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High-elevation tropical lakes are excellent sentinels of global change impacts, such
as climate warming, land-use change, and atmospheric deposition. These effects are
often correlated with temporal and spatial beta diversity patterns, with some local
communities contributing more than others, a phenomenon known as local contribution
to beta diversity (LCBD) or ecological uniqueness. Microorganisms, such as diatoms,
are considered whole-ecosystem indicators, but little is known about their sensitivity
and specificity in beta diversity studies mostly because of the lack of large spatial and
temporal datasets. To fill this gap, we used a tropical South American diatom database
comprising modern (144 lakes) and paleolimnological (6 sediment cores) observations
to quantify drivers of spatial and temporal beta diversity and evaluated implications for
environmental change and regional biodiversity. We used methods of beta diversity
partitioning (replacement and richness components) by determining contributions of
local sites to these components (LCBDrepl and LCBDrich), and studied how they are
related to environmental, geological, and historical human variables using Generalized
Additive Models (GAM). Beta replacement time series were also analyzed with GAM
to test whether there is widespread biotic homogenization across the tropical Andes.
Modern lake ecological uniqueness was jointly explained by limnological (pH), climatic
(mean annual precipitation), and historical human density. Local lake (conductivity)
and regional geodiversity variables (terrain ruggedness, soil variability) were inversely
correlated to replacement and richness components of LCBD, suggesting that not all
lakes contributing to broad-scale diversity are targets for conservation actions. Over
millennial time scales, decomposing temporal trends of beta diversity components
showed different trajectories of lake diatom diversity as response of environmental
change: i) increased hydroclimatic variability (as inferred by decreased temperature
seasonality) mediating higher contribution of richness to local beta diversity patterns
ca. 1000 years ago in Ecuador Andean lakes and ii) lake-specific temporal beta diversity
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trends for the last ca. 200 years, indicating that biotic homogenization is not widespread
across the tropical Andes. Our approach for unifying diatom ecology, metacommunity,
and paleolimnology can facilitate the understanding of future responses of tropical
Andean lakes to global change impacts.

Keywords: diatoms, biotic homogenization, metacommunity, beta diversity components, GAM

INTRODUCTION

Human activities have caused in the past and are currently
causing diverse and long-lasting changes in freshwater
ecosystems (Vitousek et al., 1997). In mountainous areas,
high-elevation lakes are excellent sentinels of current global
change and some of the most comparable ecosystems across the
world (Catalan and Rondón, 2016). It is widely recognized that
predicting how high-elevation lakes will respond to ongoing
and future global changes requires a long-term perspective to
evaluate recent (last ca. 150 years) human-driven impacts and
to characterize background natural variability (Mills et al., 2017;
Dubois et al., 2018). Biological assemblages accumulate with lake
sediments as natural archives, which can be used to understand
temporal dynamics of biodiversity and provide insights into the
organization of ecological communities and their responses to
natural and human-induced drivers (e.g., habitat loss, human
impacts, eutrophication) (Willis et al., 2010; Heino et al., 2016).
Because lakes are not isolated in the landscape (rather they
form a continuum embedded in a terrestrial matrix), researchers
have also examined the role of spatial variables in determining
biodiversity patterns using paleolimnological approaches
(Castillo-Escrivà et al., 2017; Benito et al., 2019). However,
contemporary and paleolimnological studies still remain largely
disconnected in biodiversity and environmental change research
(Gregory-Eaves and Beisner, 2011). One reason for this may be
that the application of the metacommunity concept (i.e., set of
local communities potentially connected by dispersal of multiple
interacting species, Leibold et al., 2004), has so far seldomly
been applied over long time scales. Understanding broad-scale
biodiversity patterns is necessary, because many environmental
pressures operate at large spatial and long temporal scales but
interactions with high-elevation lakes at smaller scales (Catalan
et al., 2013) are still mostly unexplored.

Spatial variability in species composition between sites (i.e.,
spatial beta diversity) is particularly well suited for exploring
metacommunity structuring, because its components: species
replacement and richness difference (species gain and loss),
are often correlated with climatic, geological, and limnological
gradients (Winegardner et al., 2017; Castro et al., 2019; Szabó
et al., 2019). With an index of local contribution to beta diversity
(LCBD) it is possible to examine each site’s disproportionate
contribution to maintaining regional diversity. High LCBD
values flag ecologically unique sites where regionally rare taxa,
exceptional species richness or unusual combinations of taxa
are present (Legendre and De Cáceres, 2013). Both niche-
based (i.e., species sorting) and dispersal-based community
assembly processes may influence beta diversity patterns, either
independently or in combination (Heino, 2013). Thus, it is

important to include different metrics of beta diversity and
their environmental and spatial correlates to assess biodiversity
changes across ecological gradients in a more nuanced way.

