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Ecosystem surveillance monitoring is critical to managing natural resources and

especially so under changing environments. Despite this importance, the design and

implementation of monitoring programs across large temporal and spatial scales

has been hampered by the lack of appropriately standardized methods and data

streams. To address this gap, we outline a surveillance monitoring method based

on permanent plots and voucher samples suited to rangeland environments around

the world that is repeatable, cost-effective, appropriate for large-scale comparisons,

and adaptable to other global biomes. The method provides comprehensive data on

vegetation composition and structure along with soil attributes relevant to plant growth,

delivered as a combination of modules that can be targeted for different purposes or

available resources. Plots are located in a stratified design across vegetation units,

landforms, and climates to enhance continental and global comparisons. Changes are

investigated through revisits. Vegetation is measured to inform on composition, cover,

and structure. Samples of vegetation and soils are collected and tracked by barcode

labels and stored long-term for subsequent analysis. Technology is used to enhance the

accuracy of field methods, including differential GPS plot locations, instrument-based

Leaf Area Index (LAI) measures, and three dimensional photo-panoramas for advanced

analysis. A key feature of the method is the use of electronic field data collection to

enhance data delivery into a publicly accessible database. Our method is pragmatic,

whilst still providing consistent data, information, and samples on key vegetation

and soil attributes. The method is operational and has been applied at more than

704 field locations across the Australian rangelands as part of the Ecosystem

Surveillance program of the Terrestrial Ecosystem Research Network (TERN). The

methodology enables continental analyses and has been tested in communities broadly

representative of rangelands globally, with components being applicable to other biomes.
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Here we also recommend the consultative process and guiding principles that drove the

development of this method as an approach for development of the method into other

biomes. The consistent, standardized and objective method enables continental, and

potentially global analyses than were not previously possible with disparate programs

and datasets.

Keywords: ecological monitoring methods, vegetation composition, vegetation cover, vegetation structure, soil

sampling methods, sample management, electronic data collection

INTRODUCTION

Ecosystems support social and economic well-being and require
our vigilance as to their condition andmanagement interventions
to ensure continued functionality (Magnusson et al., 2013;
Andersen et al., 2014). The diversity of ecosystems has
contributed to a multitude of methods used to sample their
composition, structure, and function. Despite acknowledgment
of the need for integrated measurements and evidence-based
decision making (Likens, 2010; Eyre et al., 2011; Likens and
Lindenmayer, 2011), endorsing a single approach to ecosystem
monitoring remains difficult because managers, researchers,
policy makers, and funding agencies have diverse applications
for the data collected, and may have invested considerable
effort and monitoring time in existing methods. This causes an
integration problem when bringing together monitoring data
across large areas, and is particularly problematic for programs
involving extensive, multi-jurisdictional, logistically challenging,
and sparsely populated areas, such as rangelands (Bastin et al.,
2009; Herrick et al., 2010).

Underpinning these issues is a need to report on
environmental change over decadal, or longer, time periods
(Allen-Diaz et al., 1996; Likens and Lindenmayer, 2011), and
requires monitoring methodologies that are well-described
and flexible to deliver on future, unanticipated needs (Burton
et al., 2014; Bayne et al., 2015). The challenge is to agree on a
method without complete knowledge of the requirements of
future monitoring programs, the threats to ecosystems or the
opportunities that may emerge via innovation and technology
(Spellerberg, 2005; Lindenmayer et al., 2014).

Rangelands occur on all inhabited continents (Figure 1A)
with the predominant land-use being low-intensity or nomadic
livestock grazing on native pastures (Linstadter and Baumann,
2013). In Australia, variable rainfall is perhaps the major
ecological driver of spatial patterns (Stafford Smith and
McAllister, 2008), with the influence of variability particularly
evident in arid areas (van Etten, 2009; Dickman and Wardle,
2012). Rangelands represent 46% of terrestrial ecosystems
globally and 81% in Australia (Figure 1B), but remain relatively
poorly studied (Sparrow et al., 2014). Understanding broad scale
change in rangelands remains difficult due to a lack ofmonitoring
and decadal ecosystem dynamics (White I. A. et al., 2012).

Here we present an overview and rationale of a cohesive and
robust ecosystem surveillance method that builds on previous
techniques, both in Australia (Watson et al., 2007; Bastin
et al., 2009) and internationally (Nusser and Goebel, 1997;

Herrick et al., 2010; Toevs et al., 2011; Taylor et al., 2014;
Oliva et al., 2019), for characterizing and monitoring rangeland
ecosystems. Specific protocols are described in detail in the
AusPlots field manual included in Supplementary Material S5,
as that material is too extensive to publish within the length
of a standard publication (White A. et al., 2012). The method
is operational and has been implemented at over 704 sites
across Australia (see Box 1 in Supplementary Material S3),
producing publicly available data for ecological studies of
Australian rangelands (Guerin et al., 2016b; TERN, 2019). While
the primary purpose of the program is to detect changes
over large scales of space and over long periods of time, it
also provides readily available resources to answer pressing
current questions. For example, this method incorporates data
collection (Tokmakoff et al., 2016) to address key long-standing
questions for rangeland ecosystems (Morton et al., 2011),
including understanding the role of soil and plant traits on
productivity (Bastin et al., 2017a; Gallagher et al., 2020). The
combination of vegetation data and samples can be used to
extract trait data or genomic data to anticipate responses to
environmental stressors across large gradients (Westoby et al.,
2002; Wright et al., 2004; Guerin et al., 2012; Caddy-Retalic
et al., 2017). Similarly, the soil and plant samples, along
with the vegetation data, provide an open-access resource to
assess emerging priorities such as understanding the multi-
functionality of ecosystems, and especially of drylands (Maestre
et al., 2012).

