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Decision-making under uncertain conditions favors bet-hedging (avoidance of fitness
variance), whereas predictable environments favor phenotypic plasticity. However,
entirely predictable or entirely unpredictable conditions are rarely found in nature.
Intermediate strategies are required when the time lag between information sensing and
phenotype induction is large (e.g., transgenerational plasticity) and when cues are only
partially predictive of future conditions. Nevertheless, current theory regards plasticity
and bet-hedging as distinct entities. We here develop a unifying framework: based on
traits with binary outcomes like seed germination or diapause incidence we clarify that
diversified bet-hedging (risk-spreading among one’s offspring) and transgenerational
plasticity are mutually exclusive strategies, arising from opposing changes in reaction
norms (allocating phenotypic variance among or within environments). We further explain
the relationship of this continuum with arithmetic mean maximization vs. conservative
bet-hedging (a risk-avoidance strategy), and canalization vs. phenotypic variance in
a three-dimensional continuum of reaction norm evolution. We discuss under which
scenarios costs and limits may constrain the evolution of reaction norm shapes.

Keywords: phenotypic plasticity, trans-generational plasticity, bet-hedging, coin-flipping, gene-by-environment
interaction, canalization, adaptation, climate change

INTRODUCTION

Changing conditions can promote evolutionary change in various ways (Botero et al., 2015; Tufto,
2015). One commonly envisioned mode of evolution is the continuous change of trait means as
result of changing mean conditions (Darwin, 1859). Yet, although trait changes in response to novel
conditions are widely observed (e.g., due to climate change, Piao et al., 2019), they frequently result
from phenotypic plasticity (Boutin and Lane, 2014), i.e., changes of the phenotype in response to an
environmental cue. Phenotypic plasticity may provide a short-term relief from changing conditions
(Charmantier et al., 2008; Chevin et al., 2010), but also shield a genotype from selection and thereby
prevent evolution (Oostra et al., 2018), or it may facilitate evolution via genetic accommodation
(Kelly, 2019). In any case, phenotypic plasticity is a pervasive evolutionary strategy, and considered
a major factor in a rapidly changing climate (Fox et al., 2019).

The time scale of phenotypic change depends on the time scale of environmental fluctuation
(Rando and Verstrepen, 2007; Stomp et al., 2008). Fluctuations over very rapid timescales can be
addressed by reversible plasticity, which includes, for example, the induction of plant defense when
herbivores are present (Green and Ryan, 1972). Gradual long-term changes, on the other hand, are
addressed by genetic adaptation. Between those extremes lie environmental fluctuations that are
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roughly on the scale of one life span. When environments change
over the course of an organism’s development, they can be tackled
by irreversible developmental plasticity, i.e., plastic adjustment
of developmental pathways that lead to alternative phenotypes
(Botero et al., 2015). For example, some Daphnia can produce
protective phenotypes when chemical cues from predators
are sensed during development (Krueger and Dodson, 1981).
When environments are constant throughout an organism’s life
time but change from one generation to the next, phenotypic
change can be induced in the offspring generation. These are
referred to as anticipatory parental effects (Burgess and Marshall,
2014) or intergenerational inheritance (Perez and Lehner, 2019).
For example, aphids that live under crowded conditions may
produce winged offspring that can leave the colony and avoid
high predation pressure or plant deterioration (Braendle et al.,
2006). Lastly, when environmental fluctuations last for several
generations, epigenetic modifications may be integrated into
the germ line and affect multiple succeeding generations. This
is referred to as transgenerational plasticity or non-genetic
inheritance (Perez and Lehner, 2019; Adrian-Kalchhauser et al.,
2020). For the remainder of the article we will refer to all these
irreversible changes simply as phenotypic plasticity, ignoring the
potential physiological constrains that may limit their evolution.
They all have in common that there is a long delay between
information sensing and phenotype induction.

Although often assumed, phenotypic plasticity does not
need to be adaptive (Ghalambor et al., 2007; Arnold et al.,
2019). Plasticity requires some environmental cue on which
the induction of phenotypic change is based, and uncertainty
around the future environmental state may turn plasticity
maladaptive (Burgess and Marshall, 2014; Donelson et al.,
2018). Such unpredictable conditions instead favor bet-hedging,
which refers to the reduction of fitness variance (Cohen,
1966; Seger and Brockmann, 1987; Starrfelt and Kokko, 2012).
Bet-hedging can be achieved by avoiding risky investments
(conservative bet-hedging), or by spreading the risk among
one’s offspring (diversified bet-hedging), i.e., producing offspring
with varying phenotypes (Seger and Brockmann, 1987; Starrfelt
and Kokko, 2012). Although empirical evidence is difficult
to obtain (Simons, 2011), bet-hedging is a likely explanation
for high trait variance or unexpected trait means in many
systems, such as the seed dormancy of desert annuals (Cohen,
1966), diapausing strategies of insects (Hopper, 1999) and
annual killifish (Furness et al., 2015), wing dimorphisms
(Grantham et al., 2016), facultative sexual reproduction
(Gerber and Kokko, 2018), dispersal and partial migration
(Goossens et al., 2020).

