1' frontiers

in Ecology and Evolution

SYSTEMATIC REVIEW
published: 18 September 2020
doi: 10.3389/fev0.2020.569230

OPEN ACCESS

Edited by:
Mingbo Yin,
Fudan University, China

Reviewed by:

Olivier Glaizot,

University of Lausanne, Switzerland
Rita Ziegyte,

Nature Research Center, Lithuania
Aneliya Borisova Bobeva,
Bulgarian Academy of

Sciences, Bulgaria

*Correspondence:
Rafael Gutiérrez-Lopez
rqutierrez@cibio.up.pt;

rafgutlop@gmail.com

Specialty section:

This article was submitted to
Behavioral and Evolutionary Ecology,
a section of the journal

Frontiers in Ecology and Evolution

Received: 03 June 2020
Accepted: 13 August 2020
Published: 18 September 2020

Citation:

Gutiérrez-Lopez R, Bourret VV and
Loiseau C (2020) Is Host Selection by
Mosquitoes Driving Vector Specificity
of Parasites? A Review on the Avian
Malaria Model.

Front. Ecol. Evol. 8:669230.

doi: 10.3389/fev0.2020.569230

Check for
updates

Is Host Selection by Mosquitoes
Driving Vector Specificity of
Parasites? A Review on the Avian
Malaria Model

Rafael Gutiérrez-Lépez™, Vincent Bourret' and Claire Loiseau "2

" Laboratdrio Associado, CIBIO, Centro de Investigacdo em Biodiversidade e Recursos Genéticos, InBio, University of Porto,
Campus Agrério de Vairdo, Vairdo, Portugal, 2 CEFE, Université de Montpellier, CNRS, Montpellier, France

Parasites and hosts are in a complex evolutionary arm race where host compatibility
represents a key obstacle for successful infections. The degree of parasite specialization
on a host varies along a continuum: on one end, extreme specialist parasites may be
restricted to a single host species, and on the other, generalist parasites are able to
infect a diverse set of hosts. Multiple intrinsic factors associated to the host, such as
their immune system and physiological condition, can contribute to the evolution of host
specificity of parasites and have been well-studied and documented in vertebrates. In
contrast, vector specificity of parasites has been largely overlooked, especially in natural
conditions. While a few studies suggested that insect vectors do not play an important
role in shaping the parasite community structure since they may feed widely from the
bird community, current studies have demonstrated the importance of vector feeding
behavior on transmission dynamics for several vector-borne pathogens. Here, we provide
a review on the specialization of avian Plasmodium in vectors, emphasizing the necessity
to study simultaneously the three players to further understand how host choice by the
vectors might influence the distribution of parasites in the wild. In addition, we suggest
specific research directions making use of both empirical data gathered in the field and
controlled experiments on vector host-feeding preferences.

Keywords: avian plasmodium, feeding preference, insect-vector, ornithophilic, parasite specialization

INTRODUCTION

The degree of parasite specialization for a host varies along a continuum: on one end, extreme
specialist parasites may be restricted to a single host species, and on the other, generalist parasites
are able to infect a diverse set of hosts, with a large diversity of intermediate states (Vazquez et al.,
2005; Poulin, 2007; Hellgren et al., 2009; Mccoy et al., 2013). Both ecological and evolutionary
mechanisms are currently acting to maintain this high diversity in the range of host specialization
(Poisot et al., 2015). Understanding how parasite specialization has evolved and how different
strategies can co-occur is challenging and remains a debated topic. It has been suggested first that
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specialization represents an evolutionary “dead end,” which limits
further evolution (Kelley and Farrell, 1998; Snyder and Loker,
2000; Nosil, 2002). However, several later studies have indicated
that generalists can repeatedly evolve from specialist lineages,
albeit with a relatively low frequency (Poulin et al., 2006; Johnson
et al., 2009; Gomez et al., 2010).