In aquatic ecosystems, comparisons of temporal beta diversity
between localities may be a fingerprint of environmental
variation, for instance, as a measure of acidity changes in boreal
lakes (Angeler, 2013) or forest cover in United States lakes
(Winegardner et al., 2017). Recent meta-analyses have linked beta
diversity loss, increasing trends between assemblages’ similarities
to reduced environmental heterogeneity due to human actions
(Cardinale et al., 2012; McGill et al., 2015). Other studies further
indicated that ecosystem function and services, such as carbon
storage and food production, could be severely jeopardized by
biotic homogenization (Van der Plas et al., 2016). However,
patterns prior to intense human occupation remain largely
unknown, and a time interval spanning the last 1000 to 2000
years is most appropriate for evaluating the magnitude of recent
changes in biodiversity and environmental conditions at regional
and global scales (Pages 2k Consortium, 2013).

The tropical Andes is one of the world’s richest biodiversity
hotspot (Myers et al., 2000). Lakes are ecologically important
regional features and also serve as a crucial source of
freshwater for millions of people living in the Andes and the
adjacent Amazon lowlands (Buytaert et al., 2006). Historically,
humans have been an integral part of Andean lake-catchment
systems, shaping cultural landscapes by means of agriculture,
pastoralism, and deforestation (Sarmiento, 2002). Andean lakes
in tropical South America are valuable model systems for
examining spatial and temporal beta diversity patterns for
several reasons. First, they are well-defined ecosystems, many
of which have persisted over long geological time-scales such
as lakes Titicaca and Umayo, allowing evolutionary processes
(speciation, extinction) to affect biota (Fritz et al., 2012). Second,
despite contrasts in the climatic and evolutionary history of
various regions, broadly similar ecoregions and communities
are present due to the relative tectonic stability of the Andes
throughout much of the Neogene (Baker and Fritz, 2015). Third,
they are in a topographically diverse landscape characterized
by notable spatial variability in geological, geomorphological,
soil, and hydrological features, also known as geodiversity
(Killeen et al., 2007; Gray, 2008). In the tropical Andes many
geodiversity variables are available for studying their influence
on biological communities (Antonelli et al., 2018). However, very
little is known about how geodiversity and other macroscale
environmental gradients, such as climate, relate to beta diversity
and its replacement and richness components in mountain lakes.

Biodiversity studies of Neotropical macroorganisms have
historically recognized the roles of environmental, climatic, and
geological factors in structuring communities at different spatial
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and temporal scales (Banda et al., 2016), but their influences
on microorganisms are not well characterized (Benito and Fritz,
2020). Diatoms, unicellular siliceous algae, are a very species-
rich biological group that disperses widely, responds to local (e.g.,
limnological) and regional (e.g., climatic) variables, has different
traits for resource use and resistance to disturbance, and their
remains preserve in lake sediments. In addition to their role as
whole-ecosystem indicators, diatoms are also particularly useful
for evaluating relationships between spatial and temporal beta
diversity (Winegardner et al., 2017). Yet, additional exploration
of their use in identifying ecologically unique sites and the
mechanisms behind spatial and temporal beta diversity is still
needed for tropical Andean lakes. This information is crucial as
global change intensifies in the Neotropics (Vuille et al., 2003),
including local (e.g., agriculture, fish stocking) and regional
(e.g., deforestation, damming, land-use) environmental impacts
(Van Colen et al., 2017). Hence, studies comparing modern
and paleolimnological records are needed to assess which high-
elevation lake ecosystems are most sensitive to environmental
changes and to evaluate their resilience.

To start filling these knowledge gaps, we used a database of
lake diatoms that spans large gradients of latitude, limnology,
climate, and topography in the tropical Andes. We estimated
LCBD and applied beta diversity partitioning methods,
including species replacement and richness difference and
the contributions of sites to these components (LCBDrich
and LCBDrepl). LCBDrich and LCBDrepl describe how each
individual sample contributes to richness gradients and to
replacement gradients (Ruhí et al., 2017). To identify spatial
beta diversity trends through time, we analyzed diatom
paleolimnological assemblages that span the last ∼2000 years
using the same partitioning methods with Generalized Additive
Models (GAM). Finally, using diatom beta replacement time
series we tested the hypothesis that broad-scale environmental
changes have an homogenizing effect across large, disconnected
lakes; to provide a regional long-term limnological change
perspective in the tropical Andes.

MATERIALS AND METHODS

Study Area
Our study lakes are distributed across the tropical Andes (8◦N–
30◦S and 58–79◦W) (Figure 1). This region encompasses a
wide range of physiographic and climatic settings that produce
diverse limnological conditions. The investigated lakes occupy
a range of high elevations (2500–4500 m a.s.l) and are mostly
formed by glacial and/or volcanic processes. The study area
has a north-south orientation and is characterized by varied
degrees of topographic heterogeneity. Both local and regional
climates are influenced by the topographic profile, which creates
distinct conditions at both eastern and western flanks (Valencia
et al., 2016). Northern Andean lakes in Ecuador and Colombia
lie in montane forests, inter-Andean valleys, and páramo
ecosystems. Above the tree line (páramo), climatic conditions
are characterized by the lack of seasonal changes and cold mean
annual temperature. More dry and wet climatic conditions are

characteristic of the interandean valleys and montane forests,
respectively. In the central Andean Cordillera of Perú and
Bolivia, most of the study lakes are in montane grassland or
shrubland. In the Altiplano plateau (central Andes), the northern
region is characterized by cold and relatively humid conditions.
Lakes are mainly freshwater and lie in extensive interconnected
hinterland basins (Cohen et al., 2014). The southern Altiplano
is drier, and most lakes are isolated and saline due to the basin
geology and high evaporation rates (Blanco et al., 2013). Lakes
in the south-central Chilean Andes are located at lower elevation
(<2500 m a.s.l) and are surrounded by steppe vegetation; climatic
conditions are semi-arid to temperate (Carrevedo et al., 2015).