At fluctuations of intermediate time scales where there is a
delay between information sensing and phenotype induction,
both phenotypic plasticity (e.g., Baker et al., 2019) and bet-
hedging (e.g., Venable, 2007) may be expected to evolve. Various
theoretical studies have clarified the conditions that may lead to
one or the other (Botero et al., 2015; Tufto, 2015), but although
occurring potentially simultaneously, bet-hedging and plasticity
are nevertheless often treated independently (Donelson et al.,
2018). Moreover, when diversified bet-hedging and plasticity
are considered jointly, there is no clear consensus about their

exact relationship. Adaptive offspring variance that is needed
for diversified bet-hedging might be either established by
developmental instability (Simons and Johnston, 1997; Kærn
et al., 2005; Veening et al., 2008; Woods, 2014; Dueck et al.,
2016; Perrin, 2016) or by overly relying on cues with little
predictive power (“microplasticity,” Simons and Johnston, 2006;
“hyperplasticity,” Scheiner and Holt, 2012). With this article we
aim to clarify the relationship between bet-hedging and plasticity,
with special attention to readers that are familiar with plasticity
but less familiar with bet-hedging theory. We will first use
one simple numerical example (insect diapause) to explain the
relationship of diversified bet-hedging, conservative bet-hedging
and arithmetic mean maximization in detail. We will then extend
the consideration to a range of environments whose state is
partially predictable, thereby adding the potential for phenotypic
plasticity. Lastly, we generalize from our example and describe a
method to quantify phenotypic plasticity and bet-hedging based
on reaction norm shapes.

AN EXAMPLE

Common examples of bet-hedging are transgenerational
biphenisms, i.e., the parent decides among two possible
physiological states of the offspring in the face of uncertainty
(e.g., Cohen, 1966; Grantham et al., 2016; Maxwell and
Magwene, 2017; see Simons, 2011 for further examples). One of
these examples is the timing of insect diapause (Halkett et al.,
2004; Pélisson et al., 2013), which we will use to illustrate the
theory throughout this article.

Multivoltine insects benefit from exponential population
growth throughout the growing season, but need to produce an
overwintering (diapausing) generation before the onset of cold
weather (Kivelä et al., 2016). Aphids, for example, reproduce
by parthenogenesis during summer, which enables particularly
quick population growth; in autumn they invest in sexual
offspring that produce diapausing eggs, as frost kills the soft-
bodied insects and only eggs survive (Simon et al., 2002).
The struggle to keep the growing season long on one hand
and to avoid death on the other hand puts diapause timing
under intense selection pressure. If the onset of frost would be
invariant, day length could be used as reliable cue of impeding
winter, so plasticity in response to day length is expected to
evolve. However, if just one generation faces early frosts, all
offspring may simultaneously die and the genotype is driven
to extinction, regardless of their otherwise high growth rates.
Under unpredictable or only partially predictable conditions,
bet-hedging strategies may therefore be expected to evolve
(Halkett et al., 2004).

For the remainder of this article we will use examples that
are loosely based on aphid overwintering. We will assume that
parthenogenetic offspring (P1) may produce four offspring when
environmental conditions are mild, but face a 90% mortality rate
when conditions change. In contrast, diapausing offspring (P2)
only replace themselves with 1 offspring in either environment.
Hence we assign phenotype P1 a fitness value of 4 in E1 (summer),
but only 0.1 in E2 (winter), whereas phenotype P2 achieves 1
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fitness in either environment. We assume that the evolution of
these growth rates is constrained, so only the proportion of each
phenotype may evolve.

ARITHMETIC MEAN MAXIMIZATION,
DIVERSIFIED BET-HEDGING AND
CONSERVATIVE BET-HEDGING

We wish to explain the bet-hedging concept in detail with a few
numerical examples. We first consider an entirely unpredictable
environment, in which an aphid mother cannot collect any
information about the potential environment of their offspring,
i.e., there is a 50% chance that the offspring will face beneficial
summer conditions (E1), but also a 50% chance for harsh
winter conditions (E2). A genotype that invests exclusively in
parthenogenesis (P1) achieves on average 2.05 fitness (Table 1),
while increasing the proportion of diapausing offspring (P2)
lowers arithmetic mean fitness. Nevertheless, a genotype that
invests exclusively in diapause (P2) is more successful on the long
term, because the parthenogenetic genotype nearly dies out every
two years. For example, a parthenogenetic population would
decline to 16% of its original size over four years (4 ∗ 0.1 ∗ 4 ∗
0.1), while the population size of the diapausing genotype would
remain constant. The arithmetic mean obviously fails here as
predictor of long-term population growth.

If there are multiple decisions to make and the outcome is
multiplicative, the geometric mean is a much better predictor
for long-term growth, because it is sensitive to variance among
years (Cohen, 1966; Seger and Brockmann, 1987; Starrfelt and
Kokko, 2012). In the above example of population growth over
multiple years, the lower arithmetic mean fitness was more
than compensated by the reduction in fitness variance, therefore
the risk-averse strategy achieved higher geometric mean fitness
than the arithmetic mean maximization (AMM) strategy. This
risk-aversive strategy of investing in lower fitness fluctuation at
the cost of arithmetic mean fitness is called conservative bet-
hedging (CBH), akin to investing in gold when stock markets
fluctuate. The risky strategy of maximizing arithmetic mean
fitness (AMM), on the other hand, is superior when fluctuations
are low, and an analogy in economics would be the investment
in a highly profitable product that is not insured against
loss (“unhedged”).

Now let us consider a genotype with high developmental
instability, i.e., whose offspring phenotype is randomly
determined (Table 1). This means that the arithmetic mean
fitness is not reduced as strongly as that of the risk-aversive
phenotype (100% P2), but the fitness fluctuation between E1 and
E2 is also not as great as that of the arithmetic mean maximizer
(100% P1). This genotype will increase in population size over
four years by the factor 1.89 (2.5 ∗ 0.55 ∗ 2.5 ∗ 0.55), so in this
example it is clearly superior to both CBH and AMM. Investing
equally in both phenotypes (P1 and P2) breaks down the fitness
correlation among the offspring, as half of the offspring takes a
risk, while the other half plays it safe (Starrfelt and Kokko, 2012).
This strategy is similar to investing in a portfolio of stocks rather
than a single stock and is called diversified bet-hedging (DBH).

