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Andreu Castillo-Escriva*, Francesc Mesquita-Joanes and Juan Rueda

Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain

The development of metacommunity theory has boosted the implementation of
numerous empirical tests with field data, mostly focused on the role of spatial and
environmental gradients on metacommunity organization. These studies showed an
important dependence of the results on the observational scale considered, i.e., spatial
grain, sampling spacing, and extent. However, few works deal with time per se as a
component explaining metacommunity structure, even when data from periodic sampling
are available. We suggest adding time explicitly to metacommunity analysis, but taking
into account that the temporal scale of observation could affect the estimation of the
relative influence of environment, space, and time, as previously recorded for spatial
scale variation. Here, we analyze temporal scale dependence using simulated and
empirical metacommunities of aquatic invertebrates. The effects of the study duration
(i.e., temporal extent) were stronger when most metacommunity variation occurred along
the temporal axis, so that local communities were spatially homogenized under high
dispersal rates. Contrarily, dispersal limitation and niche differentiation (depending on the
spatio-temporal structure of the environment) kept constant the spatial heterogeneity of
the metacommunity, reducing the temporal variation and the importance of the temporal
scale of observation. Our results highlight the importance of the temporal scale chosen
for the analysis of metacommunity dynamics and emphasizes the temporal perspective
of metacommunities, suggesting novel and interesting avenues in this research program.

Keywords: temporal scale, selection, dispersal, ecological drift, metacommunity dynamics

1. INTRODUCTION

Ecological communities are assembled by a complex interaction of processes, such as niche-related
selection, dispersal, and ecological drift (Vellend, 2010; Leibold and Chase, 2017). Our perception
of these processes strongly depends on the observational scale considered (Soininen et al., 2011;
Heino et al., 2015; Viana and Chase, 2019), but most studies have treated this issue from a spatial
point of view, suggesting a similar behavior for temporal scales. Nevertheless, the effects of variable
temporal scales remain largely unknown (Korhonen et al., 2010; Tomasovych and Kidwell, 2010;
Dornelas et al., 2014).

The relative importance of selection, dispersal and drift vary with the spatial extent of the
study following a generalized conceptual model (Leibold et al., 2004; Leibold and Chase, 2017).
At a small spatial extent, environmental conditions can be mostly homogeneous. Then, all
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the species in the metacommunity may have similar
environmental niches and only stochastic dynamics (ie.,
ecological drift) foster metacommunity variation (Neutral
Theory archetype, NT; Hubbell, 2001). However, despite
the small spatial extent, localities could be environmentally
heterogeneous, sorting species with different niches. Then,
high dispersal (facilitated by short distances among sites) could
maintain populations at suboptimal environmental conditions,
hindering the deterministic responses of the species to the
environment (Mass Effects archetype, ME; Mouquet and
Loreau, 2003). At an intermediate spatial scale, environmental
heterogeneity can increase, and niche filtering then originates
spatial differences in community composition, while dispersal
rates still allow the movement of species to reach (without
surplus) their potentially suitable localities (Species Sorting
archetype, SS; Chase and Leibold, 2003). At a larger spatial
extent, dispersal limitation may spatially restrict the distribution
of species, creating spatial dissimilarities independently of the
environmental conditions and species’ niches (Patch Dynamics
archetype, PD; Leibold et al., 2004), and biogeographic effects.

Under a temporal focus, local temporal turnover can increase
with the study duration (i.e., temporal extent; Wu and Li, 2006)
just because of stochastic fluctuations, as NT and PD (even
ME) assume (Leibold and Chase, 2017). However, environmental
changes can also determine the temporal turnover due to
species sorting, potentially reaching rates higher than those
predicted by stochastic dynamics (Dornelas et al., 2014). At the
metacommunity level, long-term studies have shown either stable
(e.g., Azeria and Kolasa, 2008; Huttunen et al., 2018; Lindholm
et al., 2020) or changing metacommunities through time, due to
environmental fluctuations or disturbances observed (e.g., Datry
et al,, 2016; Sarremejane et al., 2017; Cafiedo-Argtelles et al.,
2020). Nevertheless, the spatio-temporal scale of observation in
each study could explain these differences, depending on whether
or not the study duration covered those relevant environmental
fluctuations (Korhonen et al., 2010).

