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Biological invasions are among the major contemporary threats to biodiversity.
Biocontrol has a long history as a safe and effective strategy for the control of
invasive species in several world regions, yet the life history and ecological requirements
of biocontrol agents are often poorly understood. Species distribution models and
assessments of niche overlap and dynamics constitute a way to quantify and
compare ecological niches and are widely used for predicting biological invasions.
While these tools can also be valuable to predict the effectiveness of biocontrol
programs and anticipate whether biocontrol agents can establish on areas targeted
for control, they remain underutilized for this purpose. In this work, species distribution
models and comparisons of niche dynamics are used to predict the success of
the ongoing biocontrol program for Acacia longifolia in Portugal, and potentially
along the Mediterranean Basin, using the Australian gall-forming wasp Trichilogaster
acaciaelongifoliae, previously released in South Africa. Niches of both the invasive plant
and the biocontrol agent were found to be highly similar and to remain conserved
through the introduction process. Distribution models identify suitable climatic areas
for A. longifolia in 19% of the Mediterranean Basin and predict successful establishment
of T. acaciaelongifoliae in 41% of the suitable area for A. longifolia, despite excluding
a few locations where very recent establishment occurred. These results allow us to
quantify the risk of future A. longifolia invasion and potential success of biocontrol, as
well as establish a comparative framework for similar programs being considered in
other regions of the world dealing with A. longifolia invasions.

Keywords: biological invasions, biocontrol, distribution modeling, niche conservatism, Acacia longifolia,
Trichilogaster acaciaelongifoliae
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INTRODUCTION

Biological invasions are among the major contemporary threats
to biodiversity (IPBES, 2019). Specifically, invasive plants cause
changes in ecosystem services and functionality, with negative
impacts at different levels, e.g., at the level of plant and soil
communities and nutrient dynamics (Marchante et al., 2008a,b;
Le Maitre et al., 2011; Vilà et al., 2011; Simberloff et al., 2013;
Zhang et al., 2019) which are often difficult to reverse or mitigate
without active restoration efforts (Le Maitre et al., 2011). Control
of invasive species is frequently prohibitively expensive and
labor-intensive (Marais et al., 2004). Understanding biological
invasion processes is essential for informing decision-making
and optimizing the allocation of limited resources. Correlative
approaches based on geographic occurrence data (such as species
distribution models and multivariate environmental assessments
of niche overlap) are valuable to quantify and compare ecological
niches and are widely used to predict and improve management
of biological invasions (e.g., Broennimann et al., 2007; Vicente
et al., 2010, 2011, 2016; Petitpierre et al., 2012; Guisan et al., 2014).

Biological control (hereafter biocontrol) has a long history
(over a century) as a safe and effective strategy for the control
of invasive plant species (Clewley et al., 2012) in several regions
of the world, such as South Africa, Australia, or United States.
Yet, the biocontrol of invasive plants was only recently (less
than a decade ago) initiated in Europe (Shaw et al., 2018).
Classical biocontrol consists on the deliberate introduction of
a natural enemy of the target invasive species into a new
region invaded by the latter with the objective of mitigating
its competitive advantage. Biocontrol agents should be highly
specific in order to minimize interactions with native biodiversity
in the regions where they are introduced. They should also be able
to establish viable populations in the invaded areas. Considering
this, it follows that the chances of success of a biocontrol agent
are likely to be improved when the ecological requirements
for its successful establishment and long-term persistence are
similar to those of its target. These requirements, due to their
explicitly geographically-oriented and scenopoetic nature, fall
within the Grinnellian definition of the ecological niche (sensu
Peterson et al., 2011). Consequently, the similarity in ecological
requirements between species can be characterized using the
related concept of niche overlap (sensu Warren et al., 2008).
Despite this, very few studies so far have explicitly compared
biocontrol agents and their respective targets in terms of niche
overlap (but see Sun et al., 2017).

Acacia longifolia is a Leguminosae native to southeastern
Australia which has become highly invasive in several exotic
locations. Currently, invasive populations of A. longifolia are
established beyond its native range in south-western Australia
(Costello et al., 2000; Impson et al., 2011), as well as in
New Zealand, South Africa, Chile, United States (California),
Spain (Galicia), and Portugal (EFSA Panel on Plant Health,
2015). Large long-lived seed banks and the ability to germinate
following disturbances (particularly fire) are common traits in
the Acacia genus which account for its high invasive ability
(Richardson and Kluge, 2008; Passos et al., 2017). Invasions by
A. longifolia are associated to changes in soil communities and

nutrient cycles (Marchante et al., 2008a,b), disturbance of plant
(Costello et al., 2000; Marchante et al., 2003, 2015), and plant-
gall communities (López-Núñez et al., 2017), nutrient and water
cycling (Werner et al., 2010), and fire regimes. Many of these
effects tend to persist after removal, hindering restoration efforts
(Marchante et al., 2009, 2011a). Mechanical and chemical control
of invasive Acacia species is often highly demanding in terms
of resources, time and labor (Marais et al., 2004). Reduction of
seed banks is particularly problematic, yet essential for the long-
term management of invasive plants with high seed production
(Richardson and Kluge, 2008). Biological control is consequently
often proposed as a valuable and indispensable asset for the
management of Acacia invasions (Marais et al., 2004; Richardson
and Kluge, 2008; Wilson et al., 2011).