The probability for a parasite of infecting a suitable
host depends on many factors, including the host-parasite
compatibility, rate of encounter, the parasite life cycle, the
population density (Combes, 1997) as well as host intrinsic
factors such as its immune system, age, or sex (Loiseau et al., 2008;
Bichet et al., 2014; Calero-Riestra and Garcia, 2016). For parasites
such as avian Plasmodium, with a complex life cycle that involves
two hosts, one vertebrate (bird) and one insect (mosquito;
Valkiunas, 2005), additional parameters linked to the insect, such
as its feeding behavior or immune system, may also influence
parasite specialization (Billingsley and Sinden, 1997; Gutiérrez-
Lopez et al.,, 2020). Interactions with the insects, commonly
called vectors (Wilson et al,, 2017), are likely important for
parasite evolution since mosquitoes are the definitive host, in
which sexual reproduction occurs. Thus, as in the vertebrate hosts
(hereafter the term “host” will be used), the parasite ingested
in a mosquito blood meal must elude the immune system of
the vector and complete all the developmental stages while the
mosquito remains alive long enough to feed on another host
(Marquardt et al., 2005).

Avian malaria parasites are considered an excellent model
for investigating parasite transmission dynamics in ecological
and evolutionary studies (LaPointe et al, 2012; Rivero and
Gandon, 2018). They have been studied extensively in birds
because of their high diversity of hosts and nearly worldwide
distribution (Valkiunas, 2005). To date, parasite specialization
for their vertebrate hosts has been much more studied compared
to their vector specificity. Studies have investigated host-parasite
associations using phylogenetic analyses and indices of host
specialization (e.g., Ishtiaq et al., 2008; Hellgren et al., 2009;
Loiseau et al., 2012; Ricklefs et al., 2014; Lauron et al., 2015;
Fecchio et al., 2019) and have revealed that several lineages of
Plasmodium exhibit extreme host generalist parasitism strategies,
whereas other lineages appear to have been constrained to certain
host families or individual bird species (Ricklefs and Fallon,
2002; Ricklefs et al., 2004; Beadell et al., 2009). Interestingly,
in the discussion of a large number of these publications,
authors suggest a key role for vectors in the system, but very
few studies are exploring this vector role. In fact, the number
of publications using the bird-avian Plasmodium system has
considerably increased with on average 25 articles published per
year since the last 10 years, but the number of publications that
integrates the vector in their study remains much lower (3.5
per year since 2010; see Supplementary Figure 1). A number
of reasons are responsible for the fact that vector specificity of
avian parasites has been largely overlooked, especially in natural
conditions: (i) researchers studying avian malaria are often
trained ornithologists with little or no entomological expertise,
(ii) insect vectors are difficult to capture compared to birds,
(iii) they are also more difficult to identify, especially in tropical
countries, (iv) the parasite prevalence in mosquitoes is usually

low (10% on average with values ranging from 0.003 to 30%;
Aruch et al, 2007; Glaizot et al., 2012; Lalubin et al., 2013;
Zélé et al., 2014; Martinez-de la Puente et al., 2015, 2016, 2020)
compared to birds where prevalence often reaches up to 80%
(Bichet et al., 2014).

Different ecological and behavioral factors determine the co-
evolution of avian Plasmodium and mosquitoes (Ferraguti et al.,
2016). Among them, the vector feeding behavior is an important
parameter that can affect the specialization of parasites both
in the vector and the vertebrate host (Figure 1). A hypothesis
on parasite vertebrate host specificity is that if the vector is
not selective and feeds on a large variety of avian hosts, then
the malaria parasite should have an advantage in being an
avian host generalist, maintaining compatibility with a wide set
of birds, even if some of them are not optimal hosts. This
should increase its encounter rate with suitable avian hosts and,
therefore, its overall prevalence in the community (Dobson,
2004; Hellgren et al., 2009). On the other hand, if the vector
is selective and feeds on specific bird species (Kilpatrick et al.,
2006; Hellgren et al., 2008; Rizzoli et al, 2015), the parasite
should have an advantage in being host specialist and optimize
its host compatibility, development and transmission efficiency.
Interestingly, the host specificity of parasites may not reflect
their vector specificity. As shown in Figure 1, a parasite that is
a vector specialist (i.e., able to complete its sexual cycle in one
mosquito species only) could present different host strategies,
specialist or generalist, depending on the host selection by
vectors. If the parasite is a vector generalist (i.e., able to complete
its sexual cycle in various mosquito species), the diversity in
the range of host specialization can be even more important
i.e, from highly host specialist to extremely host generalist
(Figure 1). Therefore, from a parasite perspective, it would seem
more advantageous to be a vector generalist since this would
enable a broader gradient of host specificity (considering always
that those vectors are competent to transmit the parasite). On
the other hand, being a vector or host generalist may come
at the expense of optimal parasite compatibility with host
or vector.