Diatom Database
We used diatom abundance data from 144 lakes comprising
sediment surface samples (n = 215) from a newly created
tropical South American diatom database available in the
Dryad repository (Benito et al., 2018b) (Figure 1A and
Supplementary Table 1) and GitHub1. Briefly, the database
comprises published and unpublished studies from lentic and
lotic environments collected by different authors under different
objectives (e.g., paleoclimatic reconstructions, taxonomy,
biodiversity). When possible, diatoms were identified to the
species level. The samples were collected in the period 1999–
2017. Detailed information about sample processing, taxonomic
harmonization, and identification of diatom taxa can be found in
Benito et al. (2018b).

In addition, we used sedimentary cores from six lakes located
in Ecuador (Piñan, Yahuarcocha, Fondococha, Llaviucu), Peru
(Umayo), and Bolivia (Titicaca) for temporal beta diversity
analyses (Figure 1A). Sediment cores from the Ecuador lakes
were collected in summer 2014 (Llaviucu and Fondococha)
and July 2017 (Piñan and Yahuarcocha). Cores (mean core
length = 61 cm) were retrieved using a UWITEC gravity corer
near the center of each lake when possible; lake Piñan was
cored at the south-west shallow platform. Sediment cores were
sliced in the field at 1 cm intervals. In the laboratory, samples
were processed for diatom analyses following standard methods
(Battarbee et al., 2002). At least 300 valves were counted per
sample and identified using diatom regional floras (Metzeltin
and Lange-Bertalot, 1998, 2007; Rumrich et al., 2000; Metzeltin
et al., 2005). Core chronologies were established using 210Pb and
14C dating techniques. For Lake Fondococha, details about the
210Pb-chronology can be found in Bandowe et al. (2018) and
information about the age-depth model is described in Arcusa
et al. (2020) and Schneider et al. (2018). Instantly deposited event
layers (e.g., tephra layers and flood layers) were masked for the
age calculations and reinserted in the combined age-depth model.
The list of 14C and 210Pb dates and associated age-depth models
for the lakes Piñan, Yahuarcocha, Fondococha and Llaviucu can
be found in Supplementary Material. Diatom core assemblages
of Lakes Umayo and Titicaca (Ekdahl et al., 2008; Weide et al.,
2017) and from Piñan and Fondococha in Ecuador (Luethje,
2020) are published. Altogether, diatom records span the last
1102 (Piñan), 1815 (Yahuarcocha), 2598 (Fondococha), ∼2250

1https://github.com/xbenitogranell/diatoms-biogeography-southamerica
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FIGURE 1 | (A) Geographical location of the modern investigated lakes (n = 144) colored by regions within the tropical Andes of South America (see
Supplementary Table 1 for individual lakes information in each region); the location of the six lake cores are also shown with different symbols; (B) Proportion of
diatom ecological groups for each lake region. Samples represent sediment surface habitats.

(Llaviucu), ∼6500 (Umayo), and ∼6000 (Titicaca) cal years BP
(cal year BP = years before 1950), with a median temporal
resolution of 20.8 years (range 8–44 years).

Predictor Variables
We extracted different datasets from several sources to
characterize local (limnological) and regional (climatic and
geological) environmental characteristics, as well as historical
effects of the investigated lakes. Lake water-chemistry variables
were collected simultaneously with the modern diatom samples
and included water temperature (◦C), pH, conductivity (µS/cm),
cations (Ca2+, Mg2+, K+, Na+; mg/L) and anions (Cl−, SO4

2−;
mg/L). Nutrient data (N, P) are not included here, because the
database has a very high number of missing values. However,
our prior analyses indicate that nutrient conditions are strongly
correlated with landscape factors—total phosphorus decreases
with elevation—and also that geo-climatic factors are more
highly correlated with diatom diversity than limnological

