered or centrifuged, as in
Vörös et al. (2017)]. Within the bioinformatics phase, the quality
control, clustering of operational taxonomic units (OTUs) and
taxonomy assignment were investigated for both microbial and
macro-organism communities; uncertainties due to the chimera
detection were only investigated for microbial community data.
Only 15 articles out of the 431 studies statistically modeled
uncertainty; all of these were macroorganism studies. Of these,
14 used occupancy models, and one article used a “simulation
and resampling” model (Deiner et al., 2016).

Suggestions of Ways to Account for
Uncertainty in the eDNA Workflow
From the 164 articles quantifying sources of uncertainty, 60%
did not provide any clear suggestions, 10, 17, and 14% gave
weakly-, moderately- and strongly-generalisable suggestions,
respectively (Table 3 presents the strongly-generalisable
suggestions; moderately- and weakly- generalisable suggestions
are summarized in Table S4). The weakly-generalisable

FIGURE 3 | The percent of studies using the eDNA of microscopic (dark green) and macroscopic (yellow) organisms that fell into different categories of spatial and

temporal extent. The numbers within the plot correspond to the number studies reviewed in each category. Studies investigated spatial variation only (blue rectangle),

temporal variation only (light green rectangle), or both spatial, and temporal variation (dark green rectangle). A breakdown of the spatial and temporal extent reported

by the subset of studies which used “modern” molecular methods (next-generation sequencing or qPCR) is shown in Figure S2.
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FIGURE 4 | Spatial and temporal scales of variation recorded from 272 articles working at the community level researching (A) microscopic and (B) macroscopic

organisms. The inner circle indicates whether the variation was spatial (blue) or temporal (pink), the intermediate ring indicates whether or not the variation was

quantified, and if quantified, the significant scales of the variation is indicated in the outer ring. The scale at which spatial and temporal variation was reported by the

subset of studies which used “modern” molecular methods (next-generation sequencing or qPCR) is shown in Figure S3.

suggestions were often specific to a single taxon while
moderately-generalisable suggestions were often applicable
to either micro- or macroscopic communities (Table S4).

Highly-generalisable suggestions encouraged the use of pilot
studies to obtain initial estimates of variability (Machler et al.,
2016) and to facilitate adaptation of the study design for each
specific study context (Deiner et al., 2015; Minamoto et al.,
2016). Moreover, several studies suggested using hierarchical
occupancy models, to evaluate if the level of replication is
adequate to minimize detection errors (Ficetola et al., 2015;
Lahoz-Monfort et al., 2016; Guillera-Arroita, 2017) and to
use at least two independent sources of data (such as field
observations in addition to eDNA) to account for false positive
detections (Guillera-Arroita, 2017). Multiple marker genes were
recommended regarding sequencing library preparation for
community studies (Guardiola et al., 2016; Evans et al., 2017) or
multiple primer sets targeting the same gene (Jeon et al., 2008).
Schloss (2010) advised variable region selection should be based
on the availability of conserved PCR primers and the presence
of databases with adequate data for taxonomic identification
from those regions (Schloss, 2010). Ideas and recommendations
regarding accounting for, or reducing uncertainty in the
bioinformatics phase were primarily focused on the quality
control steps, where authors remove low-quality reads by
investigating technical and analytical aspects (Huse et al., 2007;
Schloss, 2010). Recommendations regarding OTU clustering
were to develop a group-specific clustering threshold (Brown
et al., 2015) and the use of more-complete taxonomic and
sequence reference databases (Brown et al., 2015; Somervuo et al.,
2017).

DISCUSSION

By analyzing the patterns in spatiotemporal variation observed
in eDNA research to date, we have revealed important research
gaps, and therefore highlighted where our future research efforts
might best be dedicated. Overall, our results corroborate the
findings of previous work (Strayer et al., 2006; Fierer, 2017),
that the study of temporal variation has been neglected and
the proportion of temporal studies did not increase over
the reviewed period. In addition, relatively few studies have
measured temporal variation over scales longer than 1 year.
Second, there were relatively few studies that explicitly quantified
and accounted for spatiotemporal variation and/ or uncertainties
introduced by the eDNA sampling and analysis workflow, e.g.,
by statistical modeling or comparison of different protocols.
Even where such sources of spatiotemporal variation were
accounted for, the effort in quantifying this variation varied
widely between the different steps in the eDNA process, from
sampling, to laboratory, to bioinformatics procedures, depending
on the type of organisms studied (micro- vs. macro-organisms).
Finally, in contrast to taxonomic diversity, there were no studies
showing how sources of spatial or temporal variation from eDNA
studies affect functional and phylogenetic diversity estimates;
such studies can be conducted using readily-available functional
trait (e.g., the plant trait database TRY, https://www.try-db.
org/TryWeb/Home.php; PICRUSt, Langille et al., 2013) and
phylogenetic (e.g., the fish tree of life, https://fishtreeoflife.org/)
data and would greatly inform the design and usefulness of eDNA
studies for environmental monitoring. The above findings hold
true when considering only newermethods, i.e., high-throughput
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FIGURE 5 | How uncertainty was quantified differently across all reviewed studies on microscopic (n = 41 studies) and macroscopic (n = 123 studies) communities.