Challenges to Broad Scale Monitoring
Approaches
Surveillance monitoring is defined as broad in scope, involving
measurements of many attributes and species across a spatially
and temporally wide-ranging network of field locations, placing
it between landscape, and targeted field monitoring in detail and
spatial extent (Eyre et al., 2011; Sparrow et al., 2019a). Challenges
to the design and implementation of surveillance monitoring
programs stem from practical and scientific considerations
(Lindenmayer et al., 2014), as well as from the imperative
for monitoring. Firstly, it is necessary to identify knowledge
gaps, such as in the geographic extent or type of data
available (Sparrow et al., 2014), or the questions arising from
environmental or societal changes (Sutherland et al., 2015).
The large and remote nature and the difficulty in accessing
these rangelands (Dickman et al., 2014; Sparrow et al., 2014,
2019b) also provides a significant challenge for these operational

Frontiers in Ecology and Evolution | www.frontiersin.org 2 June 2020 | Volume 8 | Article 157

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Sparrow et al. A Monitoring Method for Rangeland Environments

FIGURE 1 | Extent of rangelands: (A) globally and (B) within Australia (White I. A. et al., 2012).
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programs. Secondly, practical constraints must be factored into
monitoring protocols. Given the high cost of travel and data
acquisition, surveillance monitoring methods need to maximize
benefits from each visit, necessitating an efficient and integrated
workflow from data collection to delivery of new knowledge
(Tokmakoff et al., 2016). The level of information collected
using this method was determined by widespread consensus
of researchers, government scientists, and land managers from
across the country at a series of workshops and subsequent
feedback (see Supplementary Material S2). The time taken to
collect information at each plot is detailed in Table 1.

The adoption of new monitoring programs, or integration
of existing ones, can be hampered by poor communication of
goals. A well-designed method may fail because practitioners
are resistant to change or have divergent goals or cultural
expectations (Ens et al., 2014). Widespread consultation and
involvement is therefore key to successful engagement (see Box 2
in Supplementary Material S4). A challenge for these programs
is to prioritize time for adequate engagement in the design
and evaluation of methods in an environment with pressure to
provide rapid results. New technologies and innovations should
be considered for inclusion in situations where they provide
increased accuracy or efficiencies over traditional techniques.

A key motivation for developing a new rangeland monitoring
method in Australia was to overcome the lack of compatibility
between existing jurisdictional data collection methodologies

(Foulkes et al., 2014; Sparrow et al., 2019b). Global efforts to
monitor terrestrial ecosystems (Bastin et al., 2017a) need to build
upon regional and local data collection and ideally include a set of
essential environmental variables to provide a commonmodeling
framework and scalable data to build a cohesive global synthesis
(Schmeller et al., 2015).

METHOD OVERVIEW AND RATIONALE

Pragmatic Site Selection
A site selection protocol for surveillance monitoring of
rangelands needs to be scientifically robust but also practical.
Consideration needs to bemade for site access, both at the time of
initial survey, but also for continued access for repeat measures.
We implement a two stage stratification procedure where we;
(1) choose a bioregion to sample within (an Australian wide
landscape classification similar to ecoregions sensu (Olson et al.,
2001), Supplementary Material S1, and; (2) determine where
within the bioregion to establish plots.

Given the biophysical and anthropogenic context, we use
three strategies to determine bioregions within which to sample.
(1) Stratified sampling to cover biophysical and disturbance
gradients. (2) Setting a minimum number of plots per
representative bioregion or vegetation type. (3) Additional
sites identified via gap analysis. Strategies one and two were
investigated (Guerin et al., 2020) and were shown to perform

TABLE 1 | Modules in the AusPlots rangelands monitoring method.

Module Protocol Time (min) Application

Plot layout Accurate layout using DGPS; installation of

permanent markers.

30 Accurate relocation; remote sensing

validation

VEGETATION

Photo-panoramas Collection of 360◦ photographs from three

points

20 Computer vision analysis, point clouds,

and measures of basal area

Vouchering Collection of vascular plant species 60–120 Taxonomy; spatial/temporal analysis of

presence—absence

Tissue samples Collection of single tissue samples from

vascular plants (four from dominant species)

30–60 Genetic/isotopic analysis

Point-intercept Collection of species, height, phenology,

growth-form, senescence at 1,010 points

180–360 Change in relative abundance, cover and

structure; remote sensing validation

Basal area Collection by species using basal wedge at

nine points

20 Convertible to biomass

Structural summary Recording of three dominant species in each of

three strata (upper, mid, ground)

5 Community descriptions

Leaf Area Index Collection of at least 50 evenly spaced

readings with the LiCor LAI 2200 LAI meter

20 Ecophysiological modeling; remote

sensing validation

SOILS AND LANDSCAPES

Plot description Record location, substrate, microtopography,

erosion/disturbance

10 Assessment of characteristics/impact of

disturbance

Soil pit characterization Collection of soil samples/data at 10 cm

increments or identifiable horizons to 1m

60–120 Characterization and classification.