Previous studies estimated the relative relevance of
different ecological processes by means of partitioning the
metacommunity variation in species composition between the
effects of environmental and spatial variables (e.g., Cottenie,
2005). With this approach, we assume that the fraction of
the species variation explained by environmental variables
is associated with selection (SS) and the rest of the variation
(included pure space and unexplained fractions) is due to neutral
dispersal and drift (NT and PD, even ME). Spatial variables can
capture any spatial variation in the metacommunity, although
we usually choose those spatial variables that are associated
with broad-scale patterns (Dray et al., 2006). These spatial
patterns may be generated by dispersal limitation (i.e., poor
connected localities follow different stochastic dynamics; pure
spatial fraction) and/or be associated with spatial patterns of
the environment (the shared fraction between environment and
space). Some studies have also considered introducing temporal
variables in variation partitioning analyses (e.g., Anderson and
Cribble, 1998; Muylaert et al., 2000; Padial et al., 2014). As
with spatial variables, the temporal variables can explain either
community changes related to (stochastic) fluctuations and

biological cycles or those affected by a temporally-structured
environment (the shared fraction between environment and
time). Considering the relevance of spatio-temporal variables in
these analytical methods is crucial, since metacommunities are
to be considered as dynamic structures, with both spatial and
temporal variation.

Here, we used simulated metacommunities to analyze
the effects of study duration on the relative importance of
environmental, spatial, and temporal variables. We expected that
(1) the effects of the variation in study duration should be
relevant when the metacommunity varies along the temporal
axis (high temporal variation; Figures 1A,B). This could be
a consequence of high dispersal rates, diluting the spatial
variation through time. In this context, local communities
may experience a process of mixing by the high number
of colonizers, temporally synchronizing the metacommunity
(Loreau et al., 2003). On the other hand, we envisage
that (2) the study duration should be less relevant when
the spatial structure of the metacommunity is maintained
through time (low temporal variation; Figures 1C,D). Dispersal
limitation can create permanent differences among localities and
therefore spatial patterns would acquire more relevance (with
high spatial variation; Figure 1D). Similarly, environmental
conditions could also create spatial or temporal patterns
in those metacommunities depending on the environmental
variation, increasing the importance of the temporal scale when
the environmental conditions vary through time. These two
predictions can be considered two extremes of a continuum
between unique temporal or spatial variation. Additionally, we
analyze empirical data sets of aquatic invertebrates from a
temperate setting to compare our expectations as resulting from
the simulations with the field data.

2. MATERIALS AND METHODS

2.1. Model for Simulated Metacommunities
The objective of our simulations was to emulate the temporal
dynamics of metacommunities constrained by different
conditions of selection and dispersal (Figure 2A). To this aim,
we obtained species matrices (i.e., locality x species) at several
points in time for each simulated metacommunity. Then, we
sampled the species matrices changing the study duration but
keeping constant the number of temporal sampling points.
Consequently, we increased the time lag between sampling
events as we extended the study duration (Figures 2B,C).

We used a model based on previous metacommunity
simulations (Gravel et al., 2006; Sokol et al., 2017; Thompson
et al., 2020). These models allow the observation of simulated
metacommunity dynamics along different gradients of selection
and dispersal. The model used had two parts differentiated
in the simulation routine. First (Equation 1), species disperse
among localities and then (Equation 2), the species compete at
each locality depending on their relative abundances and the
environmental conditions, determining the species composition
for the next round. In the Equations 1 and 2, Nj(t) is the
abundance of individuals of the species i in the site j at time ¢,
Nij(t + 1)4 is this abundance after dispersal (i.e., after Equation
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FIGURE 1 | Conceptual model of the variation distribution between the spatial and the temporal axes. Lines represent the abundance dynamics of an hypothetical
species in two sites through time. When abundances temporally vary (A,B), increasing the study duration is relevant because it allows encompassing more
metacommunity variation. On the other hand, when abundances do not vary over time (C,D), extending the temporal extent of observation (i.e., study duration) should
not be relevant, because short and long-term studies show the same temporal variability. Similarly, spatial extent is important in the sampling design, depending on
the spatial variation.

1), and Nj;(t + 1), after environmental filtering and competition
(i.e., after Equation 2). M is the total number of localities (being k
any other than j) and S the regional species richness (where g are
different species than 7).