The percent of studies that quantified uncertainty at each of the different steps in the eDNA workflow: eDNA field sample collection (blue colors), laboratory processing

(pink colors), and bioinformatics (green colors).

DNA sequencing. Below, we discuss the gaps we identified in
our systematic reviews, and importantly, make recommendations
on ways to mitigate, and account for, spatiotemporal variation
and uncertainties for future eDNA research that aims to inform
environmental monitoring.

When designing appropriate eDNA studies for environmental
monitoring, understanding the natural spatiotemporal scales of
variation among organisms (i.e., where are targeted organisms
distributed and how do these patterns vary over time?) and their
DNA (i.e., where is eDNA distributed and what is its longevity in
different environments?) sampled by eDNA surveys will greatly
assist in ensuring sampling and replication are targeting the most
informative sources of spatiotemporal variation (e.g., Lear et al.,
2014; Ellis et al., 2015; Barata et al., 2017). While our review
shows that spatiotemporal research in both micro- and macro-
organisms has been conducted at various scales, improving
our understanding requires an increase in the number of
spatiotemporal studies, particularly over longer temporal scales.
To be able to detect and quantify environmental changes for a
given system, it is vital that we understand the ratios of spatial to
temporal variation. For example, when using eDNA to monitor
environmental change due to land use change or climatic change,
it is crucial to understand how much spatial variation is expected
between replicates compared to that expected over time. If spatial

variation is relatively high, it may be difficult to detect temporal
change, even over longer time periods.

Additional eDNA-specific effects need to be considered when
monitoring environmental change. For example, part of the
natural scale of temporal variation in eDNA data is the ability
of DNA to persist in the soil or other substrates after an organism
has left or died (sometimes referred to as relic DNA). Measures
of natural spatiotemporal variation can be included in statistical
models estimating taxon occupancy and diversity. However,
temporal variation was accounted for, or measured in, only three
studies in this review (Pilliod et al., 2014; Balasingham et al.,
2017; Carini et al., 2017). For example, in their study, Carini
et al. (2017) showed that relic DNA can increase the richness
estimation of prokaryotic and fungal soil communities up to
55% and can also bias relative abundance estimates of taxa.
This can affect our understanding of present-day biodiversity
patterns. The analysis of environmental RNA rather than DNA
provides additional opportunities for the analysis of present day
diversity owing to the more transient nature of single-stranded
RNA molecules, as suggested by Pochon et al. (2017) and Zaiko
et al. (2018); to date however, the analysis of environmental RNA
has been poorly investigated as a tool for biodiversity monitoring.

For eDNA surveys, uncertainty in the detection of taxa
depends not only on natural DNA variability within the
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TABLE 3 | Table of highly generalizable suggestions from the reviewed literature for measuring variability and reducing uncertainties in eDNA data at each point in the

eDNA workflow.

Type of variability or uncertainty

quantified

Suggestions References from database

(See Table S1)

Sample collection

DNA natural variability: temporal Remove relic DNA. Carini et al., 2017

DNA natural variability: spatial Effective eDNA sampling methods should be informed by species’ distributions. Eichmiller et al., 2014

Experimental design: Number of

replicates

(1) Run occupancy models, (2) evaluate the rate of false positives, and (3) evaluate if the level of

replication level is appropriate to control for false negatives. Use at least two sources of data to

validate results, i.e., from two different types of survey.

Ficetola et al., 2015;

Guillera-Arroita et al., 2017

Experimental design: Size of the

samples

Conduct a pilot study to measure the variation so that an adequate number of samples can be

determined.

Machler et al., 2016

Experimental design: Controls Use negative controls. Furlan and Gleeson, 2017

Experimental design: Pooled samples Avoid pooling when estimating richness, except when comparing among sites. Sato et al., 2017

Molecular laboratory processes

Storage conditions Use consistent treatment of samples, either freezing (at similar temperature) or unfrozen and

process the samples quickly.

Docherty et al., , 2015;

Takahara et al., 2015; Weltz

et al., 2017

eDNA extraction: Protocol Consider the biases caused by the extraction protocols and adjust according to the research

question or context.