conditions in most of the Andean lake regions (Benito et al.,
2018b). Elevation (m) and lake area (km2) were extracted
using ArcGIS from the STRM 90 m Digital Elevation Model
(Jarvis et al., 2008) and using ESRI World Imagery layer as
a basemap, respectively. In equal grids of 50 km2, the Global
Lakes and Wetlands Database (GLWD at ∼ 1 km resolution;
Lehner and Döll, 2004) was used to extract the surface area
occupied by fresh waters. The percentage of aquatic systems in
the surface area acts as a proxy for hydrological connectivity.
Climatic variables included mean annual air temperature (MAT;
◦C), mean annual precipitation (MAP; mm), temperature
seasonality (SD; ◦C), and precipitation seasonality (coefficient
of variation; mm). These variables were extracted from the
WorldClim 1.4 database (Hijmans et al., 2005). WorldClim
contains averaged monthly climate data for the period 1950
to 2000 at 1 km of spatial resolution and falls well within
the temporal window of the analyzed diatom samples. To
account for the effect of geodiversity, for each lake we extracted
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geological [soil variability (number of soil types per grid
cell), long-term erosion (km/Ma)] and topographic (terrain
ruggedness index) variables from Antonelli et al. (2018) within
1◦ × 1◦ rid cell (∼80 km2 at the equator). Soil variability
is the number of soil types in each grid cell derived from
Hengl et al. (2014), while long-term erosion is derived from
termochronometric data using the Herman’s method which
accounts for topography and isotopic data to generate maps
of averaged erosion rates over time (Fox et al., 2014). Finally,
to estimate the human historical footprint in the lakes, we
obtained human density and cropland area from the HYDE
3.2 database (Goldewijk et al., 2011). We extracted human
density (inhabitants/km2 grid cell) and cropland area (km2/
grid cell) values for the last 300 years at 10 years timesteps and
averaged over three estimate scenarios (baseline, lower, and
upper) for each investigated lake within a spatial resolution
of∼80km2.

Statistical Analyses
All statistical analyses were performed using the R software
version 3.6.2 (R Development Team, 2016).

Prior to running statistical analyses, predictor variables were
checked and transformed accordingly [log10(x + 0.25) or
square root] to meet assumptions of linearity and homogeneity
of variances. In both modern and fossil diatom matrices,
those species having >3% relative abundance in at least one
sample were selected.

Hellinger-transformed diatom relative abundances were used
for estimating beta diversity indices. First, we calculated beta
diversity for each lake and partitioned it into components,
namely replacement and richness difference, with the Podani
decomposition family of indices using Bray-Curtis dissimilarity
(Podani et al., 2013) with the beta.div.comp function of
the adespatial package (Dray et al., 2016). The replacement
component refers to simultaneous species loss and gain along
ecological gradients (in space or time), whereas the species
richness component means that one sample contains more
unique taxa than another (Podani et al., 2013). Second, to further
investigate mechanisms behind beta diversity patterns across
space (144 lakes) and time (paleolimnological time series from six
lake cores), we estimated the local contribution of each sample
(sediment surface and 1-cm sample slice for space and time,
respectively) to the total beta diversity (LCBD) using the beta.div
function. The significance of each LCBD value was assessed by
999 permutations, and the p-values were corrected for multiple
testing using Holm’s procedure (Dray et al., 2016). We also
calculated site-specific diatom richness and related with LCBD
using Spearman correlation. Third, from the initial richness
and replacement matrices, we decomposed LCBD to richness
(LCBDrich) and replacement (LCBDrepl) components to assess
how each individual sample (in space and time) contributes to
richness and to replacement gradients, respectively, in the diatom
communities using the LCBD.comp function.

To aid interpretation of local contributions to beta diversity,
we calculated mean percentages of diatom ecological groups
in each of the regions of study (Figure 1A). We placed diatom
species into the following groups: freshwater planktic (e.g.,

Discostella stelligera, Cyclostephanos andinus), oligosaline
planktic (Cyclotella meneghiniana), tychoplanktonic (e.g.,
Fragilaria capucina, Aulacoseira alpigena), freshwater benthic
(e.g., Achnanthidium minutissimum), epiphytic (e.g., Cocconeis
placentula), and saline (e.g., Craticula halophila, Navicula
salinicola), following regional diatom floristic studies (Steinitz-
Kannan et al., 1993; Metzeltin and Lange-Bertalot, 1998, 2007;
Weide et al., 2017).

We ran GAM to model the relationship between LCBD
and its replacement (LCBDrepl) and richness (LCBDrich)
components and local, regional, and historical predictors. GAMs
are a non-parametric extension of the Generalized Linear
Models and allow fitting linear and non-linear relationships
between the response and explanatory variables when there
is no a priori reason for choosing a particular function
(i.e., linear, quadratic) (Wood, 2017). Only variables that had
Variation Inflation Factor (VIF) values <10 were included in
the GAMs. We estimated the linear effect of each predictor,
accounted for spatial autocorrelation by including smooth
splines of geographical coordinates, and included lake region
(as in Figure 1) as a random factor (bs = ’re’). Both
statistically significant predictors and the level of complexity
of the response shapes to each variable were selected with
Restricted Maximum Likelihood (REML) using the mgcv
package (Wood, 2011). Finally, we checked residuals for any
deviation from normality and linearity using diagnostic plots
(Supplementary Figure 2).