Correlate with vegetation

Sub-site

characterization

Collection of nine samples in differing

microhabitats at 0–10, 10–20, and 20–30 cm

60–90 Soil variability across plot

Bulk density Collection of three measures at the soil pit at

0–10, 10–20, and 20–30 cm

60 Conversion to volumetric measures

Soil metagenomics Collection of nine samples 30 Identify biota
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well against a range of statistically focused techniques as well
as several spatially even sampling strategies. Strategy three
currently uses Generalized Dissimilarity Modeling (GDM) to
identify areas where gap filling plots should be established. Initial
results from gap filling plots indicates that this is an effective
technique, resulting in an increase in environmental space
covered by the plot network. Scatterplots of relevant variables
can also reveal poorly sampled regions in environmental space
(Guerin et al., 2017a, 2020), while ecologically scaled measures of
environmental uniqueness can be mapped over poorly sampled
areas to identify priority habitats (Arponen et al., 2008; Guerin
et al., 2020).

Once target bioregions have been identified, a more
detailed process is undertaken at finer spatial scales. Within
stratified units, plot locations can be randomized where
practical to maximize representativeness and statistical rigor
(Michalcová et al., 2011), whereas random sampling without
stratification across large areas results in under-represented
habitats (Michalcová et al., 2011). Plots can, and regularly are,
co-located with those established by third parties (see Table 2)
or legacy projects to extract value and enhance temporal depth.
Political information is often relevant, including policy drivers
influencing jurisdictions and opportunities for co-investment.
Some land managers see standardized surveillance monitoring as
an opportunity to capture robust information on the assets they
manage and are receptive to co-investment.

Whether driven by stratification, gap-filling or policy
needs, it is essential that site selection accounts for logistical
considerations such as access permissions and feasibility, to make
the program achievable and increase likelihood that sites will
be re-sampled.

Plot Size and Layout
The choice of plot size is guided by the need to optimize
the balance of survey resources and scientific rigor. While
representativeness and robustness to small-scale variation
increase with plot size (assuming vegetation within is
homogenous), so does the expense of data collection, equating
to fewer plots for fixed resources. Large, single, 50 ha plots have

TABLE 2 | Co-location of sites with other projects.

Project type Number of

Co-located projects

Number of

Co-located Plots

National environmental

research

infrastructure—process

7 40

National environmental

research infrastructure—

surveillance

4 43

Jurisdictional process 1 9

Jurisdictional surveillance 10 79

Non-government

organization

1 11

Totals 23 182

become standard for the study of demographic dynamics in
rainforest biomes (Harms et al., 2001), 1 ha plots are used for
other woody ecosystems (Phillips et al., 2009; Miehe et al., 2010),
whereas grasslands are typically surveyed in smaller 1 m2 plots
(Borer et al., 2014).

Given the vastness and heterogeneity of rangelands, there is a
need for many plots and therefore one-hectare plots were chosen
for this method. Additional reasons for this choice included:
(1) The potential to capture species vital rates and vegetation
processes (mortality, recruitment, fire, grazing, and drought
responses) whilst maintaining a practical sampling size; (2) the
benefit of consistent results and reduced coefficients of variation
in basal area, crown area, and vegetative structure between plots
(Clark and Clark, 2000)—capturing small-scale patchiness whilst
providing representativeness overall; (3) Enhanced integration
with other activities that use 1 ha plots (Phillips et al., 2009;
Jurgens et al., 2012; Wood S. W. et al., 2015; Karan et al.,
2016), and (4) to provide information at an appropriate scale
for validation of medium and high resolution remotely sensed
products (Congalton and Green, 2008).

The monitoring plots are established with Differential Global
Positioning System (DGPS) technology, to locate and record the
coordinates of plot and transect vertices (Figure 2A) with sub-
meter accuracy and metal poles located at the corners and center
to aid in relocation for repeated monitoring. Each plot is located
entirely within a relatively homogeneous (at the 1 ha scale) area
of a particular vegetation community, and is intended to be
representative of that vegetation community.

Plots are co-located with existing sites where possible. These
sites have been established for a variety of reasons (see Table 2),
and co-locating with these sites enables data from both programs
to be combined or correlated, enabling greater temporal depth,
richer contextual information, and often co-investment in
site establishment.

Floristics and Vegetation
Plant cover and species composition are key essential variables
(Pereira et al., 2013) for any ecological surveillance monitoring
program and are core modules in our method. Careful
consideration was given to ensuring adequate sampling effort,
confirmation of species names by taxonomists, and flexible
methods to record both quantitative estimates of abundance
for commonly occurring and locally abundant species and
occurrences of less abundant species within the plot. To achieve
this, several techniques were combined. All vascular plant
species observed within the plot are sampled and recorded, with
identifications confirmed later by herbarium botanists. These
samples are then stored indefinitely enabling taxonomic change
to be updated throughout the collection and database. Vegetation
is also characterized quantitatively by cover, composition,
growth-form, and height. For this, a line point-intercept method
is used across 10 × 100m transects in a grid (Figure 2A).
This configuration ameliorates the skewing effects that site
heterogeneity may have on cover, which are difficult to avoid in
rangelands (Vetter, 2005). Data collected using this configuration
are less sensitive to local heterogeneity or micro-patterning of
the vegetation.
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FIGURE 2 | Monitoring plot schemas and examples of information recorded in the point-intercept module. (A) Plot layout and locations of soil sampling, basal wedge

sweeps and point-intercept transects; (B–D) point-intercept data on: (B) substrate; (C) growth-forms; (D) species (White A. et al., 2012).