Here, we review the current knowledge on parameters
that influence host selection by mosquitoes and its potential
repercussions on vector-parasite co-evolution and vector
specificity. Using the MalAvi database (Bensch et al., 2009),
which currently comprises 1276 unique Plasmodium lineages
found in around 1,200 bird species and 40 mosquito species and
data from the literature, we aimed at (i) evaluating the feeding
preference of those mosquito species that could be potential
avian malaria vectors and (ii) exploring the phylogenetic
relationships of avian malaria lineages and their vector and bird
specificity. We selected mosquito species where Plasmodium
lineages have been isolated from the head/thorax or from
salivary glands as a proxy of competent vector. We excluded
lineages found in whole mosquitoes since they may correspond
to parasites that will experience abortive developments in the
vector midgut (Valkiunas et al, 2013). Finally, we address
various challenges and limitations when working with vectors
and suggest lines of research for the future, both in the field and
in laboratory conditions.
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FIGURE 1 | Diagram of the potential interactions between Plasmodium parasite and the mosquito vector and the bird host in function of the feeding preference of the
mosquito (narrow or broad: feeding on only one or four bird species, respectively). On the top half part, the parasite is a vector specialist (infecting one mosquito; SPE)
and on the bottom part, the parasite is a vector generalist (infecting four mosquitoes; GEN). In each case (Top left: vector specialist and narrow feeding preference;
Top right: vector specialist and broad feeding preference; Bottom left: vector generalist and narrow feeding preference; Bottom right: vector generalist and broad
feeding preference), only extreme results on the parasite host specificity continuum (bottom line from specialist (SPE) to generalist (GEN) are illustrated. In the case of

Plasmodium gametocyte drawing: Valkiunas and lezhova, Malaria Journal (2018).

mixed community of vectors with both narrow and broad feeding preferences (not represented here), the number of infected hosts will vary from 4 to 13. Credit for

HOW DO MOSQUITOES SELECT THEIR
HOSTS?

Large Variation in Feeding Preferences

The transmission dynamics of avian Plasmodium is going to
be strongly influenced by the contact rates between mosquitoes
and susceptible hosts (Takken and Verhulst, 2013). Under
natural conditions, mosquitoes show different innate feeding
preferences at different levels. First, while some species feed
mostly on mammals (i.e., mammophilic species), others prefer
to feed on birds (i.e., ornithophilic species), or amphibians
and reptiles, while yet other species show a real opportunistic
behavior (Molaei et al., 2007; Burkett-Cadena et al., 2008; Viana
et al., 2010; Muioz et al., 2012; Martinez-de la Puente et al.,
2015). Second, in addition to this broad tendency for particular
host groups, mosquitoes may feed on certain host species at
higher rates than expected from their abundance (Hamer et al,,
2009; Lura et al., 2012). For instance, in Europe, Cx. pipiens
seems to show a preference for blackbirds (Turdus merula)
compared to European starlings (Sturnus vulgaris; Rizzoli et al.,
2015). These two levels (group/species) of selection by the
mosquito could be altered by the availability of preferred hosts
that depends on seasonality and habitat (Wekesa et al., 1997;
Kilpatrick et al., 2006; Thiemann et al., 2011). As an example,

Culex pipiens and Culex tarsalis, known to be predominantly
ornithophilic, shift their diet to include more mammals when
the availability of certain bird species decreases at the end of
the summer (Kilpatrick et al., 2006). Seasonality in temperate
regions affects also mosquito abundance and in consequence
parasite prevalence, with a typical peak in August or early autumn
(Ferraguti et al., 2013; Lalubin et al., 2013). In addition, more
or less effective host anti-mosquito behavior and other intrinsic
host factors, developed below, influence feeding patterns of
mosquitoes (Takken and Verhulst, 2013).

Host Characteristics Influencing Feeding

Preferences

Female mosquitoes detect their vertebrate hosts by a combination
of different cues [e.g., visual cues (body size), carbon dioxide
(CO,), temperature, moisture, and/or body odor], which
influence the attractiveness of individuals to vectors (Eiras and
Jepson, 1994; Lehane, 2005). Some individuals (males or females)
depending on their physiological state (e.g., hormone levels),
age-class groups (young or older individuals) or infectious
status (infected vs. non-infected) may be more attractive than
others. Those individuals are therefore more likely to receive
more mosquito bites (Dye and Hasibeder, 1986; Liebman
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et al.,, 2014) and acquire new infections from vectors, but also
to pass on parasites to subsequent vectors with whom they
come in contact. These super-receivers and super-spreaders
increase the contact rates between hosts and vectors, and may
influence the vector specificity of parasites. Both empirical
studies and theoretical models (Woolhouse et al., 1997; Perkins
et al,, 2013) showed that inter-individual heterogeneity has
considerable implications for the epidemiology of mosquito-
borne parasites.