To determine if statistically significant change in temporal
beta diversity trends at millennial time scales could be identified,
we modeled the beta replacement time series using a Hierarchical
GAM (HGAM) (Pedersen et al., 2019). Here, we were interested
in comparing spatial patterns in temporal beta diversity. We
used the vector of beta replacement values that resulted from
the beta.div.comp function as a response variable. We tested
the hypothesis that variations in temporal beta diversity are
homogenous across the landscape (biotic homogenization) or
whether temporal changes differed from lake to lake. For this,
we built two HGAMs separately: (a) a global smoother and
lake-level smoothers having different wiggliness (i.e., individual
curves), hence allow for inter-lake variability (HGAM GI model
type in Pedersen et al., 2019) and (b) a global smoother and
lake-level smoothers that have the same wiggliness (i.e., shared
curves), hence do not allow for inter-lake variability (HGAM
GS model type in Pedersen et al., 2019). In all models, we
accounted for the different amount of time each sediment
core sample represents (difference between ages at the top and
bottom of each sediment slice) by including these values as
weights in the model (Simpson, 2018). Since the beta diversity
replacement range from 0 to 1 in the form of relative values,
a gaussian link function was applied. We applied two methods
for model selection: (a) AIC values using a cut-off level of
two units or less from the lowest AIC model (Burnham and
Anderson, 2004), and (b) out-of-sample deviance performance,
where each model was compared to a null model (intercept-
only model with only lake-level random effects intercepts
included). We fitted all the models using the gam function in the
mgcv package.
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RESULTS

Ecological Uniqueness and Its
Components
Freshwater benthic diatoms dominate across the study regions,
except for Lake Titicaca with dominance of freshwater planktic
species (Figure 1B). Freshwater planktic diatoms are the
second most abundant ecological group, followed by saline-
tolerant and epiphytic benthic species. Among the freshwater
benthic taxa, Achnanthidium minutissimum s.l., Amphora
veneta, Cymbella cistula, and Staurosira construens var. venter
made up the majority of the sediment surface diatom flora
(Supplementary Figure 1). These taxa are indicative of a
wide range of limnological conditions, ranging from acidic,
low nutrient to high conductivity waters. Freshwater planktic
diatoms characteristic of low nutrient conditions were dominated
by Cyclostephanos andinus, whereas Aulacoseira ambigua,
Aulacoseira granulata, Discostella stelligera, and Tabellaria
flocculosa strain IV may respond to increased nutrients.
Saline-tolerant and epiphytic benthic diatoms included the

endemic Amphora carvajaliana, Epithemia adnata, Navicula
salinicola, and Cocconeis placentula var. placentula, respectively.

Local contribution to beta diversity did not show statistically
significant variation across the study lakes according to
corrected p-values for multiple testing. Without correcting
for multiple testing, 24 lakes (13% of total) had significant
LCBDs, mostly concentrated in the south-central Andes of Chile
(Supplementary Figure 2).

There was a significant negative relationship between LCBD
and species richness (Spearman rho = −0.58; p < 0.01)
(Supplementary Figure 3). GAM results showed that modern
LCBD decreased with increasing pH, MAP, and historical
footprint (Figure 2A). The full model explained 38.1% of
the deviance. When analyzing the replacement and richness
components of LCBD, the effects of environmental predictors
were generally inverse (Figures 2B,C), as supported by
the negative relationship between LCBDrepl and LCBDrich
components (Supplementary Figure 4). A consistent set of
variables representative of local (limnological), and regional
(climatic and geological) conditions explained variation in

FIGURE 2 | Effect of predictors on local contributions to beta diversity (LCBD) and to the replacement (LCBDrepl) and richness (LCBDrich) components, estimated
as linear coefficients from Generalized Additive Models. Errors bars are ±95% confidence intervals. Colors indicate the significance level α = 0.05.
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LCBD indices. LCBDrepl increased with increasing conductivity
and seasonality in temperature, and decreased with increasing
terrain ruggedness, soil variability, and Na+ (full model
% deviance explained = 37.7). LCBDrich increased with
decreasing conductivity and seasonality in temperature, and
increased with higher terrain ruggedness (full model % deviance
explained = 31.4).

Temporal Trends of Beta Diversity
Components
As expected, the temporal trends of LCBDrepl and LCBDrich
components fluctuated over millennial-time scales (Figure 3).
In general, LCBDrich fluctuated more and was comparatively
higher than LCBDrepl across lakes, especially in the two-
deep freshwater Altiplano lakes, Umayo and Titicaca. These
two lakes also showed increased trend in LCBDrepl since ca
1000 cal years BP. Replacement and richness fluctuated more
similarly in the two remote Ecuadorean páramo lakes (Piñan

[Spearman rho: −0.17, p = 0.22] and Fondococha [Spearman
rho: 0.51; p < 0.01]) than the two lakes located closer to human
settlements (Yahuarcocha and Llaviucu [Spearman rho range:
0.02–0.09, p > 0.05]). Interestingly, LCBDrich and LCBDrepl
time series of Piñan, Yahuarcocha and Fondococha showed a
peak at ca. 1000 cal years BP. The main diatom stratigraphic
changes and dominant taxa for each lake are summarized in the
supplementary material (Supplementary Figures 10–15).