The geometric mean can be calculated for any phenotype
proportion p (proportion of P2) between 0 and 100% (Figure 1A,
solid blue line), showing that actually neither of the three
strategies (AMM, CBH, DBH) is optimal. Instead, p = 0.61,
i.e., a mix of CBH and DBH, yields the highest geometric
mean fitness (Table 1). Starrfelt and Kokko (2012) explored the
relationship among AMM, CBH and DBH in great detail, and
explained fitness optimization as a three-way trade-off between
maximizing the arithmetic mean, reducing fitness variance, and
reducing fitness correlation among the offspring. However, as
outlined in our example, this three-way relationship breaks
down to a simple linear gradient when there are exactly two
phenotypes to choose from.

The same principles also apply when the two environments
do not occur with equal frequency, e.g., when the probability of
E2 (winter) is reduced to 20%. In this case the arithmetic mean
fitness of P1 and P2 needs to be weighted by the frequencies
of E1 and E2. Nevertheless, arithmetic mean fitness is still a
linear function of the phenotype proportion p (Figure 1A, dashed
orange line), and increasing the proportion of P2 constitutes
a change from AMM towards DBH or CBH. In this example
with only occasionally adverse conditions, the optimum lies at
p = 0.17 (solid orange line), i.e., much closer to an AMM strategy.
If the frequency of E2 is raised to 70%, on the other hand,
the optimal strategy moves with p = 0.90 close to pure CBH
(not shown). The optimal strategy thus strongly depends on the
environmental frequency.

We wish to complete this description of fitness maximization
in a single environment with two last special cases. First, we

TABLE 1 | Growth rate calculations for various phenotype proportions in a two-environment system.

Proportion of P2 (p)

0 0.5 1 0.61

E1 4 (0 × 1 + 1 × 4) 2.5 (0.5 × 1 + 0.5 × 4) 1 (1 × 1 + 0 × 4) 2.17 (0.61 × 1 + 0.39 × 4)

E2 0.1 (0 × 1 + 1 × 0.1) 0.55 (0.5 × 1 + 0.5 × 0.1) 1 (1 × 1 + 0 × 0.1) 0.65 (0.61 × 1 + 0.39 × 0.1)

Arithmetic mean 2.05 1.53 1 1.41

Geometric mean 0.63 1.17 1 1.19

A genotype may invest in two different phenotypes, P1 and P2, with a fixed proportion p. P1 has four offspring if in environment E1, but 0.1 if in E2; P2 achieves 1 fitness
in either environment. We show arithmetic and geometric mean fitness across environments (Environments E1 and E2 are chosen with probability 0.5), as well as their
calculation (italics).
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FIGURE 1 | Geometric (solid lines) and arithmetic mean fitness (dashed lines)
when a genotype can express two discrete phenotypes in a two-state
environment. (A) Conflict between geometric and arithmetic mean
maximization. Environment E2 (e.g., winter) occurs with frequencies of 0.5
(blue) or 0.2 (orange). Phenotype P2 represents a risk-averse phenotype (e.g.,
diapausing offspring) with 1 fitness in either environment, the alternative
phenotype is a phenotype with higher arithmetic mean fitness (4 fitness in E1,
0.1 in E2). (B) No or little conflict between arithmetic and geometric mean
maximization. Blue line: E2 occurs with frequency 0.5 and P1 and P2 are
specialists for E1 and E2, respectively (4 fitness if matched, 0 fitness if
mismatched); gray: same as blue line, but P2 has 3.9 fitness in E2; orange:
fitness is the same as in panel (A), but E2 occurs with frequency 0.8. Colored
dots represent the maxima of the respective functions.

consider the production of two specialist phenotypes, in which
P1 achieves a fitness of 4 in E1, but none in E2, while P2 achieves
0 fitness in E1 but 4 fitness in E2 (thus deviating from the
aphid example). With these parameters geometric mean fitness
peaks at p = 0.5 (Figure 1B, blue solid line), so a strategy that
maximizes developmental instability is optimal. Yet, the mixed
production of offspring does not constitute DBH, because the
diversification does not come at the cost of arithmetic mean
fitness (i.e., the dashed blue line is flat). If, however, the growth
rates of the two phenotypes are slightly uneven, e.g., reduced to
3.9 for P2 in E2, the same investment in P2 would lower arithmetic
mean fitness (dotted gray lines), and hence technically classify
as a diversified bet-hedging strategy. This borderline example
shows that the classification of bet-hedging strategies is not only
a question of whether arithmetic mean fitness is reduced, but
rather by how much. The second special case concerns very high
probabilities of adverse conditions. When the frequency of E2 is

raised to 0.9, it carries so much weight that the arithmetic mean
fitness does not decrease, but increase with the proportion of P2
(Figure 1B, dashed orange line). The strategy that avoids variance
is hence also the one which maximizes arithmetic mean fitness,
so increasing geometric mean fitness (solid orange line) does not
come at the cost of arithmetic mean fitness and CBH becomes
impossible. In general, the linear gradient from AMM over DBH
to CBH (and, in fact, the occurrence of bet-hedging) breaks down,
when there is no conflict between arithmetic mean maximization
and reduction of fitness variance. We will avoid these special
situations in the remainder of the article.

CALCULATING OPTIMAL REACTION
NORM SHAPES

We so far discussed the optimal phenotype proportion in a single,
isolated environment. However, the benefit of diapause lies in
adapting to a continually changing environment. Like in many
other insects, aphid diapause is mainly governed by night length.
Aphids exclusively reproduce by parthenogenesis under long-
day (short night) conditions, but transition to the production
of sexual forms under long-night conditions (Marcovitch, 1923).
The diapause decision can hence be visualized as a biphenic
reaction norm, in which the x-axis represents a continuous
night length and the y-axis represents a probability (or, from
the mother’s perspective, a proportion) of diapause induction
between 0 and 100%. This reaction norm to night length generally
follows a logit-curve that ranges from a probability of zero under
short nights to a probability of 1 under long nights, and the
inflection point at which half of the offspring are diapausing
forms is called critical day length (Danilevskii, 1965). The night
length response is additionally modulated by temperature (warm
temperatures delay diapause), but we ignore the additional
plasticity in response to temperature in our considerations.