First, larger hosts may receive more mosquito bites (Yan
et al, 2017), probably due to (i) the higher amounts of
cues (e.g., COy) released by larger individuals or (ii) the
greater skin surface available for mosquito bite (Kleiber, 1947;
Yan et al, 2017). Different studies have reported a positive
relationship between the host body mass and the feeding
rate of different blood-searching insect vector (Martinez-
de la Puente et al., 2010; Schonenberger et al, 2016). In
addition, Yan et al. (2017) found that Cx. pipiens fed more
frequently on birds with a longer tarsus, suggesting that
larger areas of exposed skin are important in determining
feeding patterns. However, experimental studies have observed
contrasting results. While Simpson et al. (2009) found differences
in Cx. pipiens attraction among bird species, with American
robins (Turdus migratorius) being more attractive than house
sparrows (Passer domesticus), Gutiérrez-Lopez et al. (2019) found
no difference in attraction between jackdaws (Coloeus monedula)
and house sparrows. Furthermore, in both studies, differences
in body mass between individuals of the same species did
not determine mosquito attraction, suggesting that, at short
distances (as happens in an experimental setup), other signals
such as heat, humidity or odor could be more important than
intraspecific differences in body mass (Raji and DeGennaro,
2017).

Sex-associated characteristics could also cause differences
in the mosquito attraction (Zuk et al, 1990). Sex-biased
individual attraction could explain why several studies found
that male birds present usually a higher prevalence of blood
parasites than females (Skorping and Jensen, 2004; Zuk and
Stoehr, 2010; Calero-Riestra and Garcia, 2016). As an example,
Burkett-Cadena et al. (2014) found that mosquitoes had a
higher feeding preference for male birds, but this result was
observed mainly in mammophilic mosquitoes. On the other
hand, several studies failed to find any significant sex-biased
feeding pattern in ornithophilic mosquitoes (Simpson et al.,
2009; Yan et al., 2018; Cozzarolo et al., 2019; Diez-Fernindez
et al., 2019; Gutiérrez-Lopez et al,, 2019). It has also been
suggested that the composition of volatile substances from
the uropygial gland secretions, which differ between male and
female birds (Jacob et al., 1979; Amo et al., 2012), could affect
the attraction of blood-sucking insects (Russell and Hunter,
2005; Martinez-de la Puente et al, 2011). However, Diez-
Fernandez et al. (2020) found no difference between feeding
pattern in Culex pipiens and the sex of the birds. Therefore,
other factors such as the degradation of the uropygial secretions
by the microbiome present in the feathers could act as an
attractive to mosquitoes (Allan et al., 2006; Diez-Ferndndez et al.,
2020).

Parasite Manipulation and Vector Adaptive

Avoidance

According to the parasite manipulation hypothesis (Poulin,
2000), the infection with the parasite should increase the
incidence of feeding by mosquitoes (Cornet et al., 2013), either
by modifying its defense behavior or increasing its attractiveness
(Heil, 2016). It could also modify the behavior of the mosquito,
making it more aggressive. These parasite manipulations should
increase the contact rates between the host and the vector and,
therefore, favor the parasite transmission (Hurd, 2003; Lefévre
and Thomas, 2008).

To date, experimental tests of this hypothesis using the
Plasmodium relictum—Cx. pipiens system have obtained
contradictory results. While some studies found that mosquitoes
were attracted to, or fed on chronically infected birds at a
higher rate than uninfected hosts (Cornet et al.,, 2013; Diez-
Fernandez et al., 2020), other studies have reported the opposite
pattern (Lalubin et al, 2012) or an absence of significant
differences between infected and uninfected birds (Yan et al,
2018; Gutiérrez-Lopez et al., 2019). This discrepancy may come
from the different experimental procedures used (e.g., either
dual-choice olfactometer or direct contact with immobilized
hosts) and therefore further studies are required to clarify
how the infection status may influence the feeding behavior
of mosquitoes.