M
Ny(t+Da = Ny(®) + 7= > Ni®) —aNy(®) (1)
k#j

ridi(E)Nji(t + 1)g

1+ O5intml\r1j(t + D)g + inter Z::,#i Ngj(t + Da)
(2)
In step 1, dispersal rates were determined by the proportion of
potential emigrants (a; Loreau et al., 2003). We randomized the
number of emigrants (aNj;(t)) following a Poisson distribution
(Thompson et al., 2020). Following Equation 1, all the localities
received the same number of immigrants of each species.
Additionally, we also considered an unequal distribution of
emigrants relying on the distance among localities (Gravel
et al., 2006; Sokol et al, 2017; Viana and Chase, 2019),
increasing dispersal resistance with the distances among sites (see
Supplementary Material). For simplicity, we only show here the
results in a scenario where emigrants could reach all the localities
with the same probabilities (i.e., very low distance limitation).
In step 2 (Equation 2), local dynamics were influenced by
the abundance of each species after dispersal (Njj(t + 1)4), the

Nij(t +1) =

intrinsic growth rate (r;) and competition (). The intrinsic
growth rate (r;) relied on the performance of each species (%;)
to the environmental conditions (E), which characterized the
strength of the niche differentiation (Tilman, 2004; Gravel et al.,
2006). The performance was defined by a Gaussian distribution,
where p; is the optimal environmental value and o; is the
niche breadth (Equation 3). We randomly modified the resulting
rii(E)Njj(t + 1), following a Poisson distribution in each step,
adding stochasticity to the model (Hubbell, 2001; Adler et al.,
2007). We also considered intra- (@nsq) and interspecific (ctinzer)
competition in each locality (equation 2; Chesson, 2000; Adler
et al., 2007).

—(E — p)?
M(E) = exp(%

1

) (©)

2.2. Scenarios and Simulation Routine

The model ran in simulated landscapes of 10 localities with
10 species during 3,000 timesteps. Localities were randomly
distributed in a square of 100 units of side. We simulated one
environmental variable ranging from 0 to 1 for each landscape,
which was spatially and temporally autocorrelated based on an
exponential covariance model (Thompson et al., 2020). We set
a spatial and temporal scale of autocorrelation of 50 and 500
units, respectively (see Supplementary Material). We generated
different landscapes for each simulation.
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FIGURE 2 | Summary of the simulated scenarios across niche breadth (i.e.,
selection; o) and dispersal rate (a) gradients (A) and a summary of the
temporal sampling procedure in simulated (B) and empirical (C)
metacommunities. In the conceptual models, polygons, and colors represent
localities with different suitable conditions for an hypothetical species
depending on its niche. The lines and arrows between the polygons show the
connectivity among them.

The initial species matrix composition was randomly
configured with a mean of 1 individual of each species per
locality in a Poisson distribution. During the first 200 timesteps
the environmental variable was kept constant in each locality
(maintaining the spatial variability). In this period, we added
each 10 steps more individuals following the same procedure

as in the starting species matrix. After that, the environmental
variable varied spatially and temporally and we did not add more
individuals. We later removed the first 1,000 timesteps (200 +
800 steps) for further analyses to avoid the effect of the initial
conditions on the results (Thompson et al., 2020).

We considered two levels of niche differentiation in the
simulations (Figure 2A). In both scenarios, we set the same
intrinsic growth rate for all the species (r = 10). The niche
differentiation was determined by the niche breadth (o;) and
it was the same for all the species in each metacommunity
(Gravel et al, 2006; Sokol et al, 2017; Viana and Chase,
2019). In the neutral conditions (0 = 10), niche breadths
were so wide to overlap species niches and cover the whole
environmental gradient with the highest fitness (consequently
all species have the same fitness at all the environmental values;
Hubbell, 2001). Otherwise, with niche differentiation (o = 0.5),
niches were not totally overlapped and fitness was different
for each species relying on their optimal environmental value
(w;) and the environmental conditions at each site and time.
We also assumed stable local coexistence in both scenarios.
For this purpose, in the neutral scenario with equivalent
fitness among species, stabilizing processes were weak (intrq
= 0.050; &jnrer = 0.048). But we reinforced stabilization in
the niche scenario due to established differences in fitness
(ctintra = 0.050; jprer = 0.028; Adler et al., 2007).

For each scenario, we explored 3 dispersal levels changing the
proportion of emigrants (low: a = 0; intermediate: a = 0.02; high:
a = 0.4; Loreau et al., 2003). Therefore, we studied 6 scenarios (2
niche x 3 dispersal levels; Figure 2A). We replicated 10 times the
simulations of each scenario (6 x 10 = 60 simulations).