Deiner et al., 2015; Minamoto

et al., 2016

eDNA extraction: Controls Use negative controls when extracting DNA from samples of water, air etc. Furlan and Gleeson, 2017;

Spens et al., 2017

eDNA amplification: Marker selection Use a marker that has a well-developed reference database of sequences. Use multiple

markers, where appropriate, e.g., where many different taxa are being targeted.

Clarke et al., 2017; Evans

et al., 2017

eDNA amplification: Choice of the

variable region

The region selection should be based on the availability of conserved PCR primers and on the

availability of database sequences for that region.

Schloss, 2010

eDNA amplification: Primer selection Use multiple PCR primer sets to increase sequence coverage. Jeon et al., 2008

eDNA amplification: PCR protocol When using qPCR: (1) a primer set targeting plant chloroplast that evaluates the presence of

amplifiable DNA from field samples to increase confidence in a negative result, (2) an animal

group primer set to increase confidence in the assay result, and (3) a species-specific primer

set to assess presence of DNA from the target species.

Veldhoen et al., 2016

eDNA amplification: Number of PCR

replicates

Run occupancy models to estimate detection probabilities and rate of false presences. This

can be used to evaluate whether the level of replication is adequate to control for false

negatives. If necessary, “uncertain presences,” not confirmed by multiple PCRs, can be

removed. Occupancy models can incorporate prior information regarding the presence of

organisms from an independent survey method that is not prone to false-positive errors.

Ficetola et al., 2015;

Lahoz-Monfort et al., 2016;

Guillera-Arroita et al., 2017

eDNA amplification: Controls Use a secondary, generic primer designed to co-amplify endogenous DNA sampled during

species-specific eDNA surveys.

Furlan and Gleeson, 2017

Sequencing Use next-generation sequencing methods. Terrat et al., 2015

Bioinformatic processes

Quality control Investigate the effects of bioinformatics protocols on the ability to accurately generate

high-quality sequences and classify them.

Remove all reads containing one or more single ambiguous base and ones whose lengths are

outside the main distribution. Consider the effect of fragment length.

Huse et al., 2007; Schloss,

2010

Chimera detection Use and compare several different algorithms. Quince et al., 2011

OTU clustering and taxonomic

assignment

Develop and use well-populated and regulated sequence databases that allow individual reads

to be used directly for taxonomic assignment, without the need for OTU clustering.

Consider developing a group-specific clustering threshold for clustering OTUs.

Brown et al., 2015, 2016;

Somervuo et al., 2017

spatiotemporal scales studied, but also the eDNA survey method
itself (Furlan et al., 2016). An understanding of the levels
of variability in the field and lab is critical for determining
the appropriate number of replicates required to reduce the
variability in diversity estimates or probability of occupancy.
Despite this, less than 40% of the studies in our review
accounted for the uncertainty related to technical aspects of
eDNA research. The most reliable and reproducible way to do
this is to conduct pilot studies to quantify the spatiotemporal

variation and its effects on diversity or occupancy measurements
in advance of designing an eDNA survey. Our review shows
that, although there are knowledge gaps particularly at the
larger scales, significant information exists in the literature
regarding spatiotemporal variation in eDNA that could be used to
justify spatiotemporal study design choices and/ or incorporated
into the subsequent analysis of eDNA data, thus avoiding
additional costs by drawing on this existing knowledge. Similarly,
methodological studies of technical variation introduced during
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the lab work or bioinformatics phases of the workflow can
generate similarly useful data (e.g., Edgar, 2017, 2018; Davis A. J.
et al., 2018; Hermans et al., 2018; Nearing et al., 2018; Dopheide
et al., 2019). These data can be used to design a pilot study for a
system that has not been previously worked on or used as prior
information in statistical modeling of variation and uncertainty,
e.g., to inform Bayesian priors and other forms of statistical
probability inference.