The parasite load in the vertebrate (i.e., parasitemia) may
also play an important role on the mosquito feeding patterns.
According to the vector adaptive avoidance (Lalubin et al,
2012), mosquitoes should avoid highly infected individuals due
to the costs induced by parasite in the vectors. However,
Yan et al. (2018) found the opposite with mosquitoes feeding
with a higher rate on those individuals that had a higher
Plasmodium parasite load, suggesting a pre-eminence of parasite
manipulation over vector avoidance. Comprehensive studies
controlling for multiple factors are needed to better understand
the interplay between these two opposite factors in the host
selection by vectors.

WHAT ARE THE FEEDING PREFERENCES
OF MOSQUITOES TRANSMITTING AVIAN
MALARIA?

To illustrate the diversity of mosquito feeding preference
patterns, we used the MalAvi database and a set of publications
to gather information on blood meals for all the vectors collected
in the field with avian Plasmodium in their head/thorax or
salivary glands (Nyector = 22 and Njjpeqqe = 58; Figure 2 and
see Supplementary Materials, Table S1). We classified the diet,
using the percentage of blood meals derived from birds, in three
categories as (i) mammophilic (from 0 to 33%), (ii) opportunistic
(from 33 to 66%), or (iii) ornithophilic (more than 66%).
According to the literature, Cx. pipiens was the most studied
mosquito species for avian malaria and was found to feed
on more than 74 different bird species. In fact, 82% of the
blood meals found in Cx. pipiens were from birds, confirming
its ornithophilic feeding preference (Kilpatrick et al., 2006;
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FIGURE 2 | Percentage of bird (blue) and mammal (red) derived blood meals from female mosquitoes species that have shown avian malaria parasites. Mosquito
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lineages isolated in the head-thorax of each mosquito species. Sample size (log-transformed) of each mosquito species analyzed is shown in black. Numbers in
brackets on the left represent the number of studies (see Supplementary Table 1) that have analyzed blood meals in each mosquito species.
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Hamer et al., 2008; Figure2). It also harbors the highest
number of avian Plasmodium lineages in the head/thorax (N =
25; Supplementary Figure 2). Therefore, its feeding preference
together with its wide distribution around the world, its ecology
(Farajollahi et al., 2011) and the diversity of lineages harbored,
make this mosquito species one of the main vectors of avian
Plasmodium. Among other vector species known to harbor avian
Plasmodium, we found species that exhibit mammophilic (N
= 9; e.g., Culex theileri and Culex neavei), opportunistic (N =
2; Cx. inatomii, Cx. poicilipes), and ornithophilic preferences
(N = 7; Figure 2). We therefore observe a large variation in
mosquito behavior that should lead to different vector specificity
strategies and parasite transmission efficiency. For instance, avian
Plasmodium lineages should enter in contact at higher rate
with ornithophilic mosquito species, which preferentially feed
on birds, than with opportunistic or mammophilic mosquito
species. This in turn should cause avian Plasmodium lineages to
become better adapted to ornithophilic mosquitoes and develop
specificity for this vector type.

WHAT DO WE KNOW ABOUT VECTOR
SPECIFICITY OF AVIAN PLASMODIUM?

Ten years ago, some studies began to use molecular markers
and phylogenetic analyses to examine the distribution of avian
blood parasite lineages in wild-caught arthropod vectors. One
of the first studies showed that different parasite lineages
found in different mosquito genera were sharing a common
vertebrate host (Gager et al.,, 2008). Their data imply that the
co-occurrence of two parasite lineages in the same vertebrate
host is not necessarily explained by access being provided
by a shared mosquito. Other studies showed that different
mosquito species could harbor and share closely related or
identical parasite lineages (Ishtiaq et al., 2008; Kimura et al.,

2010; Inci et al,, 2012), suggesting that these lineages did not
have high vector specificity. However, these studies identified
lineages from whole mosquitoes or head-thorax and discussed
the fact that without salivary gland dissection or experimental
demonstration of the transmission cycle, it was not possible
to establish the vector competence of mosquitoes for parasite
lineages and therefore to fully assess the vector specificity. Indeed,
an important percentage of parasite DNA amplification could
come from abortive stages of parasite and not from infective
stages (i.e., sporozoites; Valkiunas, 2011; Valkiunas et al., 2013).
More recently, researchers performed experimental work to
identify competent vector species for different avian Plasmodium
lineages by studying sporogonic development in salivary glands
or saliva (Valkiunas, 2005; Kazlauskiene et al., 2013; Palinauskas
et al.,, 2016; Carlson et al., 2018; Gutiérrez-Lopez et al., 2020).
These studies highlighted variation in the mosquito ability
to transmit different avian Plasmodium lineages, with some
mosquito species being completely refractory to some parasite
lineages or some being able to transmit different parasite lineages
and/or species.