All the HGAMs models fitted to the beta replacement time
series predicted better than the null models (Supplementary
Table 2). The best HGAMs included a global smoother plus
lake-specific smoothers having different wiggliness (GI model)
according to the AIC models. These results suggest that allowing
for lake-specific variation explained more variation in beta
replacement trends. The shape of the fitted HGAMs differed
across lakes. Beta replacement increased in the last ca 500 cal
years BP in the deep Altiplano lakes (Umayo and Titicaca)
(Figure 4). More coherent trends of beta replacement were
observed in the Ecuadorean lakes, which were characterized by

FIGURE 3 | Contribution of replacement (LCBDrepl) and richness (LCBDrich) components to beta diversity for the six investigated lake cores (arranged by increased
latitude). Isotopic δ18O measurements from Pumacocha lake (Bird et al., 2011) are interpreted as dry periods with enriched values. Note the two y-axes for
replacement and richness components of beta diversity time series.
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FIGURE 4 | Temporal trends of Hierarchical GAM-fitted beta replacement for the six Andean lakes investigated in this study (arranged by increased latitude). Model
GS (green line) indicates a global curve and inter-lake variation having similar smoothness. Model GI (orange line) indicates a global curve allowing for varied
smoothness among lakes. Points are original beta replacement values. Ribbons indicate ±2 standard errors around the mean (green and orange lines for GS and GI
models respectively).

slight increases at ca. 1000 and 500 cal years BP and a decrease
over the last ca. 200 years (Figure 4).

DISCUSSION

Previous studies have demonstrated that species composition
and taxonomic richness of lake diatom communities in the
tropical South America are jointly structured by the local
(water chemistry) and regional environmental factors (aquatic
connectivity and climate) (Benito et al., 2018b,a). Moreover,
biogeographic patterns emerge after determining latitudinal
gradients of species richness and estimating the role of dispersal
dynamics on diatom community structure (Benito and Fritz,
2020). In the analyses presented here, the calculation of LCBD
introduced an additional biodiversity metric for Neotropical
diatom metacommunities and biogeography studies. Our results
identified a set of local and regional ecological gradients that

explained patterns in LCBD, including its replacement and
richness components. We found that LCBD was related to
pH, MAP, and historical human density. The effect of pH
and MAP are not surprising given the relatively high variance
displayed across the study lakes (Steinitz-Kannan et al., 1983;
Michelutti et al., 2019) and the known direct role of pH in
affecting physiological process in diatoms (Van Dam et al.,
1994). Precipitation indirectly affects catchment-lake linkages
through, for instance, biochemical processes and resource supply
(Passy, 2010). Here, we found that high-elevation lakes lying in
drier areas are ecologically more unique than lakes receiving
more precipitation. Vilmi et al. (2020) showed a distinction
between dry/cold and wet/warm conditions related to the
assembly processes of high-elevation stream invertebrates and
bacteria, reinforcing the role of climate in mountainous aquatic
biodiversity patterns.

We found more ecologically unique lakes (i.e., lakes with high
LCBD values) in areas with a history of low human impact.
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Indeed, human impacts can have a homogenizing effect on
aquatic communities (Olden et al., 2004). In our case, low
LCBD values in lakes with higher human impact may be a
result of, for instance, alteration of communities by hydrological
modifications and external impacts (e.g., cattle grazing) in the
Andean lakes since prehistoric times (Sarmiento, 2002; Van
Colen et al., 2018). Although we did not observe statistically
significant geographic patterns in the distribution of LCBD when
the p-values were corrected for multiple testing, lakes located
in the central-south Chilean Andes displayed higher LCBDs
(without correcting for multiple testing). A correlation between
LCBD and latitude also gave the significant negative relationships
(Spearman rho = -0.47, p < 0.05), suggesting a decreasing
latitudinal gradient of LCBDs. This may be partially associated
with the onset and legacy of historical occupation in the continent
of the southern portions of our latitudinal gradient (Gayo et al.,
2015; Goldberg et al., 2016).

Partitioning LCBD into replacement and richness components
provided further insights into the mechanisms underlying
changes in spatial beta diversity of diatoms in South America.
Most significant environmental correlates for each of the LCBD
indices, i.e., LCBDrepl and LCBDrich, were fundamentally
different from the ones observed for total LCBD. For instance,
LCBD components are responding inversely to the same water
chemistry correlates (e.g., conductivity), supporting previous
research on lake communities analyzing turnover and nestedness
components (Angeler, 2013). Other studies also highlight that
finding consistent predictor variables among beta diversity
components is challenging in lentic systems in general, and on
tropical aquatic communities in particular, including diatom
and invertebrate communities (Jyrkänkallio-Mikkola et al.,
2018; Castro et al., 2019). Nonetheless, when the replacement
component of LCBD dominates, a regional approach focusing
on multiple sites might be needed to conserve ecologically
unique diatom metacommunities (Wright and Reeves, 1992).
In our study, regional environmental variables for conservation
purposes are terrain ruggedness and soil variability. In contrast,
a dominating richness component of LCBD suggests the need
to focus on a few species-rich lakes and local limnological
correlates (Ramos-Jiliberto et al., 2009). In this context,
conductivity could be a variable to ensure conservation of diatom
metacommunities in certain tropical Andean lakes that are
naturally salty such as Southern Altiplano regions (Figure 1 and
Supplementary Figure 1).