2.3. Empirical Metacommunities

We used three databases of aquatic invertebrates from previous
works, which were here reanalyzed with other purposes. The first
database had 10 localities in a stream sampled on 11 occasions
for 19 months (the first months were sampled seasonally and
the last ones monthly; Mezquita et al., 1999; Rueda et al., 2002).
The other two databases correspond to two groups of interdunal
ponds, with 9 and 13 localities, respectively, sampled monthly
during 12 months (Valls et al., 2013; Rueda, 2015). All the data
originate from the eastern Iberian Peninsula, with an intra-
annual fluctuation of temperatures and precipitations typical of
Mediterranean regions (i.e., mild winters, hot and dry summers,
and rainfalls concentrated in autumn months).

We selected four groups of arthropods (Ostracoda, Odonata,
Coleoptera, and Diptera), each one corresponding to a taxonomic
group with similar trophic features for the encompassed species,
which potentially compete in a region for similar resources
(Hubbell, 2001). Ostracods are benthic microcrustaceans which
are predominantly omnivorous and they spread passively among
ponds (Mesquita-Joanes et al., 2012). The other three groups
have active dispersal with winged adults, although they have
different dispersal capabilities and body sizes (Schmidt-Kloiber
and Hering, 2015). Dragonflies and damselflies (Odonata)
are predators, as well as the coleopterans (here, only family
Dytiscidae). However, these two groups have different prey
preference, attack strategies and life histories. Finally, dipterans
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(only families Stratiomyidae, Psychodidae, Ephydridae, and
Dixidae) present aquatic larvae mostly consuming detritus. The
criteria for selecting these groups were based on their abundance
and species richness in the datasets. Overall, we analyzed nine
datasets, separating the invertebrate groups in each landscape
setting (3 in each landscape). More information of the empirical
data is available in the Supplementary Material.

2.4. Sampling Metacommunities

We sampled the simulated and the empirical metacommunities
across a gradient of study durations (i.e., temporal extents),
maintaining the number of temporal sampling points or
frequency (therefore varying the lag between samples;
Figures 2B,C). In the simulated data, we sampled the
metacommunities varying the temporal extent from 20 to
2,000 timesteps (Figure 2B), fixing the frequency at 10 times.
In a similar way, empirical metacommunities were sampled at
different study durations maintaining the number of temporal
points at a frequency of 6 times (Figure2C). After being
sampled, the simulated and the empirical data have the same
arrangement in matrices, and we applied the same analytical
routine for both types of datasets, as follows.

2.5. Metacommunity Variation Partitioning

The empirical and the simulated data (after sampling)
were analyzed by means of variation partitioning between
environmental, spatial and temporal variables (Borcard et al.,
1992; Anderson and Cribble, 1998; Peres-Neto et al., 2006).
Environmental variables in the empirical dataset were previously
log-transformed, and later we carried out a PCA to use the
principal components as orthogonal environmental variables
with all the environmental variability measured. In the simulated
data, we used directly the simulated environmental variable (E).

We wused Moran Eigenvector Maps (MEMs; Dray
et al, 2006) to model spatio-temporal variables (see
Supplementary Material). For this purpose, we created a
three-dimensional network with the sampling points and the
links among them, distributing them across space (x and y axes)
and time (z axes). The links among samples were decided in two
ways. In the spatial axes, the samples of each temporal point
were connected following a Gabriel graph criterion, but never
across time (Legendre and Legendre, 2012). In the temporal
axis, we linked independently all the temporal points of each site
separately, uniquely connecting each sample with the previous
and the next one in the same site (Legendre and Gauthier,
2014). Therefore, we did not establish temporal connections
between different sites. All the links were row standardized
depending on the number of links of each point (e.g., 1 link =
1, 2 links = 0.5, and 0.5, 3 links = 0.3, 0.3, and 0.3, and so on),
obtaining the weights of each link and calculating the MEMs
(Dray et al., 2006).

With this method, the resulting MEMs modeled spatio-
temporal patterns. We separated them in pure spatial and
pure temporal MEMs by means of a two-way ANOVA, using
each MEM as a response variable and spatial sites (space)
and temporal points (time) as categorical explanatory variables
(based on Legendre et al., 2010; Legendre and Gauthier, 2014).