Many authors recommend the collection of a minimum
of 1,000 intercepts in rangelands to quantify cover per
species (Lodge and Gleeson, 1976; Holm et al., 1984; Friedel
and Shaw, 1987; Vittoz and Guisan, 2007). Following this
research, our method utilizes 1010 point intercepts along
transects to determine vegetation cover per species across the
plot. Abundance and presence/absence data are obtained by
combining the identified sample data with the point-intercept
data, with rarer species not intercepted being scored as present
but not assigned a cover score. Each intercept is also attributed
with information assessing plant height (used to reconstruct
vegetation structure and as a surrogate for recruitment of

woody species) and whether the vegetation intercepted is dead
or senescent, to indicate mortality. Mass recruitment/mortality
events are also recorded. Height profiles can be created and their
changes through time analyzed to indicate changes in vegetation
community structure or to assign strata.

Accurate measures of vegetation cover are important for
tracking environmental change, and have many applications
(Vittoz and Guisan, 2007). Cover can be summarized to family,
genus, species, growth-form levels, or as fractional cover—the
fraction of photosynthetically active vegetation, dead vegetation,
and bare substrate. Relative cover-abundance can be used in
downstream analysis, or to classify vegetation, for example into
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structural classes such as forest or shrubland based on height
and cover of growth-forms. Change in vegetation structure
(Figure 2C) or composition can be quantified, for example to
detect woody weed encroachment. Raw data can be converted to
common cover measures (e.g., opaque canopy cover or projected
foliage cover), or summarized by the highest intercepted plant
at each point. The location of each point-intercept is recorded
(Figure 2), allowing detailed spatial patterning to be investigated
as an alternative to gross plot-wide metrics.

Basal area is measured at each plot using a basal wedge
sweep, to inform the amount of stored above ground biomass
based on allometric equations (Eamus et al., 2000). Basal area
is averaged across the plot, while raw tree stem counts are also
recorded. A structural summary is also collected, identifying the
most dominant species in each of the Ground, Mid-layer and
Upper strata following the procedure described in Thackway
et al. (2008). This enables the vegetation to be described at
the level of an “Association,” equivalent to a Level 5 structural
description in the Australian National Vegetation Information
System (applicable to all vegetation types), with cover and height
information being calculated from the point intercept data.

Photo-Points
Photo-points have long been used for monitoring (Watson and
Novelly, 2004) and inventory programs (Brandle et al., 2005).
In keeping with this tradition, photo-points are created with
a new method in which panoramas (a continuous 360-degree
sweep of static digital photographs with at least 50% overlap
between frames) are collected at three points (Figures 3A–C).
These photographs are comparable with historical photographs,
and can be analyzed using computer vision techniques to
determine basal area (White A. et al., 2012). It is anticipated that
other structural metrics will be able to be extracted from these
photosets in future.

Soils
The soil protocol quantifies variability within and between plots
and over time using a pre-defined standard (National Committee
on Soil and Terrain, 2009). This field protocol is undertaken at
the same time as the vegetation modules to enable vegetation
analyses to consider contemporaneous soil characteristics.

A plot description records erosion, micro-relief, landform
pattern and element, drainage, disturbance, and soil surface
condition. Four further modules are collected: soil profile pit;
bulk density; soil sub-sites; and metagenomic samples. A 1m
deep pit in the southwest corner of the plot (Figure 2A) enables
description and photographic recording of the upper soil profile
and measurement of pH, electric conductivity, texture, color, and
structure (White A. et al., 2012). Soils can then be categorized
using a standard such as the Australian Soil Classification (ASC)
system (Isbell and Terrain, 2016). Bulk density is measured at
three depths of the pit to enable conversion of soil properties to
volumetric measures (Table 1). Soil sub-sites are collected at nine
locations across the plot, targeting variability in microhabitat,
to collect the same information as at the soil profile pit to a
depth of 30 cm and analyze small-scale variability (Figure 2A).
Soil samples taken specifically to enable metagenomic analysis of

FIGURE 3 | Photo-point panoramas. (A) Configuration: three photo-points are

established in an equilateral triangle with 2.5m sides around the plot center.

Photographs are taken in a 360◦ panorama; (B) Height setup: central dropper

and mounted camera lens at 1.3m; (C) Dealing with topography (White A.

et al., 2012).

environmental DNA (e.g., targeting soil biota in various phyla
or traces of above-ground flora and fauna) are collected from
the surface at each sub-pit and stored on silica granules. Soil
samples are air dried and retained for further analysis and access
by researchers (Grundy et al., 2015).

Samples for Re-Use
Many monitoring methods that record species and taxonomic
determination rely on botanists who can identify specimens in
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the field and vouchers may only be collected for obtuse species
or records of interest (Hosking et al., 2000). Field identifications
are prone to error (Scott and Hallam, 2003; Lacerda and Nimmo,
2010) and the requirement for taxonomic expertise can inhibit
delivery of plots. To address this issue, the method mandates the
collection of herbarium vouchers for all vascular plant species
observed, which are tracked using barcode labels. In addition to
ensuring consistent identification, barcoded voucher specimens
are a resource for ongoing research. Vouchers can resolve
taxonomic issues, including the discovery of new taxa, updating
species ranges (Hosking et al., 2000), and support studies of
ecophysiology and occupancy across space and time (Guerin
et al., 2012).