We will now use the diapause example to illustrate how to
calculate optimal reaction norm shapes. Imagine an environment
in which winter onsets over many years always occur at 14 h
night length. Obviously night length would be a reliable cue
and plasticity in response to night length can be expected
to evolve. Conversely, night length is useless as cue for a
plastic response if winter onset fluctuates randomly. Between
those extremes lies an only partially reliable cue, i.e., there is
between-years variation in the relationship of night length and
winter onset. For example, winter onset may in some years
coincide with a night length of 14 h, but fall in other years
on an earlier (13.8 h) or later (14.5 h) date, which can be
described by a normal distribution with a mean of 14 h and
some standard deviation. We now use three different scenarios
of how environmental conditions (winter onset) may vary: 1)
Winter onset fluctuates according to a normal distributionN1(14,
1) with a mean cue value of 14 h and standard deviation
1; 2) Winter onset follows a normal distribution N2(14, 4)
with a mean cue value of 14 h and standard deviation 4,
thus simulating lower predictability by night length; 3) Winter
onset fluctuates according to a normal distribution N3(14,
2) with standard deviation 2, but half of the winters are
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mild enough that offspring of type P1 (e.g., parthenogenetic
offspring) can survive.

The cumulative distribution function of N describes the
probability that winter will occur at a night length of c or lower
(Figure 2A). If, for example, an aphid lives in an environment
of exactly 14 hours night length, it can expect that the offspring
will experience winter conditions with a 50% probability (the
optimal phenotype proportion is then 0.61, see Table 1). At 13 h
night length winter onset is less probable (18%) for environment
N1 (blue line) than for N2 (41%, orange line), because winter
onset variability is lower. In N3 the probability distribution
must be multiplied by 0.5, i.e., with the chance that winter is
mild (green line). This reduces the probability of winter onset
at c = 13 h to 16%. Given these environmental frequencies

FIGURE 2 | Panel (A) Probability of encountering environment E2 (winter
conditions) for different values of an environmental cue c (e.g., night length). E2

fluctuates around c according to three normal distributions N1(14,1), N2(14,4),
and 0.5 * N3(14,2) (blue, orange, green). Shown are cumulative probability
functions of the three distributions. (B) Optimal reaction norm shapes (e.g.,
proportion p of diapausing offspring for different night lengths) under the three
scenarios of environmental uncertainty introduced in panel (A). As in the main
text, fitness of P1 (parthenogenesis) is 4 in E1 and 0.1 in E2, whereas fitness of
P2 is always 1. (C) optimal reaction norm shapes when fitness of P1 is 4/0
and fitness of P2 is 1.8/1.8 in E1/E2, respectively. Dotted lines represent
c = 14 h, small colored dots refer to the examples given in the main text.

and the fitness values introduced earlier (parthenogenesis: 4/0.1;
diapause: 1/1; in summer/winter conditions, respectively), one
can now calculate the optimal proportion p as described
in section “Arithmetic Mean Maximization, Diversified Bet-
Hedging and Conservative Bet-Hedging.” This proportion is 0.47
(nearly pure DBH) in scenario 1, as there is considerable risk of
unfavorable conditions, but in scenarios 2 and 3 the ratios drop
to 0.12 and 0.11, respectively. Thus, DBH is favored over pure
AMM with increasing probability of winter conditions. The same
calculations can be performed along the whole range of c, so
the complete optimal reaction norm can be calculated if mean
and standard deviation of the environment-cue relationship are
known (Figures 2B,C).

With these considerations we explained the reaction norm
shape as a series of binary decisions. In each of these decisions,
phenotype proportions may range from AMM to CBH, with
DBH in between. The overall degree of bet-hedging is hence
defined by the reaction norm shape, and in our specific examples
mostly correlates with the reaction norm slope (Figure 2B,
orange and blue lines) and range (green line). However, as
indicated by the skew in the orange line towards the lower
range of c (AMM is discouraged even under low risk) in
Figure 2C, more complex shapes are also possible and the
relative contribution of each strategy is difficult to quantify.
Furthermore, our examples are based on cumulative densities
of normal distributions, but depending on the environmental
cue, other shapes (e.g., bimodal, sinusoid) are possible. We
hence require summary statistics that adequately describe the
reaction norm shape.

CLASSIFICATION OF REACTION NORM
SHAPES

In this section we will describe some typical reaction norm
shapes and discuss useful summary statistics to describe the
overall degree of plasticity, arithmetic mean maximization,
conservative bet-hedging and diversified bet-hedging. First, let
us assume a “plastic” reaction norm (Figure 3A, dark blue
line). A step function describes a sudden switch from one
phenotype (AMM) to the other (CBH), and the number of
environments in which a mix of phenotypes is produced is
minimized. This function maximizes the standard deviation of
phenotype proportions p across environments. We refer to the
variance of p as σ2

among . The opposite of a step function is
one in which the mother’s decision is entirely independent of
the environmental cue, i.e., left to developmental instability,
and both phenotypes are produced in equal measure (DBH;
Figure 3A, light blue line). While σ2

among is zero, there is
variance in phenotypes within each environment (σ2

within). The
trait choice is a Bernoulli draw and the variance of each
p is calculated as p ∗ (1 – p), so we define σ2

within across
environments as the mean Bernoulli variance. The two variance
components (among and within environments) complement
each other, and we define their sum s = σ2

among + σ2
within as

the phenotypic variance of the genotype. It is not possible to
maximize both σ2

among (steep slope, high range) and σ2
within
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FIGURE 3 | Example reaction norm shapes. (A) Four reaction norm shapes that exhibit high phenotypic variance. Variance may occur exclusively among
environments (dark blue), exclusively within each environment (light blue), or as a mix of both variance components (medium blue, solid and dashed). We refer to the
ratio of the variance components (among : within) as r. (B) Three different reaction norms with r = 0 (solid lines), and two different reaction norms with r = 0.14
(dashed). The reaction norms differ in the mean frequency f of phenotype P2, which also affects the phenotypic variance s (i.e., the sum of variance among and
within environments). Reaction norms with f = 0 (light orange) and f = 1 (dark orange) are canalized (s = 0), and phenotypic variance is maximized at f = 0.5 (see
panel A). (C) Two logistic reaction norms with the same f and r, but different inflection points. (D) possible parameter space of r, f, and inflection points. Gray dots
depict sample reaction norms across the range of possible parameters (darkness scales with z-axis), colored dots indicated samples from panels (A–C) in their
respective color.