We considered spatial MEMs those with significant space, and
temporal MEMs with significant time. Some of them could
be significant for both space and time or for any of them.
These MEMs were added into the two groups (spatial and
temporal), and eventually, variation partitioning can attribute the
explanation associated to these MEMs as the shared fractions
among space and time (spatio-temporal fraction).

The variation partitioning procedure was based on RDA
to calculate the fraction of variation of the species matrix
explained by environmental, spatial, and temporal variables as
R? (Peres-Neto et al., 2006; Legendre and Legendre, 2012).
RDA presents some important limitations which could affect
the explained fractions (Viana et al.,, 2019), although it is one
of the most used in metacommunity analysis. For example,
RDA uses linear regressions to obtain the R?, although the
species response to an environmental gradient could be non-
linear (niches are usually Gaussian as in our simulation). In
order to minimize this issue, we added a quadratic term
for the environmental variables. In RDA, species matrices
were transformed with the Hellinger method (i.e., the square-
root-transformation of the relative abundance; Legendre and
Gallagher, 2001). Additionally, we performed the same analyses
by means of RDA without the quadratic term, so as with CCA
and dbRDA (see Supplementary Material).

Variation partitioning has further limitations. Spurious
correlations between environmental and spatio-temporal
variables can occur due to spatio-temporal autocorrelation of
the environment (Smith and Lundholm, 2010). This artificially
increases the fractions (as R?) shared between the environment
and the spatio-temporal variables, whereas this spurious
correlation is not associated with the environment. We corrected
R? using a method based on MSR (Wagner and Dray, 2015),
creating replicates of an environmental matrix with the same
autocorrelation properties but removing their relationship
with the species matrix (as a null model; Clappe et al., 2018).
Previously to the variation partitioning, we selected subsets
of each set of explanatory variables (environmental and all
the MEMs with significant positive Moran’s indices, before
separating them in spatial and temporal) by means of forward
selection, with a double stopping criterion (Blanchet et al.,
2008a). We applied a Bonferroni correction for multiple testing
to the p-values of the selected variables, i.e., those with adjusted
p-values lower than 0.05.

All  the simulations and metacommunity analyses
were performed in R 3.6.3 (R Core Team, 2020), using
the packages vegan (Oksanen et al, 2019), adespatial
(Dray et al., 2020), spdep (Bivand and Wong, 2018), and
RandomFields (Schlather et al, 2015). All the codes are
available in https://github.com/andreucastillo/TemporalScales
Metacommunities.

3. RESULTS

In the simulated metacommunities, the explained fractions
(adjusted R?) varied across selection and dispersal levels
(Figure 3). Generally, the effects of the temporal scale increased
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FIGURE 3 | Relative importance (adjusted R?) of the explanatory sets on the variation of simulated metacommunities under different scenarios of niche differentiation
(o: broad in A-C vs. narrow in D-F) and dispersal rate (a: low in A,D, intermediate in B,E and high in C,F) in a gradient of study durations (top subpanels, A-F). The
lines represent the mean, and the colored pattern the standard error of the adjusted R? of the 10 replicated simulations. The bottom subpanels display the associated
temporal changes in abundance (V) of one random species in 10 localities represented with different lines. The color of the lines depend on the environmental
performance of the species in each locality through time, being orange under favorable and blue under unsuitable conditions (with a threshold of A = 0.90).

as we incremented the dispersal rates (a), for both niche breadth
levels (o). These temporal scale effects raised the relevance of
the temporal variables, and reduced the fractions explained by
other factors. The shared fraction between space and time was
negligible in all the scenarios, indicating pure temporal or spatial
patterns in the metacommunity structure due to the design of
the simulations (e.g., equal distribution of emigrants among
the localities).

With neutral conditions (o 10; Figures 3A-C, top
subpanels), spatial variables dominated at low dispersal rates
(a = 0), whereas temporal variables were prevalent at high
dispersal rates (a 0.4). At intermediate dispersal rates (a
= 0.02), the pattern was a combination of the two extremes.