Additional plant tissue is collected from each species and
stored in synthetic gauze bags with a barcode linked to the
voucher specimen. These bags are used to avoid contamination
from foreign plants (e.g., cotton). The bags are rapidly dried
on silica granules, ensuring they can be used for genetic or
isotopic analysis.

Soil samples (∼500 g) are taken from each 10 cm depth from
the soil profile pit and sub-sites, and these are barcode-labeled,
air dried, and archived in a dedicated facility.

Validating Remotely Sensed Products
To enhance application of collected data to the validation of
remotely sensed products, plots are marked out with sub-meter
DGPS for spatial accuracy and where possible aligned to a
locally accepted map grid (e.g., Map Grid of Australia). This
enables the plot to be accurately matched to pixels from remotely
sensed imagery. Locating plots in homogeneous areas increases
the likelihood that the entire plot falls within a single remote
sensing-derived mapping unit.

Cover information validates products from mid-resolution
satellite imagery. Our point-intercepts are able to be converted to
either opaque canopy cover or foliage projected cover, making the
data useful for both ecological and imagery validation purposes.
Because cover can be summarized at different levels, from species
to fractional cover (Scarth et al., 2015), multiple applications are
possible, for example validation of tree cover interpretation from
imagery (Bastin et al., 2017a).

The LAI2200 instrument (LiCor, Nebraska, USA) is used
to collect and calculate Leaf Area Index (LAI) data. This
information can be used to validate international LAI products
(Schaefer et al., 2015), and to assist with the calibration
between LAI and foliage projected cover derived from remotely
sensed products.

Structural information collected, including basal area
determined using the basal wedge and photo-points, along with
growth-form and vegetation height data from point-intercepts,
is useful for validating satellite, airborne, and terrestrial
LIDAR systems.

Data Availability
Data from the program are collected directly on an Android
tablet and sent to a database when the field officers have mobile
phone coverage (Tokmakoff et al., 2016). Data are subsequently
combined with confirmed species identifications received after

samples have been submitted to a relevant herbarium, and the
combined dataset is curated in preparation for publication. As
sites are finalized, they are identified as ready to publish and
pushed to TERN’s AEKOS data delivery portal. During this
process, the location of threatened or highly collectable species
is de-natured (Lowe et al., 2017). The data are then made freely
available on the web portal for discovery, download and re-use
(Turner et al., 2017) using a Creative Commons (CC BY 4.0) by
attribution license, or via the R package ausplotsR (Guerin et al.,
2019c).

DISCUSSION OF METHODOLOGY AND
APPLICATIONS

The standardized, quantitative surveillance monitoring method
and innovative workflow we outline can be employed across
jurisdictional borders, allowing the measurement of diverse
environments at continental and global scales to answer
questions that would be difficult to address using disparate
datasets. Streamlined data collection and management ensure
rapid delivery to end-users and help minimize error (Box 1 in
Supplementary Material S3). The archiving of samples means
that data and results can be verified downstream, allowing
resilience to nomenclatural change and innovative future re-use
of samples, for example bio-discovery (Lemetre et al., 2017).

Our approach is multi-disciplinary, collecting data relevant at
multiple levels of ecological analysis from population genetics
to remote sensing. By collecting these measures at the same
plot using consistent methods, interactions among patch-level
variables can be investigated.

The photo-points module is innovative in allowing traditional
photo-point based change analysis whilst enabling three-
dimensional computer vision analysis. Technology is also
embraced in the collection of LAI data, using a DGPS to mark
out plots and the use of a purpose data collection app to robustly
collect data and minimize data transcription and collection
inaccuracies [described in detail in (Tokmakoff et al., 2016)].
Our electronic workflow and data management processes from
the point of data collection to data publication (Tokmakoff
et al., 2016) also provides increased accuracy and efficiency over
traditional methods.

Infrastructure Stimulating Ecological
Research
The methods described in this paper have enabled a great many
studies (see Table 3) in a wide variety of disciplines. Having said
that the monitoring program is still young, with the majority
of sites having only been visited once (see Table 4). Over the
past few years site re-visits have commenced concurrently with
strategic gap filling, with re-visits anticipated to become more
prevalent in the coming years. Whilst use of our method and data
from it has been widespread we anticipate much greater uptake in
future years as the network matures and increases it’s spatial and
temporal depth of information. There are a wide variety of ways
the data can be used with a few specific examples provided below.
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TABLE 3 | Some examples of publications enabled by data obtained using the method.

Resource category Reference Publication

status

Journal Theme Findings

Standardized method Wood S. W. et al., 2015 Published Report/Manual Forests Provides an alternate 1 ha method most appropriate for Tall Forests and

assessing change in biomass

Standardized method Wundke et al., 2015 Published Report/Manual Condition Provides additional modules for the core method for anyone interested in

assessing environmental condition

Standardized method Karan et al., 2016 Published Science of the Total

Environment.