(minimal departure from 50%) at once, but intermediate reaction
norms with mixed contributions of σ2

among and σ2
within are

possible (solid and dashed medium blue lines). The trade-
off between σ2

among and σ2
within can be described by the ratio

r =
σ2
among

σ2
within

. r thus describes the degree of developmental

(in)stability across environments.
The variance composition is not the only parameter in which

reaction norms may vary. Reaction norms may, for example,
be flat (r = 0), but the proportion of P2 (p) might be zero
(Figure 3B, light orange line), 0.8 (dark orange) or 1 (darkest
line) in all environments. These reaction norms differ in the
mean frequency of phenotype P2 across environments, which we
denote as f. A frequency of zero indicates a pure AMM strategy,
while f = 1 is a pure CBH strategy. A mean frequency of 0.5
indicates a reaction norm with maximal phenotypic variance (s),
enabling the aforementioned gradient from phenotypic plasticity
to DBH (Figure 3A, solid lines). As with Figure 3A, intermediate
reaction norm shapes are also possible: a reaction norm may,
for example, range from p = 0 to p = 0.3 or from p = 0.7 to
p = 1 (Figure 3B, dashed lines). Reaction norms can thus vary
from complete canalization to high phenotypic variance, and
we express their shape by mean frequency of phenotype P2 and
by the variance composition. A canalized reaction norm may

be only expressing risk-aversive phenotypes, or only expressing
arithmetic mean optimizers, whereas high phenotypic variance
may indicate steep plastic reaction norms or DBH.

The two shape parameters f and r reflect the reaction norm
shape to a reasonable extent, but as summarizing statistics
they cannot sufficiently describe all its features. For example,
the reaction norms in Figure 3C both share the same mean
frequency (0.5) and variance composition (0.47), but the
strategies under environments that correspond to a low cue c
differ considerably. In our aphid example these two strategies
differ in the mean timing of diapause induction, which is an
important consideration when the onset of seasons is under
directional change (IPCC, 2014). This mean timing can be
assessed by calculating the inflection point (called critical day
length for diapause reaction norms), but for non-logistic reaction
norms or more complicated reaction norm shapes a different
approach, e.g., based on autocorrelation patterns, is required.

In summary we discussed three important parameters that
describe a reaction norm shape: The frequency f, the variance
composition r (among:within environments), and (for logistic
reaction norms) the inflection points. These three parameters
are partially interdependent of one another, and can be drawn
as three perpendicular axes (Figure 3D; see also Supplementary
Figure S1 for an alternative representation). The resulting
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parameter space has three distinct ends which conform to
maximum plasticity (i.e., a step-function, dark blue dot), CBH
(dark orange), and AMM (light orange). Parameters outside
these bounds are not possible, e.g., DBH and plasticity cannot
occur in canalized reaction norms, and on the other hand mean
frequencies of 0.5 necessarily imply phenotypic variance by
DBH or plasticity.

REACTION NORM EVOLUTION

So far we described optimal strategies in a single environment
(Section “Arithmetic Mean Maximization, Diversified Bet-
Hedging and Conservative Bet-Hedging”), calculated optimal
reaction norm shapes (Section “Calculating Optimal Reaction
Norm Shapes”), and explored which reaction norm shapes
are generally possible (Section “Classification of Reaction
Norm Shapes”). We now return to our aphid diapause
example to illustrate how optimal reaction norms change when
environmental conditions and fitness functions are altered. We
will cover cases with more frost-resistant parthenogenetic forms
(i.e., higher fitness of P1 in E2), harsher summer environments
(lower fitness of P1 in E1), and three forms of change in the
environment that are directly relevant for aphid biology: first,
mean winter onset may vary with latitude, with earlier winter
onset at high latitudes (Danilevskii, 1965). Secondly, winter onset
dates may vary among years, which is the condition that should
lead to bet-hedging in diapause timing (Halkett et al., 2004).
Lastly, aphid populations in warmer climates frequently lost the
ability to produce sexual forms and reproduce by parthenogenesis
throughout the year (anholocyclic life cycles, Simon et al., 2002).
The preparation for winter makes only sense if there is sufficient
change in environmental conditions, so this kind of canalization
(obligate development) is expected at southern latitudes.

We start with environments that vary in among-years
predictability. Using night length (in hours) as a cue c, we
consider scenarios where winter onset is normally distributed
with a mean cue c of 14 and standard deviations ranging
from 0 to 10. In our standard example with growth rates of
4/0.1 (parthenogenetic) and 1/1 (diapausing), the optimal mean
frequency f of risk-aversive (diapausing) phenotypes increases
with environmental variance (Figure 4A, blue solid line), while
the variance ratio r (among : within environments) decreases
(Figure 4C, blue solid line). Thus, a greater tendency towards
DBH and CBH is expected to evolve across environments in
unpredictable conditions (see also Figure 4B, blue lines). With
decreasing growth rate of P1 in E1(parthenogenesis in summer)
the optimal ratio decreases less sharply and the frequency
of P2 (diapause) increases more strongly (solid orange and
green lines in Figure 4A, green lines in Figure 4B). Here the
riskier strategy pays off less, and the balance is shifted towards
CBH. When the growth rate of P1 in E2 (winter) is raised to
0.33 (frost tolerance) both r and f change less steeply with
environmental unpredictability (dashed lines), i.e., the optimal
reaction norms tend towards AMM. Increasing the growth rate
in E2 further to 0.66 (dash-dotted lines) leads to a strategy that
ignores environmental risk, except when the chance of mild