These experimental results combined with empirical data
from field surveys demonstrate that avian Plasmodium lineages,
which show extensive variation in host range (from one to
more than 100 bird species) and specialization (host specificity
index calculated as in Hellgren et al., 2009; Figure 3), also
show variation in vector specificity (from one to 6 mosquito
species; Figure 3). It is worth noting that the most host generalist
parasite (Plasmodium relictum SGS1) that has been found to
infect around 120 bird species is not the lineage that has been
found in the most vector species so far (Figure 3). Some host
specialist lineages (e.g., CXPIP10) or with an intermediate host
range (e.g., PADOMO02) were found in the same number of
vectors as Plasmodium SGS1 (Figure 3), reflecting differential
host and vector specificity for a given parasite lineage. Overall
however, the parasite host specificity was positively correlated to
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FIGURE 3 | Vector specificity of parasites of the 58 Plasmodium lineages found in head and thorax of vectors and the associated host specificity of lineages that were
found in birds (N = 31). Blue, green, and red asterisks correspond to lineages that were found in ornithophilic, opportunistic and mammophilic mosquitoes,
respectively.

its vector specificity (Pearson coeflicient R = 0.47; P = 0.008; see
Supplementary Figure 3).

In order to explore the phylogenetic relationships of
Plasmodium lineages and their associations with mosquito
species, we performed Bayesian phylogenetic analyses with
58 Plasmodium lineages plus another 16 morphospecies
described and deposited in MalAvi (Figure 4; see methods in
Supplemental Materials). In the tree, we were able to determine
12 clades that correspond to groups of lineages closely related
(Clades A to L; represented by a triangular tip with a node
support higher than 0.85), most of them including a known
morphospecies. First, we observe that most lineages found in the
same mosquito species were not necessarily closely related but
rather were found all across the phylogenetic tree, suggesting
no evidence for strong coevolutionary relationships between
these lineages and their vectors. At the lineage level, it appears
that around 75% of the lineages were found in only one vector
species, which probably does not always reflect strict vector
specificity but rather a sampling effort bias. The other lineages
were found in two to six different mosquito species sometimes
from different genus (e.g., Plasmodium elongatum GRWO6,
Plasmodium gallinaceum GALLUS1, Plasmodium GRWO09).
These three lineages are most likely vector generalists since they
shared different mosquito genus that also had different feeding
preferences (Figure 4). Interestingly, at the clade level, we found
more variation in vector specificity. If we consider a gradient of

specialization, from generalist to specialist, we could discern: (i)
clades associated with two or three mosquito genera (2-6 species;
clades B, D, E, H, ], and L) with different feeding preferences
(i.e., vector generalists), (ii) clades associated with only one
genus (Culex) but 2-4 different species with different feeding
preferences as well (i.e., intermediate vector specificity; clades
C, E and I), and (iii) clades associated with only one or two
ornithophilic mosquito species (i.e., vector specialists; Clades A,
G, and K).

DOES HOST SELECTION BY THE
MOSQUITO INFLUENCE PARASITE
VECTOR SPECIFICITY?

Depending on the feeding preference of the vectors, parasites
should have different strategies of transmission and specificity.
We predicted that avian Plasmodium lineages found in
ornithophilic vectors should be more numerous and on average
more vector specialists than lineages found in opportunistic or
mammophilic mosquitoes since they have a higher chance of
ending up in avian hosts. First, we found that ornithophilic
mosquitoes harbor more Plasmodium lineages (N = 38) than
opportunistic or mammophilic vectors as predicted (9 and
16 lineages, respectively; Figure 3). In addition, all the clades
were associated with at least one ornithophilic mosquito, which
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was not the case for opportunistic or mammophilic species.
However, the feeding preference of each mosquito species (i.e.,
the percentage of blood meal from birds, ranging from 0
to 100%; Figure 2) was not significantly associated with the
number of Plasmodium lineages that they carried (Pearson
coefficient R = 0.39; P = 0.11; see Supplementary Figure 4).
We also failed to find statistical associations between the vector
specificity index and feeding preference, either at the lineage
level (Fa62 = 0.64; P = 0.53) or clade level (Fp2, = 1.83; P
= 0.18; see Supplementary Figure 5). However, this could be
due to insufficient data being available from scarce studies on
mosquito-parasite interactions. Most of the lineages are probably
transmitted by different mosquito species and therefore the
vector specificity of Plasmodium lineages calculated here does not