Method development Adapts these Ausplots Rangeland methods for use at TERN Ecosystem

Processes intensively sampled sites

Standardized method Sparrow et al., 2016 Published Report/Manual Woodlands Provides additional modules to the Ausplots Rangelands methods that are

most appropriate for woodlands and assessing change in biomass

Standardized method O’Neill et al., 2017 Published Report/Manual Fauna Provides a companion method to the Ausplots method for the inclusion of

vertebrate fauna sampling

Standardized method Bendig and Lucieer,

2019

Published Report/Manual Unmanned Aerial

Vehicle (UAV) data

collection

Details methods needed to collect multispectral UAV data over Ausplots to

be compatible with other data collected at the site

Standardized method Capon et al., 2020 Published Report/Manual Aust Gov Regional

Land Partnership

Program

Indicates that Ausplots methods along with data collection and

management procedures could be useful to assess the efficacy of

investment in on ground Regional Land Partnerships projects

Standardized method O’Neill et al. In Prep In Prep Invertebrate sampling Provides a companion method to the Ausplots method for the inclusion of

ground dwelling invertebrate fauna sampling

Property Reports The Ausplots Team Published TERN Website Property Reports Provides property owners and land managers with details of the surveys

that we have conducted on their land

Plot Network Wood S. W. et al., 2015 Published PLoS One Baseline Describes the baseline after data collection using the method described in

Wood S. W. et al. (2015)

Plot Network Guerin et al., 2018c Published Transactions of the

Royal Society of South

Australia

Generalized

Dissimilarity Modeling

Details areas that are most susceptible to climate change in South Australia

Plot Network Guerin et al., 2018b Published Swainsona Climate change

modeling

Value of surveillance plots as a baseline for monitoring change, particularly

when aligned along environmental gradients

Plot Network Guerin et al., 2019a Published Acta Oecologica Environmental

Gradients

Zones of rapid compositional turnover in species were evident in gradients

in a variety of environments

Plot Network Dong et al., 2020 Published New Phytologist Plant Functional Traits Shows that environmental conditions influence leaf traits by sampling along

an environmental gradient of Ausplots

Plot Network Guerin et al., 2020 In Review Preprint @ bioRxiv Gaps Early Ausplots stratification method performed well in comparison to

statistically oriented and spatially even sampling strategies

Plot Network Guerin et al., 2020 In Prep In Prep Identifying gaps Details how gaps in the Ausplots network are identified with GDM, and how

focusing survey effor in these areas has improved the networks

environmental coverage of Australia

(Continued)
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TABLE 3 | Continued

Resource category Reference Publication

status

Journal Theme Findings

Plot Network Guerin and Lowe, 2013 Published Environmental

Monitoring and

Assessment

Survey methods Assesses point intercepts are more precise for cover estimation, but use is

determined by available resources as it is more labor intensive

Plot Network Guerin et al., 2014 Published Journal of Vegetation

Science

Surveillance monitoring

and spatial differences

along plot network

A spatially predictive baseline for monitoring multivariate species

occurrences and phylogenetic shifts in Mediterranean southern Australia

Plot Network Muir et al., 2015 Published

proceedings

Silvilaser proceedings Photopoints Analysis of photopoint data showed a high level of agreement with field

measured information on basal area

Plot Network Bastin et al., 2017a Published Science Forest estimation Increase in global forest cover of 9%; Field method enabled robust accuracy

assessment

Plot Network Bastin et al., 2017b Published Science Response to de la Cruz

et al.

Justified focus on FAO definitions for worldwide applicability

Plot Network Bastin et al., 2017c Published Science Response to Griffith

et al.

Justified focus on FAO definitions for worldwide applicability

Plot Network Bastin et al., 2017d Published Science Response to

Schepaschenko et al.

Justified focus on FAO definitions for worldwide applicability, refuted higher

availability of high-resolution imagery in Australia (Aust 74% plots v’s 82%

Plots worldwide)

Plot Network Caddy-Retalic et al.,

2017

Published Ecology and Evolution Transects Argues that networked and replicated transects with the addition of

experimental treatments provide novel insight on ecological change

Plot Network de la Cruz et al., 2017 Published Science Comment Critiqued definition of drylands

Plot Network Gibson et al., 2017 Published PLoS One Species turnover Species turnover increased rapidly with increasing extent along an

environmental transect

Plot Network Griffith et al., 2017 Published Science Comment Critiqued definition of drylands, specifically in reference to savanna

ecosystems

Plot Network Guerin et al., 2017b Published PLoS One Species abundance

distributions

An overview of breath of sampling, and analyses the value of point intercept

data

Plot Network Martin-Fores et al.,

2017

Published PLoS One Weed abundance Weed abundance is positively correlated with the diversity of native plants in

South Australian grasslands

Plot Network Nolan et al., 2017 Published Functional Plant

Biology

Plant Traits Photosynthetic traits correlate with water availability for trees and shrubs in

arid Australia

Plot Network Schepaschenko et al.,

2017

Published Science Comment Critiqued dryland definition, Suggested Accuracy assessment using

Ausplots biased due to high availability of high resolution imagery over

Australia

Plot Network Baruch et al., 2018 Published PLoS One Vegetation

Classification

Analyses vegetation patterns at the national scale

Plot Network Bruelheide et al., 2018 Published Nature Ecology and

Evolution

Plant Functional Traits Plant traits seem mainly filtered by local factors

(Continued)
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TABLE 3 | Continued

Resource category Reference Publication

status

Journal Theme Findings

Plot Network Caddy-Retalic et al.,

2019

Published Diversity & Distributions Species composition Plant and ant assemblages predicted to decouple under climate change