FIGURE 4 | Optimal reaction norm shapes for various growth rate functions
and different levels of environmental predictability. Environments are normally
distributed around a cue c with a mean of 14. Mean frequency f of phenotype
P2 (Panel A) and variance composition r (Panel C) are plotted against standard
deviation of the environment. Growth rates of P2 (diapause) are always 1 for
both environments (summer and winter); growth rates of P1 (parthenogenesis)
in E1/E2 are 4/0.1 (blue, solid), 3/0.1 (orange, solid), 2/0.1 (green, solid);
4/0.33, 3/0.33, 2/0.33 (dashed blue, orange and green lines); and 4/0.66,
3/0.66, 2/0.66 (dash-dotted blue, orange and green lines). Panels (B–D) show
optimal reaction norms for environments with standard deviations of 2 (darker
shade) and 8 (lighter shade) in the according line styles and colors.

(summer) conditions is very low. The range of environments that
feature a sufficiently low chance of P1 decreases with increasing
environmental variance, causing a drop of both f and r as a sign
of canalization to AMM (Figure 4D). Overall, both CBH and
DBH can be expected under unpredictable conditions, but their
relative benefits vary depending on the arithmetic mean fitness of
risk-aversive and risk-prone phenotypes.

We now simulate global changes in the probability of events,
for instance increased or decreased probabilities of severe
winters. For the latter, we multiply the normal distribution by 0.5,
overall halving the probability of being in the harsh environment
E2 (see also Figure 2A). This discourages risk-aversion and, for
example, having all offspring diapausing is no longer beneficial
(Figure 5). When the growth rate of P1 is either 4 (summer)
or 0.1 (winter), the frequency f stagnates at 0.2 to 0.25, while
the ratio r decreases from 0.47 to 0.17 (Figures 5A,C, solid blue
line). This is because the reaction norm range is constrained
(Figure 5B). A lower growth rate of P1 in E1 restores phenotypic
variance (Figures 5A,C, orange and green lines), as it reduces
its arithmetic mean fitness and makes the alternative phenotype
again more profitable (Figure 5B, green lines). Lowering the
environmental risk further increases the benefit of arithmetic
mean maximization (dashed lines) and eventually leads to AMM
under all environmental conditions (dash-dotted lines). Overall,
Figure 5 shows that a global reduction of the probability for
E2 may discourage CBH, and instead favor AMM. For example,
a lower risk of freezing in winter may explain the existence of
anholocyclic lines.
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FIGURE 5 | Optimal reaction norm shapes for various growth rate functions
and different levels of environmental predictability. Environments are normally
distributed around a cue c with a mean of 14, but multiplied by 0.5. Panels,
growth rates, coloring and line styles are the same as Figure 4.

A third axis of environmental variation concerns changes in
mean environments. Moving the distribution of environments
to a mean c of 9 h simulates the change of winter onset with
latitude, as well as the effects of a changing climate. Although
highly relevant for the optimization of fitness, the changes in
optimal reaction norm shapes are trivial to describe. We refer to
Supplementary Material S2 for further exploration.

In general, we find that r and f evolve with changes in
environmental predictability (Figure 4, solid lines), leading to
CBH and DBH in unpredictable environments. Changes in the
fitness function (growth rates in our example) may, however,
affect the balance of AMM and CBH, and very low rewards
for CBH instead lead to the evolution of risky strategies that
seek to maximize the arithmetic mean (Figure 4, dash-dotted
lines). When the probability of adverse conditions is globally
lowered across the range of environments (e.g., mild winters),
the reaction norm range can become constricted, which further
affects the balance of the fitness maximization strategies. Lastly,
f additionally depends strongly on the mean environment (e.g.,
winter onset, Supp. S2), but within reasonable limits the general
shape of the reaction norms is not affected.

DISCUSSION

Phenotypic plasticity can help organisms adapt to changing
conditions (Fox et al., 2019), but this requires a predictable
cue (Bonamour et al., 2019). Especially for transgenerational
plasticity cues are not entirely predictable (Burgess and Marshall,
2014; Donelson et al., 2018), which, at least under some
conditions, favors bet-hedging instead (Botero et al., 2015;
Tufto, 2015). Nevertheless, the value of bet-hedging strategies as
alternatives to plasticity is frequently overlooked.

Starrfelt and Kokko (2012) have explained bet-hedging,
including its mathematical foundation, in great detail. The
main finding was that arithmetic mean fitness maximization,
diversified bet-hedging and conservative bet-hedging form a

three-way trade-off of conflicting strategies. However, it was
difficult to see how these strategies play out in practice (Haaland
et al., 2020). We provided a simple, detailed calculation of fitness
based on insect diapause as example. Based on this system with
only two possible phenotypes (biphenisms) we described how
a conflict between arithmetic and geometric mean optimization
can result in bet-hedging (Figures 1A,B). We explained that
the three strategies form a gradient, in which arithmetic mean
maximization (AMM) and conservative bet-hedging (CBH) are
represented by distinct phenotypes, and diversified bet-hedging
(DBH) by a mixture of the two extremes. We also extended the
concept by adding a cue the organisms can respond to, thereby
incorporating reaction norms and the potential for phenotypic
plasticity. We identified the mean phenotype frequency f and
the variance composition r as two summary statistics of reaction
norms that allow distinguishing between AMM, CBH, DBH
and plasticity, and the sum s of the variance components as a
measure of phenotypic variance. Moreover, for logistic reaction
norm shapes we discuss the inflection point as a third useful
summary statistic.