Trichilogaster acaciaelongifoliae is a gall-forming wasp
endemic to Australia. Like all gall-forming insects, it is a highly
specific endoparasite which requires successful interaction with
its host to complete the life cycle, making it an ideal candidate for
biocontrol programs due to the extremely low risk of detrimental
interactions with species other than its preferred host, and its
inability to expand beyond the distribution of its host (Dennill
et al., 1993; Marchante et al., 2011b). Currently, only two
programs using T. acaciaelongifoliae to control A. longifolia exist
in the world. It was first introduced in South Africa in 1982 and
1983 (Dennill, 1985, 1988, 1990; Dennill and Donnelly, 1991;
Dennill et al., 1993) where it quickly became established through
most of the range of A. longifolia, successfully decreasing the
reproductive potential (89–95%) and vegetative growth (53%) of
its target and causing A. longifolia mortality in stressful situations
(Dennill, 1985, 1988; Dennill and Gordon, 1990). Owing to the
success of A. longifolia biocontrol in South Africa, a similar
program was initiated in Portugal (Marchante et al., 2011b),
with the first release of T. acaciaelongifoliae in the wild taking
place recently, in 2015 (Marchante et al., 2017). As of 2018,
four populations of T. acaciaelongifoliae established in Portugal,
and it is expected that they will maintain the current trend of
population growth and expansion, eventually reaching all areas
of the country invaded by A. longifolia (Marchante et al., 2017).
While the program was initiated in Portugal, the agent may
potentially spread to other regions of the Mediterranean Basin
where adequate environmental conditions are available.

Understanding how the niches of a biocontrol agent and its
target species relate in their native distribution may be insufficient
to predict the success of biocontrol. The possibility of niche shifts
during introduction into new environments (Guisan et al., 2014)
may promote niche divergence between the two species, creating
a mismatch in environmental space which, when transported to
geographic space, can result in inability of the biocontrol agent to
establish in areas targeted for control.

This work aims to characterize the realized niches of
A. longifolia and T. acaciaelongifoliae and test the adequacy of
T. acaciaelongifoliae as a biocontrol agent for A. longifolia in
Portugal as a function of niche overlap. To accomplish this, we
characterize and compare the realized niches of the host plant
and of the biocontrol agent in their native and introduced ranges.
We also test the hypothesis of niche shifts by comparing realized
niches between native and introduced ranges for both species.
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We then project the environmental affinities of A. longifolia
and T. acaciaelongifoliae into geographical space using species
distribution models, in order to predict the success of the
biocontrol program primarily in Portugal but ultimately in the
geographically and climatically proximate Mediterranean Basin.

MATERIALS AND METHODS

Occurrence Records
A database of A. longifolia and T. acaciaelongifoliae occurrence
records was compiled from the Global Biodiversity Information
Facility1, Atlas of Living Australia2, South Australian Museum3

provided upon request by Doctor Peter Hudson, Australian
National Insect Collection4 provided upon request by Doctor
Juanita Rodriguez, Invasive Plants in Portugal – Invasoras.pt5

(Marchante et al., 2017), Southern Africa Plant Invaders Atlas
(Henderson, 1999), literature references (Dennill, 1985, 1987;
Prinsloo and Neser, 2007; Lado, 2008; Henriksen et al., 2017,
2019); and data provided by authors and collaborators (see
section “acknowledgments”). Data collection for A. longifolia and
T. acaciaelongifoliae was independent and no records were shared
among the two datasets.

Occurrence data were considered until June 2018. A. longifolia
records were included taking into account the species sensu lato
(i.e., including subspecies A. longifolia longifolia, A. longifolia
floribunda and A. longifolia sophorae, all considered hosts of
T. acaciaelongifoliae). In June 2018, T. acaciaelongifoliae was
still narrowly distributed in Portugal, and thus occurrence
records in this area were not considered for subsequent analyses.
Records outside the native area (southeastern Australia) and the
introduced areas of interest (South Africa and Portugal) were
excluded. Uncertain or duplicate records were also excluded.
Records with less positional accuracy than 10 km were excluded
to maximize geographic coverage while minimizing the loss of
spatial precision (Gutiérrez-Rodríguez et al., 2017). To reduce
potential sampling bias and spatial autocorrelation, a declustering
approach (e.g., Vale et al., 2016; Dinis et al., 2019) was performed
using the R package ecospat (Di Cola et al., 2017), which
consisted of delimiting a 10 km buffer around each record and,
when two or more buffers overlapped, removing one of the
records randomly. This process was repeated until all remaining
records per species had a distance of at least 10 km among
them. Clustering was quantified before and after the declustering
treatment to ensure an effective decrease in the level of clustering
(e.g., Dinis et al., 2019). This was done by calculating the
Nearest Neighbor Index in ArcMap 10.1 (Environmental Systems
Research Institute, 2012). The final database consisted of 1493
and 140 occurrences for A. longifolia and T. acaciaelongifoliae,
respectively (Supplementary Table 1). Occurrences were then

1https://www.gbif.org/en/
2https://www.ala.org.au/
3http://www.samuseum.sa.gov.au/
4https://www.csiro.au/en/Research/Collections/ANIC
5http://www.invasoras.pt

further subdivided by geographical areas of interest (southeastern
Australia, South Africa, and Portugal; Figure 1).