Plot Network Gellie et al., 2018 Published Phytocoenologia Plot survey review Development of a consistent vegetation classification system across

Australia and how Ausplots can contribute

Plot Network Guerin et al., 2018a Published Ecography Beta diversity Uses GDM’s to show that untransformed herbaria data are not appropriate

to assess beta diversity as turnover is related to sampling intensity

Plot Network Muir, 2018 Published PhD Thesis Photopoints Accuracy of photopoint method in comparison with terrestrial Lidar

Plot Network Beland et al., 2019 Published Forest Ecology and

Management

Vegetation Structure Provides information on the applicability of LiDAR in assessing vegetation

structure and indicates its value for research infrastructure collection

Plot Network Bruelheide et al., 2019 Published Journal of Vegetation

Science

Database description Details an international vegetation database that Ausplots contributes to

Plot Network Guerin et al., 2019b Published Applied vegetation

Science

Invasion ecology Weed species change the structure of Australian grasslands

Plot Network Melville et al., 2019 Published International Journal of

Earth Observations and

Geoinformation

Remote Sensing

Validation

Scaling between field observations and satellite imagery

Plot Network Nevill et al., 2020 Published Plant Methods Genetic plant ID Investigates use of genetic material for plant identification in WA

Plot Network van der Sande et al.,

2020

Published Global Ecology and

Biogeography

Invasion ecology Investigate the abundance of invasive trees in their native and invasive

ranges and find that they occur primarily in areas with functionally similar

co-occurring species

Plot Network Slik et al. In Prep In Prep The origin of forest

biodiversity

Support the “Out of the Tropics” hypothesis

Infrastructure Cleverly et al., 2019 Published Environmental

Research Letters

Research Infrastructure Explains how this infrastructure contributes to forecasting ecosystem

responses to climate change and variability

Data Tokmakoff et al., 2016 Published Future Generation

Computer Systems

Data Management Details data collection, curation, management and delivery system for

Ausplots

Data Lowe et al., 2017 Published Science Open Publishing Responsible open publishing

Data Turner et al., 2017 Published Book Chapter Aekos Intro The importance of context and fully described data, advocated for process

described in Tokmakoff et al. (2016)

Data Guerin and Lowe, 2015 Published SoftwareX Plant biodiversity

distribution—example

data for method

Mapping phylogenetic endemism in R using georeferenced branch extents

Data Guerin et al., 2016a Published PLoS ONE Plant biodiversity

distribution—mapping

Identifying plant biodiversity centers in South Australia

Data Guerin et al., 2019c Published Computer Code R Package Public access to operational database + data pre-processing directly in R

(Continued)
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TABLE 3 | Continued

Resource category Reference Publication

status

Journal Theme Findings

Data Gallagher et al., 2020 Published Nature Ecology and

Evolution

Trait science Articulates open science principles for trait research

Collections Grundy et al., 2015 Published Soil Research Digital soil mapping The Soil and Landscape Grid of Australia (SLGA) first continental soil map,

utilizes soil samples, and data

Collections Bissett et al., 2016 Published Gigascience Genomics First Australian soil microbial diversity database

Collections Dong et al., 2017 Published Biogeosciences Climate adaption Indicates adaptability due to phenotypic plasticity and species replacement

over environmental gradients and for nitrogen content per unit leaf area this

is relatively evenly split

Collections Lemetre et al., 2017 Published PNAS Genomics Identifying latitudinal basis for differences in soil borne therapeutically

relevant compounds

Collections Andrae et al., 2018 Published Geophysical Research

Letters

Isotopes Identifies that C4 plants in Australia initially expanded in the late Pliocene

Collections Baruch et al., 2017 Published Austral Ecology Plant Traits Specific Leaf Area for this species varies in relation to latitude

Collections Howard et al., 2018 Published Organic Geochemistry Leaf wax persistence in

soil

Information on vegetation structure are preserved in n-alkane stored in soils

Collections Falster et al. In Prep In Prep Plant Functional Traits Foundation article for AusTraits—includes photosynthetic pathway

assignment from Munroe et al. “AusTraits: a curated plant trait database for

the Australian flora”

Collections Munroe et al. In Prep In Prep Isotopes Cause of C4 species distribution across Australia

The resource category column groups publications dependent on the method component to which they most closely relate. “Standard Method” details those publication that expand or leverage the methods detailed here. “Plot Network”

are publications based on, or including the field data collected in the program. The “Infrastructure” category details a publication focused on the value of the created research infrastructure. “Data” focuses on publications that discuss,

leverage or include data collection, curation, management, and delivery principles used in the program and “Collections” are publications enabled by the range of physical samples collected and stored by the program.
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TABLE 4 | Sites collected using the method in the TERN Ecosystem Surveillance program, quantified by the Major Vegetation group in which they occur, along with

information on the number of sites revisited.