Dispersal determined the main dimension (spatial or temporal)
of change of the metacommunity. We can better understand
this behavior if we observe the temporal dynamics of a
single random species in each of the ten sites separately
(Figures 2A-C, bottom subpanels). At low dispersal, spatial
variation was high and maintained through time due to
neutral dynamics. Therefore, space was relevant independently
of the study duration. This spatial variation disappeared as we
increased the dispersal rates (i.e., synchronizing the localities),
until all the variation was concentrated in the temporal axis.
However, the relevance of the temporal variables was not
constant, increasing logarithmically with the study duration
(Figures 3B,C).
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When selection was included in the simulations by
establishing narrower niches (o0 = 0.5; Figures3D-F)
environmental effects appeared, and spatial and temporal
variables exhibited a similar behavior to the neutral scenarios.
However, the relevance of the environmental variable also
depended on dispersal rate, accounting for larger fractions of
metacommunity variation at intermediate dispersal rates (a
= 0.02). Generally, the shared fraction between environment
and space was higher at short study duration, whereas the
shared fraction between environment and time slightly increased
with the study duration (a pattern similar to pure spatial and
temporal fractions). With low dispersal (a = 0), the species
dynamics showed non-occupied suitable localities (A > 0.9; see
the orange line for N = 0 in Figure 3D, bottom subpanel). In
these conditions, the environmental variable was less relevant
than the spatial variables, which captured this spatial variation
in species distribution. At intermediate dispersal rates (a =
0.02), the species abundances fitted the environmental suitability
through time, according to a constant dominant relevance
of the environmental variable (Figure 3E). At high dispersal
rates (Figure 3F) the represented species (lower subpanel)
survived even under unsuitable conditions. However, its
abundances were higher in the suitable than in the unsuitable
conditions, showing an important role for environmental
effects at least at short and intermediate study durations. We
can also observe a synchronization of the local populations,
increasing the relevance of the temporal effects as we extended
the study duration.

When exploring the empirical data on aquatic invertebrate
metacommunities, explanatory variables accounted only for
a relatively low proportion of the metacommunity variation,
compared with the simulated scenarios, and their relative
role depending on time extent varied widely among groups
(Figure 4). Generally, pure environmental fractions were
more relevant than the others, explaining about 5-25% of
the metacommunity variation, particularly for the ponds
(Figures 4B,C). In these data, the spatio-temporal position
of the samples were more complex than in the simulations,
and we can observe some relevance of combined spatio-
temporal effects (i.e, the shared fraction between space
and time). Extending the analyses of the empirical data
at different temporal scales, while keeping the number of
temporal sampling points fixed, we can observe changes
in the variation partitioning results, but the effects of the
study duration were unclear (Figure 4). Extending the study
duration seems to generally increase the relevance of the
environmental variables and decrease the spatio-temporal
fractions. However, the opposite was true in some cases, and
anyway these changes were relatively very low compared with
the simulations.

4. DISCUSSION

Our results show that the temporal scale of observation
affects our perception of the main processes contributing
to metacommunity organization. Previous studies already
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FIGURE 4 | Relative importance (adjusted R?) of the explanatory sets on the
variation of the empirical metacommunities in the Stream (A), Ponds 1 (B),
and Ponds 2 (C) in a gradient of study durations from 6 to 19 months (A) or
6-12 months (B,C), with six temporal sampling points. In the Stream (A), we
displayed ostracods (left), odonates (center), and coleopterans (right). In the
Ponds 1 (B), we represented dipterans (left), odonates (center), and
coleopterans, and in the Ponds 2 (C), ostracods (left), dipterans (center), and
coleopterans (right).

highlighted the influence of spatial scale on the inference of
these processes when analyzing communities sampled once
(e.g., Condit et al, 2002; Heino et al, 2017; Viana and
Chase, 2019), or comparing the spatial effects between several
temporal points of the same metacommunity (e.g., Langenheder
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et al, 2012; Fernandes et al, 2014; Castillo-Escriva et al,
2017). Other studies have focused on the effects of temporal
scales on temporal turnover, but at one spatial point (e.g.,
Korhonen et al., 2010; Tomasovych and Kidwell, 2010). Here,
we integrated both perspectives, taking into account the
spatio-temporal structure of the data as a whole and testing
the influence of sampling period extent on the results of
variation partitioning.

The simulations pointed out how dispersal and selection play
a key role on metacommunity variation in both the spatial
and temporal dimensions. Low dispersal rates allow maintaining
the spatial variation through time, because local dynamics are
spatially independent without a flux of organisms (Koelle and
Vandermeer, 2004). In these cases, long study durations present
the same results as short study durations in the simulations,
suggesting to focus our sampling design only across space
when dispersal is very limited (PD archetype), taking into
account ranges of distributions and dispersal abilities of the
organism studied (Wiens, 1989). On the other side, high dispersal
reduces the spatial variation and temporally synchronizes all the
local communities (Loreau et al., 2003; Gonzalez et al., 2009;
Pandit et al., 2013). This synchronization implies that the whole
metacommunity variation goes to the temporal axis (as expected
with dispersal surplus in ME, and NT archetypes), and the longer
the study duration, the higher the influence of time needed to
capture these effects (e.g., ecological drift, progressive dispersal)
on metacommunity variation.