reflect the true parasite specialization. Therefore, it seems difficult
to have a clear answer to our question at present since we cannot
decipher if host selection is driving or not the vector specificity of
avian Plasmodium. Nonetheless, some of these limitations can be
addressed by doing extensive mosquito surveys and experimental
work in the field that could fill the current knowledge gaps.

HOW CAN WE DETERMINE THE VECTOR
SPECIFICITY OF AVIAN PLASMODIUM?
CHALLENGES AND FUTURE RESEARCH

Experimental studies have provided essential information about
the vector competence of different mosquito species for
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avian Plasmodium (Santiago-Alarcon et al.,, 2012; Palinauskas
et al., 2016; Gutiérrez-Lopez et al., 2020). Nonetheless, it also
seems essential to carry out more holistic studies in natural
conditions to allow a better understanding of all the potential
interactions between avian Plasmodium, their vectors and their
vertebrate hosts. Today, molecular techniques greatly facilitate
the identification of blood meal origin in mosquitoes (Alcaide
et al., 2009), as well as the presence of blood parasites in different
parts of the mosquito body (Njabo et al., 2011; Gutiérrez-
Lopez et al., 2016; Palinauskas et al, 2016). However, the
number of studies combining both the feeding behavior of
mosquitoes and the transmission of avian Plasmodium are still
very rare (Ejiri et al., 2011; Ferraguti et al., 2013; Martinez-
de la Puente et al, 2016), mainly due to the difficult task
of capturing engorged mosquitoes during short field seasons.
Other vector-parasite systems suffer from the same fieldwork
limitations, and to date, very few studies investigated the
vector specificity in closely related haemosporidian parasites
(Leucocytozoon: Hellgren et al., 2008; Haemoproteus: Martinez-
de la Puente et al, 2011) or other blood parasites (e.g.,
Trypanosoma: Bennett, 1961; Svobodova et al., 2017). More
efforts should be put on regular and constant surveys using
various resting boxes to increase resting insects’ collections
and blood fed females (Panella et al., 2011) even though it is
particularly time consuming. One unusual but appealing solution
to overcome this field work limitation and to perform more
efficient research is to foster multidisciplinary collaborations
between research teams and centers for diseases control to
(i) mutualize material and human resources, and (ii) answer
different questions using the same specimens. More collaborative
work would avoid double laborious field surveys while greatly
enhancing the results since one mosquito can be used by
different researchers and be screened for a great variety of
parasites. For example, the feeding behavior of mosquitoes has
been extensively studied in North America. However, due to
the spread of West Nile Virus [CDC (Centers for Disease
Control and Prevention) (2019)], studies mainly focused on
arboviruses (Savage et al., 2007; Farajollahi et al., 2011) while
to our knowledge very few studies have investigated avian
malaria in vectors (Kimura et al., 2010; Carlson et al., 2018).
Something similar can be observed in Central Africa for example,
where the main entomological studies have been based on
anthropophilic mosquitoes and human malaria or other zoonotic
diseases of medical importance (Kamgang et al., 2012; Mayi et al.,
2020), while the role of mosquito species in the transmission
of avian Plasmodium is practically unknown (Njabo et al,
2009, 2011). If researchers with different research interests but
working in the same region or localities were willing to combine
their sampling effort, material and data, it would be beneficial
for everyone and likely add value to everybody’s data. One
obvious advantage would be to determine natural co-infection
rates in mosquito species and their consequences on pathogen
transmission. Although this idea may seem utopian in the ever
more specialized research world, it would be a very interesting
prospect to greatly increase mosquitoes sampling size from field
surveys while exploring mosquito-avian parasite interactions in
more details.