We found that ecological uniqueness in terms of replacement
and richness gradients responded to climate (i.e., seasonality in
temperature) and geology (soil variability, terrain ruggedness).
The influences of diverse climatic conditions and geodiversity
on freshwater biodiversity have recently gained attention
(Kärnä et al., 2018; Toivanen et al., 2019). In a study on
boreal stream and lake diatoms, Vilmi et al. (2017) found
a strong association between LCBD and bed rock, soil,
and ecoregion characteristics. Studies relating geodiversity-
biodiversity in freshwaters suggest an incipient tight coupling
between regional catchment characteristics and local biological
dynamics, and are in line with studies from high-elevation lakes
(Zaharescu et al., 2016). In the Andes of Ecuador, northern

páramo lakes differ in SO4
2− content compared with their

southern páramo lake counterparts, which have much higher
Ca2+ concentrations (Luethje, 2020). Interestingly, Andean lakes
located in high-elevation rugged basins harbor ecologically
unique diatom communities in terms of richness. We found
a negative relationship between LCBD and species richness
(Spearman rho = -0.58, p < 0.01), indicating that lakes with
exceptional ecological uniqueness are usually the ones with
lower numbers of species. Similar negative relationships have
been reported in other contexts as well (Legendre and De
Cáceres, 2013; da Silva and Hernández, 2014; Mimouni et al.,
2015; Heino et al., 2017). High terrain rugosity promotes
lake isolation from the surrounding landscape (Valencia et al.,
2016), which may result in more dispersal-limited conditions,
even for organisms with high dispersal capabilities, like
diatoms (Kristiansen, 1996; Benito et al., 2018b). From a
biogeographical perspective, identifying topographically diverse
mountain regions that harbor ecologically unique lakes may
complement research on evolutionary processes, such as diatom
endemism (Spanbauer et al., 2018) and climatic microrefugia
(de Novaes Nascimento et al., 2019).

Diatom community structure differs among lake habitats,
thereby highlighting the relevance of species sorting due to
substrate type (e.g., mud, plants, rocks), and dispersal between
different lake habitats (pelagic versus benthic communities) as
a result of the fluid aquatic environment (Wetzel et al., 2012;
Cantonati and Lowe, 2014). We can assume that each study
region operates as a metacommunity (Benito et al., 2018b) and
hence hypothesize on mechanisms driving LCBD patterns by
considering the variability of lake diatom habitats (Figure 1B).
We suggest that it is the diversity from the peripheral (benthic)
communities that eventually determines between-lake diversity
of diatoms and ultimately the ecological uniqueness of the lakes
compared to other sites in the region. For instance, in the
Peruvian Andes (Cusco and Wet Puna regions), the presence
of heterogenous benthic diatom groups (saline, epiphytic,
benthic) may account for the high LCBD values (Supplementary
Figure 1). In contrast, the homogenous pattern in terms of lake
habitat diatoms in the Sud Lipez and Desaguadero regions of
Bolivia could arise because of limited opportunities for dispersal.
These Bolivian regions are cold and arid, with a low density
and small number of suitable aquatic environments, most of
which are shallow hypersaline lakes and wetlands (Servant-
Vildary and Roux, 1990). In the Chilean Andean lakes, the
higher local contributions to beta diversity could be a function of
their relatively poor pelagic diatom community compared with
richer-than-average planktic dominated diatom regions, such as
Lake Titicaca or the Ecuadorian Andes. Diatom diversity often
increases in deeper lake zones, because benthic diatoms are
transported from other lake habitats and mixed with pelagic taxa
associated with seasonal changes (Pla-Rabés and Catalan, 2018).
However, we cannot discard the possibility that the observed
relationships between LCBD values and ecological groups in
each diatom metacommunity were influenced by the temporal
variability in our modern database, as the data do not correspond
to the same time point among regions. More research is needed to
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unveil the effect of benthic area on diatom communities’ structure
in deep tropical lakes.

The term metacommunity can also be used to define the
diatom community of the whole lake for each sedimentary
sequence (Leibold et al., 2004). Sediment samples integrate the
local species richness and the beta diversity (replacement) of
the lake habitats and the variability in composition among them
(Pla-Rabés and Catalan, 2018). Thus, local contributions to beta
diversity may differ over time in response to lake habitat changes
driven by limnological change. We observed a consistent pattern
of more variability in LCBDrich than LCBDrepl time series.
This is expected given the role of sediment samples acting as
a sink by accumulating different entities (species) from other
lake habitats (i.e., source) (Logue et al., 2011). Three lakes in
the Andes of Ecuador (Piñan, Yahuarcocha and Fondococha)
experienced a coincident peak in LCBDrich, but less in LCBrepl,
at ca 1000 cal years BP, likely responding to dry/warm conditions
centered around the Medieval Climate Anomaly (MCA). The
MCA triggered lower lake levels based on many tropical
Andean paleolimnological records (Figure 3; Lüning et al., 2019
and references therein). Despite different conditions in water
chemistry and lake depths, our findings suggest that the relatively
high synchronous compositional uniqueness at that time may
be a fingerprint of regional-scale limnological variation in these
three lakes. This is partly supported by the fact that high modern
LCBDrich values are explained by low temperature seasonality
and conductivity (Figure 2). In this application, however,
methodological issues, such as time-averaging processes and the
partial representation of the entire population abundance, may
introduce bias in beta diversity estimates from paleolimnological
assemblages (Birks et al., 2016). To the best of our knowledge, our
study is the first to investigate the ecological uniqueness in terms
of richness and replacement using sediment diatom assemblages,
which hampers comparisons with similar works. Further research
in other tropical Andean lakes with available contemporary time
series data is necessary to assess the generality of this finding.