The distribution of the environmental variation through
time and space can also determine the importance of an
adequate spatial or temporal scale of observation in niche-
constrained metacommunities (SS archetype; Korhonen et al.,
2010; Viana and Chase, 2019). In our simulations, the
environmental variation was predominantly spatially distributed
and the localities offered the whole environmental gradient
at all the timesteps (even though the local environment was
changing through time). Consequently, species always had
available localities with suitable conditions when a locality
became unsuitable; the key is an adequate dispersal to reach the
optimal sites. Notwithstanding this environmental heterogeneity,
extending the study duration affected the relevance of the shared
fractions between environment and space-time, decreasing the
fraction shared with space and slightly increasing the fraction
overlapped with time. However, if the environmental variability
would be expanded through time (as under climate change
scenarios; Thompson et al., 2015), the temporal extent of
observation would have a more important effect on detecting
such environmental relevance.

In the empirical metacommunities, we observed relatively
large differences when modifying the temporal scales of
observation, usually increasing pure environmental effects and
decreasing spatial pure and shared fractions. However, there
was a large variation in this response among groups of
organisms and landscape settings. According to the results of
the simulations, the studied empirical metacommunities most
probably rely on low to intermediate dispersal rates, combined
with strong environmental filtering. However, the low explained

proportion of metacommunity variation also suggests that fine-
scale stochastic dynamics might have an important role in the
empirical settings. Such low explained proportions are indeed
very common in metacommunity studies (Cottenie, 2005), and
may originate, among other sources, from the sampling design
and methods used. First, the spatial and temporal scales could
not be adequate to fully capture metacommunity variation,
as we find in the simulations, emphasizing the importance
of the sampling design (Viana and Chase, 2019). Second,
we might have not acquired some relevant environmental
information, failing to fully explain niche-related patterns
and therefore increasing the unexplained fraction. Third, the
statistical methods used might not be the best for the data
being analyzed (e.g., linear models for non-linear environmental
responses), although recent studies have developed new and
promising methods (Clappe et al., 2018; Viana et al.,, 2019).
Moreover, the large unexplained variation in empirical data
demonstrates multiple and complex variation sources largely
disregarded in the simulations, such as methodological errors
when sampling or processing the samples, the influence of rare
species (Magurran and Henderson, 2003) or trophic interactions
(Guzman et al., 2019; Garcia-Girdn et al., 2020).

Previous empirical studies analyzing spatio-temporal patterns
of metacommunities (Muylaert et al, 2000; Ysebaert and
Herman, 2002; Padial et al,, 2014) highlighted the relevance
of the environment, even when environmental variables were
temporally structured. According to our results, this also suggests
a dependence on the temporal scale of observation, particularly
whenever the environmental heterogeneity increases with the
study duration. However, these studies only discussed pure
spatial and temporal patterns, whereas we added explicitly
mixed spatio-temporal patterns and the results could be different
because of this combination (although some of the studies had
indeed detected an overlap between space and time; Padial et al.,
2014). Nevertheless, the spatio-temporal MEMs used here have
some issues, such as their origin on symmetric connections,
which may not be adequate for time (unlike AEMs, which
consider an asymmetric relationship between points; Blanchet
et al., 2008b).

In our empirical metacommunities, the shared fraction
between space and time was important in some cases, indicating
that the spatio-temporal variation in natural metacommunities
might be more complex than that shown by our simulations. For
example, ephemeral ponds do not disappear and appear always
at the same time, creating spatio-temporal patterns in the data.
The sampling design in these cases should take into account both
spatial and temporal scales together. Therefore, the sampling
design should be based on a previous knowledge of the temporal
fluctuations of the landscape, this being important to find natural
references of stable (such as tropical systems or stable interstitial
zones; Hubbell, 2001; Dumas, 2002) and unstable landscapes
(such as temporary ponds or intermittent rivers; Castillo-Escriva
et al., 2017; Cid et al., 2020) to test the theoretical predictions.
This also encourages the use of more complex landscapes in
the simulations for specific cases, taking into account different
types of environmental variation (e.g., mosaic, gradient; Viana
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and Chase, 2019), the type of spatial distribution of localities (e.g.,
regular, random; Henriques-Silva et al., 2015), and regular or
unexpected temporal events (e.g., droughts, seasonality; Tonkin
etal., 2017).