Arithmetic Mean Maximization vs.
Conservative Bet-Hedging
In section “Arithmetic Mean Maximization, Diversified Bet-
hedging and Conservative Bet-hedging” we described AMM,
DBH and CBH as a linear gradient of strategies to cope with a
single environment. When extended to multiple environments,
a flat reaction norm at p = 0 (Figure 3B, light orange line)
maximizes arithmetic mean fitness (see also Figure 1A), and
any adaptive deviation from this line incorporates some bet-
hedging (in the cases we consider; see Figure 1B for exceptions).
Thus, the mean phenotype frequency f is a direct measure of
the degree of CBH in a reaction norm shape. We illustrated
that f correlates with the frequency of the harsh environment E2
(compare Figure 4A and Supplementary Figure S1, panel A),
but f also changes with the degree of environmental variance:
higher environmental risk shifts optimal reaction norms towards
DBH and CBH (Figure 4A, solid lines; Figure 4B, dark blue
vs. light blue lines), in line with expectations from other studies
(Simons, 2011; Tufto, 2015). This shift is particularly noticeable
when the potential fitness gain from a risk-prone strategy is
low (Figure 4B green lines; Figure 2C, orange lines). If, on the
other hand, the risk is reduced and the potential pay-off high
(Figure 4A, dashed and dot-dashed lines; Figure 5), the optimal
reaction norm shapes are shifted towards risk-prone (AMM)
strategies (Halkett et al., 2004). Thus our framework made clear
that arithmetic mean maximization and variance avoidance form
exact opposites on a gradient of strategies that is reflected by f
(Figure 3D, y-axis).

We have illustrated that frequencies or means of reaction
norms that mismatch with environmental means might serve a
function. Recent climate change imposes novel environmental
conditions, and species or populations whose trait means do not
evolve in concert with environmental means are often considered
as under risk (e.g., Charmantier and Gienapp, 2014), ignoring
that this phenotype-environment mismatch may in fact be due
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to an adaptive CBH strategy. This is not to say that CBH can be
invoked whenever environmental variance is observed (Simons,
2011), but any combination of mean maximization and variance
avoidance (f ) has the potential to be adaptive depending on life
history and environmental variance.

Phenotypic Plasticity vs Diversified
Bet-Hedging
Reaction norms that are not entirely canalized exhibit some
degree of phenotypic plasticity and/or diversified bet-hedging
(Figures 3A,B,C), and we expressed their relative contribution
with the variance ratio r. When environmental cues convey
reliable information, a high r is adaptive, i.e., phenotypes change
with the environmental cues, but vary only little for any given cue
(solid dark blue lines in Figures 2B, 3A, 4B; Botero et al., 2015;
Tufto, 2015). This reaction norm pattern is commonly referred
to as phenotypic plasticity, or, when the offspring phenotype
is dictated by the (grand-) parental environment, as inter- or
transgenerational plasticity (Perez and Lehner, 2019). A low r, on
the other hand, corresponds to DBH across the range of possible
environments (orange line in Figure 2B, solid light blue lines in
Figures 3A,B), and occurs predominantly when cues convey little
information about the optimal phenotype (Cohen, 1966). Our
simple models based on aphid diapause illustrate such a negative
relationship between r and cue variance for all but the most
extreme growth rate functions (Figures 4C, 5C). We therefore see
phenotypic plasticity and diversified bet-hedging as a continuum
of evolutionary strategies that is based on the reaction norm
shape (Figure 3D, x-axis).

This definition extends classical concepts of bet-hedging
and transgenerational plasticity. Plasticity has a long history
of being related to reaction norm shapes (Woltereck, 1913;
Bradshaw, 1965), but diversified bet-hedging is not as easily
visualized, nor is the relationship with plasticity entirely clear.
On the one hand, developmental instability has been seen as
a cause of diversified bet-hedging (Simons and Johnston, 1997;
Kærn et al., 2005; Woods, 2014; Dueck et al., 2016; Perrin,
2016). Low copy numbers e.g., of transcriptional regulators
(Volfson et al., 2006) cause sampling errors that ultimately
lead to expression of alternative phenotypes. On the other
hand, DBH might be produced by a reaction norm to noise
(“microplasticity,” Simons and Johnston, 2006; “hyperplasticity,”
Scheiner and Holt, 2012). For example, Maxwell and Magwene
(2017) engineered a yeast model that evolved a response to
estradiol, a compound that was entirely unrelated to fitness
but ensured phenotypic variance in a fluctuating environment.
Accordingly, the relationship between diversified bet-hedging
and plasticity might be perceived as nested or as one of two
competing strategies. We instead distinguish them as the two
extremes on a continuum of strategies, that correspond to a
continuum of reaction norm shapes.

Fixed vs. Flexible Development
The phenotype frequency f and the variance composition r
are not entirely independent (Figure 3D), because phenotypic
variance s, i.e., the sum of variance among and within

environments, is a quadratic function of f : when f is zero (pure
AMM or CBH, Figure 3B) there is no phenotypic variance and
hence no potential for DBH or phenotypic plasticity. When f is
0.5, on the other hand, DBH, phenotypic plasticity, or a mix of
the two strategies is necessarily required (Figures 3A,D).

In section “Reaction Norm Evolution” we altered the
amplitude between summer and winter conditions, both by
changing the fitness of the phenotypes (Figure 4, green and
orange lines) and by affecting the global probability of E2
(Figure 5). Reductions in the difference between summer and
winter led to a reduction of phenotypic variance, i.e., to a
decrease in f towards canalization (Figures 4A, Figures 5B,D),
illustrating that phenotypic variance is not beneficial when
environments are stable. The relationship between the variance
composition r and environmental variance was, however,
maintained (Figure 5C, dark vs. light lines in Figure 5B).
The benefits of plasticity and DBH under predictable and
unpredictable conditions, respectively, were thus also apparent
under partially canalizing conditions.