Major vegetation groups Sites visited

once

Sites visited

twice

Sites visited

three times

Rainforests and vine thickets 1

Eucalypt tall open forests 1 3

Eucalypt open forests 15 10 2

Eucalypt low open forests 5 3 1

Eucalypt woodlands 98 17 2

Acacia forests and woodlands 30 1

Callitris forests and woodlands 6

Casuarina forests and woodlands 14 4

Melaleuca forests and woodlands 22

Other forests and woodlands 8

Eucalypt open woodlands 37 7 2

Tropical eucalypt woodlands/grasslands 6

Acacia open woodlands 13 1 3

Mallee woodlands and shrublands 24 9 1

Low closed forests and tall closed shrublands 1

Acacia shrublands 49 5 8

Other shrublands 41 6 2

Heathlands 15

Tussock grasslands 70 4 3

Hummock grasslands 16 2 4

Other grasslands, Herblands, Sedgelands and

Rushlands

7 8 2

Chenopod Shrublands, Samphire Shrublands

and Forblands

79 8 2

Cleared, Non-native vegetation, buildings 1

Regrowth, modified native vegetation 6

Other open woodlands 6

Mallee open woodlands and sparse mallee

shrublands

20 6 1

Leaf Samples
Genomic sequencing technologies now provide cost-effective
information on species identification (DNA barcoding)
and population genetic structure that allows rapid species
identification, the detection of cryptic species and identification
of regions of high genetic diversity, all of which are useful in
a conservation context. The archiving of plant tissue samples
ensures material will be available even if the populations do
not persist. Access to samples facilitates work by independent
researchers that may otherwise be impeded by the cost of
sample collection from remote locations. Leaf samples have been
incorporated in a number of studies (Christmas et al., 2017). Leaf
samples are also available for isotope analysis and the study of
leaf chemical components such as the study of Dong et al. (2017)
where these samples were used to demonstrate that Leaf Mass
per unit area increases with aridity.

Soils
Investigation of soils has typically focused on agrarian zones,
meaning soil characteristics for rangelands have largely been
interpolated from sparse data, with this being particularly so

in Australia. In addition to basic characterization, the method
archives soils for future analysis (e.g., DNA metabarcoding
and chemical analyses). Soil surface samples are collected,
from which biological activity can be quantified and related
to soil parameters. These samples facilitate research on soil–
vegetation interactions, typically conducted in local research
projects. For example (Lemetre et al., 2017), analyzed these soil
samples and reported that turnover in bacterial biosynthetic
composition followed a latitudinal pattern but did not appear
to be driven by changes in major vegetation type, a finding
that directs approaches to future sampling of soils for natural
product discovery.

Floristics and Vegetation
Vegetation data collection has been designed for multiple
purposes. For example, standard community ecology analytics
such as ordination of vegetation and environmental variables can
provide insight into spatial patterning of species composition
(Figure 2D) and its drivers. The data also enable tracking of
composition and cover dynamics with high reliability, enabling
practical outcomes like reporting on responses to disturbance or
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grazing impacts. The collection techniques also provide a useful
inventory, providing information on distribution and abundance
of species, with management applications such as providing
information on the distribution and abundance of problematic
woody weed species.

The analysis opportunities for vegetation data from this
program have been identified in more detail in Guerin
et al. (2017a), including assessment of cover and species
dominance analysis. The future opportunities enabled by the
multi-disciplinary method described here are also articulated.
Vegetation classification studies have also been conducted using
the dataset (Baruch et al., 2018).

Validating Remote Sensing Products
The method provides information useful for validating remotely
sensed image products at multiple scales, such as vegetation
and soil products derived from mid-resolution satellite imagery.
By recording the shortest distance to another vegetation type,
plots can represent a bigger spatial footprint and be useful for
validating lower spatial, but higher temporal, resolution imagery.
The data have further potential to validate high-resolution spatial
and spectral image products, as well as radar and LIDAR imagery.

Growth-form and cover data from this method were
compared by Bastin et al. (2017a) to values obtained from visual
estimates of very high resolution imagery over the same sites.
This information was then used to quantify observer estimate
errors and errors between different observers for this study that
quantified the amount of forest occurring in dryland biomes
globally. Bastin et al. identified that previous estimates of dryland
forest cover were between 40 and 47% lower than their study
indicates, leading to an increase of around 9% to estimates of
forest cover globally compared to previous knowledge.

Sampling Other Environments
Whist the program was initiated in Australia’s rangelands it has
been implemented successfully in a wide variety of structurally
diverse vegetation types throughout the country (Table 4),
broadly representative of a variety of rangeland vegetation types
globally. Rainforests and Tall Eucalypt Forests provide some
challenges to the point intercept modules and prompted the
development of forest specific protocols (Wood S. et al., 2015).
Additional optional modules have been developed for woodlands
where researchers intend to track tree growth through time
(Sparrow et al., 2016).

CONCLUSION

We present a surveillance monitoring method for rangeland
ecosystems developed in Australia but applicable to global
context. The method is now implemented as part of the
surveillance monitoring program of TERN, under the guiding
principles of widespread consultation, continual adaptation and
coverage of variables/attributes relevant to multiple disciplines,
to meet the needs of a diverse ecosystem science community
(Pereira et al., 2013). The method is standardized, quantitative

and modular, providing robust baselines and clear protocols
for sample and data management. The method embraces new
technologies such as a novel photopoint method and robust
electronic data collection using a field app alongside more
traditional techniques. Sample archiving ensures continued
utility of collected data and enables subsequent analysis. A
streamlined and accurate dataflow enables rapid open access data
provision. The method has had proven application to analyze
rangelands systems globally (Bastin et al., 2017a), and many
components are suitable for other environments. In future, we
anticipate adding additional variables on other environmental
parameters including fauna sampling, for which protocols
have been prepared and are undergoing consultation, to be
implemented as resources permit.
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