Hierarchical Bayesian occupancy models can use occurrence
or abundance data obtained from eDNA surveys to quantify
natural spatiotemporal variation while statistically accounting
for uncertainty at multiple spatial and temporal scales and can
be applied in studies at the single-taxon, groups or community
levels (e.g., Tyre et al., 2003; Kéry and Royle, 2009; Kery
et al., 2009; Yamaura et al., 2012; Guillera-Arroita, 2017; Doi
et al., 2019; Wineland et al., 2019). The development of
these methods is an active area of research (e.g., Hui, 2016;
Ovaskainen et al., 2017; Tobler et al., 2019), and as computing
power continues to increase, such modeling has increasing
potential to make powerful contributions to our understanding
because they allow the incorporation of differences in organism
detection, which, when ignored, can bias estimates of diversity
(Iknayan et al., 2014). Few studies in our review had used
this type of model (14 out of 331 articles). Similarly, Kellner
and Swihart (2014) have shown that the majority (77%) of
ecological studies using traditional survey methods do not
account for imperfect detection. Within the relatively small
number of studies in this review that accounted for uncertainty,
only a few (24%) were on communities of micro-organisms.
About half of the articles accounting for uncertainty compared
eDNA survey results with previous knowledge or traditional
survey results. This way of accounting for uncertainty is
primarily used by researchers working with macroorganisms,
since taxonomic analyses of microbial community composition
are almost exclusively undertaken using molecular methods.
One requirement of hierarchical occupancy models is that
they have the appropriate data for spatiotemporal variation
and uncertainties to quantify detection probabilities for taxa
under the study conditions (Guillera-Arroita, 2017). However,
obtaining detection probability data is not as difficult as may
be expected. Indeed, as we have shown, some knowledge of
the spatiotemporal scales of variation from eDNA studies exists
and such data can readily be incorporated into explanatory and
predictive modeling of eDNA data as Bayesian priors.

Further work needs to be undertaken on how to incorporate
uncertainty from occupancy modeling into modeling diversity
measurements in a way that is useful for environmental
monitoring of communities and ecosystems (Denes et al.,
2015; Dorazio et al., 2015). More than half of the studies on
communities in this review (52%) analyzed only one type of
diversity measure and, in most cases, it was taxonomic diversity.
However, a focus on other measurements of diversity (functional
and phylogenetic diversity) is required to better understand,
not only spatiotemporal variation in community composition,
but also the functional role and evolutionary history of these
communities and ultimately the complex interactions among
composition, function, and the evolutionary processes that shape
their assembly over time and space (Pavoine and Bonsall,

2011; Fierer, 2017). No studies in this review investigated
the relationship between uncertainty in eDNA methods and
temporal variation in functional and phylogenetic diversity
measures; indeed our search terms identified only nine studies
using metagenomics methods to explore the functional diversity
of communities via eDNA analysis. This is a key knowledge gap
in eDNA study design. For example, if functional redundancy
among taxa is present, fewer field, and laboratory replicatesmight
be required to detect functional shifts in the studied ecosystem.
Quantifying the sources of uncertainty across spatiotemporal
scales in taxonomic, functional, and phylogenetic measurements
of diversity will help to improve study designs and, therefore,
make better recommendations for environmental management.

Research using eDNA spans a wide range of questions
and requires an interdisciplinary methodological approach
encompassing many methods, meaning it can be difficult to
make widely applicable recommendations (Zinger et al., 2019).
Nonetheless, we have collated suggestions that can be applied to
improve accuracy and reproducibility at all steps of the eDNA
workflow (Table 3); the largest portion of recommendations
focusses on the molecular process, which is often inconsistent
between research labs. Some researchers, such as Lear et al.
(2018), have proposed standardized sets of methods to overcome
bias impeding data comparison. However, it is clear that we need
to continue putting more effort into improving eDNA methods,
including the expansion of reference databases, improving
targeted gene regions, and accounting for the errors and
biases associated with sequencing technologies, many of which
are quickly developing. In particular, researchers working on
communities of macro-organisms need to do more to quantify
sources of uncertainty due to bioinformatics. Crucially, the
natural scales of variability and sources of uncertainty need to
continue to be monitored throughout the eDNA process so we
can better understand their implications.

CONCLUSIONS

Improving our understanding of both temporal and spatial
variability of communities and their DNA will help us to answer
both crucial methodological (e.g., what are the best sampling
scales to detect environmental shifts? Where and when to
sample?), and theoretical questions related to environmental
monitoring (e.g., what are the factors driving temporal and
spatial patterns? How can these patterns help us to measure
ecosystem “health” or restoration success?). Moreover, regardless
of the question that the researcher wishes to address, imperfect
detection should be considered when working with ecological
data using eDNA surveys, all the way from study design, through
data collection, lab-work and bioinformatic processes. Multiple
sources of uncertainty are present in all eDNA surveys, but
robust replication in the field and laboratory can help quantify
and minimize the detection errors. The combined use of prior
knowledge of sources of variability from the literature or pilot
studies within flexible statistical models that can incorporate
these sources of information, will lead to more robust predictions
of diversity and occupancy. Such experimental and modeling
frameworks will also allow us to further explore the sensitivity of
other biodiversity measures, such as functional and phylogenetic
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diversity, to detect errors and spatiotemporal variability at
multiple scales. Environmental DNA is a promising method for
environmental monitoring, but more research needs to be done
to understand and quantity both natural spatiotemporal variation
and technical variation introduced by study design and methods.
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