Our GAM time series models (HGAMs) further delineate
temporal beta diversity patterns in tropical Andean lakes
of varied size, limnology, and climatic conditions that can
provide a regional, long-term perspective of biodiversity changes
(Dornelas et al., 2014; McGill et al., 2015). A decreasing trend
in beta diversity over time (biotic homogenization) has been
assumed to be a result of increased human impacts (Olden
and Rooney, 2006). In our case, we found signs of long-term
biotic homogenization of diatom assemblages, as measured by
decreasing trends of beta replacement over the past ca. 200
years across the four lakes investigated from Ecuador (Figure 4).
Nonetheless, beta replacement values fluctuate around a long-
term mean for the whole time series, and no periods with
substantial increases or decreases in beta diversity arose. In
contrast, biotic differentiation (i.e., increase of beta replacement
over time) was found in the two deep freshwater lakes of the
Altiplano. Admittedly, the low sample density for the most recent
period of these two lakes is not captured well by the GAM
models (as in Piñan before ca 900 cal. years BP), resulting in
wide confidence intervals, like with any other smooth regression
approach (Simpson, 2018).

A high context dependency exists among studies that
investigate biotic homogenization and its explanatory factors at
varied spatial and temporal scales in aquatic ecosystems. In the
case of lake sediment diatoms, Winegardner et al. (2017) did not
find patterns of biotic homogenization across the conterminous
United States between ca. 150 years ago and modern times.
In a study on tropical reservoirs affected by eutrophication,
Wengrat et al. (2018) found a decreasing trend of spatial
beta diversity over the past 100 years. Eutrophication-driven
homogenization was also reported by Salgado et al. (2018) using
macrophyte paleoecological assemblages. These observations
highlight the usefulness of the HGAM models used here for
detecting temporal beta diversity trends across space: as this
approach does not assume any specific dynamics in the time
series, it is possible to determine if broad-scale environmental
change (e.g. climate change) led to uniform diversity patterns
across the landscape, or if lake-specific dynamics decouple from
the regional signal. The latter could be the case here, indicating
no widespread biotic homogenization across the tropical Andes.
Additionally, HGAM models allow to circumvent the issue of
harmonization among lake samples (e.g., binning), which is
problematic given the differences in temporal resolution and
length. We suggest that this approach can also be applied to
other aquatic systems that may or may not have well-defined
boundaries and monitoring time series data but that are subject
to strong environmental disturbances (e.g., temporary rivers,
wetlands) (Ruhí et al., 2017).

CONCLUSION

Our approach for investigating ecological uniqueness (i.e.,
LCBD) has the potential to generate new opportunities to
integrate modern ecology and paleolimnology for biodiversity
and metacommunity studies. In this context, we emphasize
several aspects of our results. First, ecological uniqueness
of tropical Andean lakes was linked to local and regional
environmental variables and showed an inverse pattern
for the replacement and richness components of LCBD.
Specifically, mean precipitation and the historical human impact
mediated how ecologically unique the lakes were, whereas
geodiversity (soil variability, terrain ruggedness), temperature
seasonality and conductivity mediated, in an opposite manner,
its replacement and richness components. We suggest this
finding has different management and conservation measures.
For instance, individual lakes characterized by high terrain
ruggedness and low conductivity are clear management targets
if local diatom richness is a conservation goal; if the goal is
to conserve lake-catchment systems within a given spatial
context (beta diversity), lakes with low soil variability and low
Na+ content may be suitable management targets. Second, by
identifying diatom richness contributions to beta diversity over
time, we were able to observe a shared limnological response to
warm/dry climatic changes centered around the MCA driven by
decreased temperature seasonality and conductivity. However,
diatom sedimentary assemblages should not be interpreted as a
unique response to environmental change because, for instance,
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temperature seasonality might have a stronger effect on planktic
communities than on the benthos via thermal structure impacts
as a result of warming or drying. If environmental variation
mediates the relationship between replacement and richness
components of beta diversity, then increasing limnological
changes due to climate change and human impacts will likely
destabilize long-term metacommunity stability; this could be the
case in páramo lakes of Ecuador as seen by higher correlations
between both LCBD components over time. Finally, we have
provided a broader perspective of aquatic biodiversity change
over the Common Era (last 2000 years) with beta replacement
trends to test the hypothesis of recent biotic homogenization.
Considering diatoms are one of the most sensitive groups
of organisms, situated at the base of aquatic food webs,
the decreasing trends in temporal beta diversity across lakes
in the Ecuadorean Andes, albeit being lake-specific and not
unprecedented, may cause unexpected effects in the structure and
functioning of these ecological and climatic sensors in vulnerable
tropical high-elevation ecosystems.
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