We applied a basic model for the simulations that assumed
that all the organisms of each metacommunity had the same
population parameters. The study of metacommunity dynamics
requires more complex models, considering the survival of the
individuals through time (as a kind of temporal dispersal, such
as diapause or lethargy) or the population structure (e.g., eggs,
juveniles, adults). Simulating or monitoring metacommunities
with different life-history strategies (Verberk et al.,, 2008) may
allow comparisons at several temporal scales of observation
among groups that differ in development time, synchronization
in the reproduction, type of reproduction (e.g., semelparity or
iteroparity) or with a population age-structure with changing
dispersal capabilities among stages (e.g., juvenile and adult
dimorphism). This type of comparison among organisms with
different traits (e.g., body sizes and dispersal capabilities) has
been a frequent approach in spatial studies of metacommunities
(e.g., Soininen et al., 2011; Astorga et al., 2012; De Bie et al., 2012).

Another limitation of our simulations was to consider the
same life-history traits (e.g., fecundity, survival, life cycle,
dispersal capabilities) for all species. Natural communities
are more complex, and variable life-history strategies within
the community may allow the coexistence of species with
similar trophic requirements (Amarasekare, 2003). For example,
metacommunities could be composed by good competitors (with
long life cycles, iteroparous, low dispersal rates, and niche
dependence) and good colonizers (with short development times,
semelparous, high dispersal rates, and low niche dependence;
Chave et al., 2002). The prevalence of a trait could determine
the relevance of the assembly processes in a metacommunity at
different observational scales, whereas rare species may drive an
increase in the amount of unexplained variation (Magurran and
Henderson, 2003). Additionally, priority effects can also strongly
influence the relevance of temporal factors in metacommunities
(Fukami, 2015). As a process that is basically temporal, we
can emulate historic and priority effects considering resistant
stages to adverse transient environments (Wisnoski et al., 2019)
and/or setting different inter-specific competition parameters
for the modeled species (Thompson et al., 2020). Despite all
these limitations, our model provides a general view of the
effects of the temporal scale of observation on understanding
metacommunity dynamics and methodological problems related
to its study.

We focused on the temporal scale of observation using only
one spatial scale, but the distribution of the metacommunity
variation in the spatial and the temporal dimensions depends
on both scales (increasing the extent of one of them decreases
the relative relevance of the other). It is important to predict at
which spatial and temporal scales the metacommunity variation
is balanced in both dimensions, allowing to establish equivalences
between spatial and temporal units (Adler and Lauenroth, 2003).
We could find the equivalence by analyzing the data, but we
need to develop deductive methods to estimate this equivalence
taking into account the community structuring processes. This

equivalence between space and time is crucial to plan research or
conservation projects.

5. CONCLUSIONS

The inference of metacommunity structuring processes is
influenced by the temporal scale of observation, depending
on the distribution of the metacommunity variation between
the spatial and the temporal dimensions. In our simulations,
the variation was accumulated in the spatial dimension when
dispersal rates were low, and in this case, an increase of the
study duration did not have any effect on the inference of
the underlying processes. On the other hand, high dispersal
rates synchronized all the local communities, reducing the
metacommunity variation to the temporal dimension. In
this case, the study duration influenced our estimation of
the metacommunity organization processes, logarithmically
increasing the role of time-related effects (dispersal movements,
ecological drift) when increasing the temporal extent of the
study. In addition, we found the temporal scale effects to
depend on the distribution of the environmental variation,
which can generate more spatial or temporal variation in the
metacommunity. In the empirical data, we observed only a
slight influence of increasing temporal scale, mostly producing
an increase of the role of environmental effects and decrease
of spatial effects. This suggests metacommunity variation was
rather distributed along the spatial axes and/or that the temporal
scales considered were not adequate (maybe too short) to
observe an increase in the role of time. However, the empirical
data is expected to be more complex than the simulations,
possibly including many unmeasured spatial, environmental, and
stochastic effects. The present study highlights the importance
of selecting an adequate observational scale to study or assess
natural metacommunities, and the necessity to develop better
methods to model and analyze spatio-temporal dynamics of
natural systems.
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