Our examples clarified that phenotypic variance is a function
of f in binomial reaction norms, and as such it is equally
related to both phenotypic plasticity and diversified bet-hedging.
The opposite of phenotypic variance (i.e., of plasticity and
DBH) in our models is environmental canalization, a term
which so far has been used ambiguously (Debat and David,
2001), as it was considered either the opposite of plasticity
(Waddington, 1942; Van Buskirk and Steiner, 2009) or of
developmental noise (Gibson and Wagner, 2000; Zhang and
Hill, 2005) alone. Phenotypic plasticity is regarded an essential
component of climate change adaptation (Fox et al., 2019),
precisely because of the variance it entails; moreover, de-
canalization by phenotypic plasticity may accelerate evolution
through genetic accommodation (Kelly, 2019). We argue that
the same mechanisms may apply for all modes of phenotypic
variance, including diversified bet-hedging.

The Importance of Mean Timing
We introduced the inflection point as additional important
reaction norm shape parameter (Figure 3C, z-axis in Figure 3D;
Supplementary Figure S1). In our example the inflection
point determined the mean timing of phenotypic change (i.e.,
the phenology), and clearly depended on the mean timing
of environmental change (Supplementary Figure S2). The
inflection point (called critical day length in diapause reaction
norms) is known to change with latitude (Danilevskii, 1965;
Bradshaw, 1976), and questions regarding its evolution are highly
important under climate change (Saikkonen et al., 2012; Zohner
et al., 2016). While limited to logistic reaction norms, we think
the inflection point as reaction norm shape parameter deserves
special attention, because many phenological traits are of binary
nature (e.g., bird arrival, migration onset, plant germination and
flowering) and hence modeled as logistic reaction norms.

Outlook
The world is simultaneously changing in climate means,
variability and predictability (IPCC, 2014; Lenton et al., 2017;
Bathiany et al., 2018), and there are many phenomenological

Frontiers in Ecology and Evolution | www.frontiersin.org 9 November 2020 | Volume 8 | Article 517183

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-517183 November 21, 2020 Time: 11:27 # 10

Joschinski and Bonte Merging Plasticity and Bet-Hedging

studies on responses to climate change (Parmesan and Yohe,
2003; Badeck et al., 2004; Cohen et al., 2018). However, only few
detailed case-studies on the mechanisms of adaptation (Nussey
et al., 2005; Gienapp et al., 2013; Lane et al., 2018) exist, and one
cannot assume that a matching mean timing or a high level of
plasticity is always adaptive (Boutin and Lane, 2014), just like one
cannot assume CBH or DBH to be an optimal solution (Simons,
2011) – but one can analyze reaction norm shapes with the
proposed shape parameters to decide whether it has the potential
for adaptive tracking, arithmetic mean maximization, plasticity,
bet-hedging or canalization (Joschinski and Bonte, 2020).

There is ample room to extend our framework. First of all,
we focussed only on the optimal reaction norm shape. This
ignores that CBH and DBH are often nearly equally suited
strategies to cope with environmental uncertainty (Starrfelt and
Kokko, 2012), i.e., the shape and curvature of the geometric
mean fitness curve (Figure 1A) requires further consideration.
Secondly, we have restricted our arguments to binary trans-
generationally inherited traits, as these are commonly treated
both empirically (Venable, 2007; Maxwell and Magwene, 2017;
Scholl et al., 2020) and theoretically (Cohen, 1966; Halkett et al.,
2004; Starrfelt and Kokko, 2012; Kivelä et al., 2016; Gerber and
Kokko, 2018). For continuous traits, e.g., offspring size (Marshall
et al., 2008), our calculations may not apply, because AMM, DBH
and CBH need not lie on a linear gradient (i.e., intermediate trait
values need not incur highest trait variance). Nevertheless, theory
regarding Gaussian functions arrives at a similar conclusion:
that offspring variance evolves to the amount of environmental
mismatch that is not already covered by phenotypic plasticity
(Tufto, 2015). This is equivalent to our finding that only the
variance composition (r) changes with environmental variability,
whereas the degree of phenotypic variance remains relatively
constant (e.g., Figure 5B). Other possible extensions would
include plastic responses that take place within an individual’s
life time. The opportunity for both within- and transgenerational
plasticity may not only make one strategy obsolete (Luquet
and Tariel, 2016), but also lead to complex interactions among
the two (Fuxjäger et al., 2019). Similarly, fitness may include
multiplicative instances within an individual’s lifetime (e.g.,
iteroparity), shifting the balance from DBH towards CBH
strategies, or conversely sum across generations (“fine-grained”
environments), moving the balance towards AMM strategies
(Haaland et al., 2020). Lastly, there are also potential bet-hedging
strategies that appear entirely unrelated to transgenerational
plasticity. These include, for example, an iteroparous life history
(Garcia-Gonzalez et al., 2015), hotspots for genetic mutations
(“contingency loci”, Rando and Verstrepen, 2007), and sexual
reproduction in general (Li et al., 2017). A unification with these
alternative strategies might lead to a better understanding of
adaptation to rapid climate change.

CONCLUSION

In this review we rephrased reaction norm evolution as a complex
trade-off among four strategies. It is increasingly recognized
that changes in climate extremes and in predictability are as
important as changes in means (IPCC, 2014; Donelson et al.,
2018) – focusing only on strategies to match the mean is hence
not fruitful. For example, failure to shift mean phenology with
climate change (Gienapp et al., 2013) is not problematic per se – it
could be mitigated by concurrent changes in phenotypic variance.
Similarly, the lack of both phenotypic plasticity and mean change
may not have severe fitness consequences, if the lack of plasticity
is mitigated by diversified bet-hedging. It is the combination
along all three axes that defines fitness in a given environment.
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