To date, Cx. pipiens has been considered as the main vector
of avian malaria in temperate regions. This mosquito species
has a wide geographical distribution and is certainly the easiest
ornithophilic species to catch and raise in laboratory, which
makes it a perfect study model for experimental work. Studies
have shown so far that 12 morphospecies of avian Plasmodium
are able to develop sporozoites in Cx. pipiens (Santiago-Alarcon
et al,, 2012; Palinauskas et al., 2016; Gutiérrez-Lopez et al., 2020).
However, other less abundant species that share habitats with
Cx. pipiens, such as Cx. perexiguus, Cx. restuans, or Cx. inatomii,
among others, may play an important secondary role as vectors of
avian malaria parasites. Further research work should therefore
focus on less studied mosquitoes that present different feeding
behaviors or restricted geographical distribution compared to Cx.
pipiens, although some other potential vectors may be difficult
to raise and study. For example, opportunistic mosquitoes might
feed on a smaller number of bird species, and thus, come into
contact with a smaller number of avian Plasmodium parasites,
leading to different co-evolutionary processes between mosquito
and avian Plasmodium. In addition, according to the MalAvi
database, studies that have identified Plasmodium lineages in
insects have been carried out in 20 countries only, mostly
in Europe. Thus, future research projects could be conducted
in geographical areas that are poorly studied up until now,
such as tropical regions and migratory bird wintering areas in
Africa, that may present very distinct host selection patterns
and vector specificity due to the highly diverse communities
of hosts and vectors. Undoubtedly, the development of field
surveys and experimental studies on vector competence of poorly
sampled or little-known mosquito species is essential to better
understand the vector specificity and transmission dynamics of
avian Plasmodium.

Lastly, detection of avian Plasmodium DNA in mosquito’s
head and thorax, where the salivary glands are located, provides
valuable information on interactions between parasites and
potential vectors. However, this does not fully guarantee the
vector competence for avian malaria since DNA amplification
could come from abortive stages of the parasite (Valkiunas,
2011; Valkiunas et al., 2013). To determine the transmission
capacity of avian Plasmodium by the mosquito, visualization
of sporozoites in the salivary glands or the extraction of saliva
from the mosquito are more reliable methods (Valkiunas, 2005;
Gutiérrez-Lopez et al., 2016; Palinauskas et al., 2016). In order to
dissect the salivary glands or obtain a saliva sample, the mosquito
must be fresh or alive, and must not have been previously
frozen. However, mosquito dissection is not always compatible
with field conditions and the number of engorged mosquitoes
that fed on infected birds that show parasites in their salivary
glands or saliva is usually very low (between 1 and 5%; Alves,
2012; Gutiérrez-Lopez et al.,, 2020). In addition to fieldwork,
experimental studies in laboratory conditions seem therefore
essential to evaluate the competent mosquito species for avian
Plasmodium lineages, even if it requires complex logistics to (i)
test several lineages at the same time, and (ii) keep mosquitoes in
colonies and birds in captivity. Among many lines of research
that could improve our understanding of vector specificity,
future projects should focus on (i) questioning the parasite
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transmission capacity of mammophilic mosquitoes since, so far,
Plasmodium lineages have been found in head/thorax only and
not in salivary glands, (ii) testing the vector competence of
mosquitoes that share the same habitat as Cx. pipiens but are
present in lower abundance, (iii) determining if the infection
status of the mosquitoes influences their host selection, using a
wide range of mammals and bird species, or, (iv) evaluating if
lineages with different host specialization strategies (specialists
vs. generalists) are transmitted equally by mosquitoes.

CONCLUSION

Research projects based on a global approach to host-parasite
relationships that integrates the pivotal role of vectors in
avian malaria transmission are still very rare, but essential to
understand the evolutionary strategies of parasites. Although
molecular ecology tools helped make great strides, there is still a
long way to go to understand parasite-vector-host relationships,
especially given the high diversity of known parasites and
potential vectors. To date, data from the literature suggest that
avian Plasmodium lineages present a gradient of host specificity
from highly specialist to highly generalist, and relatively high
vector specificity (i.e., each lineage uses only a few vectors).
However, true vector specificity of avian Plasmodium needs to
be clarified by obtaining larger datasets about vector-parasite
interactions in the field and by demonstrating vector competence.
Among factors that could influence interactions between vectors
and their hosts and parasites, the feeding behavior of mosquitoes
may be a key factor that influences vector specialization, although
this remains to be proven. Multidisciplinary teams, including
ecologists, ornithologists, parasitologists and entomologists,
should work hand in hand to understand fully the range of
parasite evolutionary strategies in both hosts and vectors.
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