Bioclimatic Variables and Study Area
The native distributions of A. longifolia and T. acaciaelongifoliae
were represented by southeastern Australia. South Africa and
Portugal were selected to represent areas of A. longifolia
invasion because they are the areas where biocontrol programs
with T. acaciaelongifoliae are ongoing. The Mediterranean
Basin (slightly expanded to include also northern Spain) was
selected for model projections for two reasons. First, it is the
geographical area of which Portugal is part and A. longifolia
occurs with invasive potential in several countries in the
region (Spain, France, Italy, Lorenzo et al., 2010); at the same
time, if A. longifolia is present, this creates the possibility
of natural dispersion of T. acaciaelongifoliae. Second, climatic
similarity with the global distribution of A. longifolia and
T. acaciaelongifoliae (predominately in areas of Mediterranean
climate) is expected to maximize analogy of predictors.

Nineteen bioclimatic variables representing average
contemporary conditions (1970–2000) were obtained from
Worldclim v2.06 (Hijmans et al., 2005) at a spatial resolution
of 10 × 10 km, to ensure consistency with the minimum
positional accuracy of the occurrence data. Other scenopoetic
candidate variables, such as topography, were considered but
ultimately excluded under the assumption that they would
not be informative at this spatial resolution, while variables
related to soil composition and vegetation cover/structure were
excluded due to being dynamically linked to the presence of
the target species, consequently falling outside the scope of the
Grinnellian niche (Peterson et al., 2011). The temporal extent of
the Worldclim dataset overlaps with the collection dates for most
occurrence records used in this work, and was therefore selected
as an adequate representation of climatic conditions available to
the target species upon the time of observation.

Background and training areas were defined by clipping
bioclimatic layers to a 200 km buffer surrounding the minimum
convex polygon which includes all occurrence records. Buffer size
was selected taking into account coarse distributional patterns,
topography, vegetation zones, and the limits of climatic regions
according to the Köppen-Geiger climate classification (Köppen,
1900) and aims to represent the habitats and areas which the
species may have reasonably sampled in each region (Barve
et al., 2011) and prevent biases in the sampling of background
data, which are known to occur when using overly broad or
restrictive training areas (VanDerWal et al., 2009; Anderson
and Raza, 2010). This was done separately for each species in
each relevant area of distribution, i.e.: for A. longifolia in its
native range in southeastern Australia as well as the invasive
ranges in South Africa and Portugal; and for T. acaciaelongifoliae
in its native and introduced ranges in southeastern Australia
and South Africa, respectively. Analyses were also performed
combining the multiple native and introduced/invaded ranges
for each species (Australia, South Africa and Portugal for
A. longifolia, Australia and South Africa for T. acaciaelongifoliae,

6http://www.worldclim.org
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FIGURE 1 | Study areas and occurrence records of Acacia longifolia and Trichilogaster acaciaelongifoliae used in this work. (A; top right): Portugal; (B; bottom left):
South Africa; and (C; bottom right): southeastern Australia. Trichilogaster acaciaelongifoliae records from Portugal are merely indicative and were not included in any
analyses due to their low number and recent establishment.

Figure 2). All operations were performed in ArcMap 10.1
(Environmental Systems Research Institute, 2012).

Niche Overlap
Ecological niches were compared between A. longifolia and
T. acaciaelongifoliae, as well as between different native and
introduced areas of each species’ distribution (Figure 2).
For A. longifolia, niches were compared between the native
range in Australia and the two invaded ranges in South Africa
and Portugal. For T. acaciaelongifoliae, comparisons took
into account only the native and introduced distributions in
Australia and South Africa, respectively. All three distribution
areas for A. longifolia were compared, to avoid assumptions
about introduction pathways. Niches were compared in
multivariate environmental space using the PCA-env technique
(Broennimann et al., 2012). This approach allows for pairwise
comparisons of niches between groups, and consists of
three steps: (1) calculation of density of occurrences along a

multivariate environmental space for both target groups; (2)
measurement of the overlap between density distributions
of the two groups in environmental space (niche overlap),
as defined by Schoener’s D metric (Schoener, 1970); and (3)
statistical tests of niche equivalency (whether niche overlap is
constant when randomizing occurrences among both groups)
and niche similarity (whether the niche of one group is more
similar to the other than would be expected by chance given
the available environmental background), using a permutation-
based framework (Warren et al., 2008; Broennimann et al.,
2012).

Representation of niches as densities along environmental
space allows the quantification of differences in the densities of
groups, which can be expressed as niche stability (proportion of
niche B overlapping with niche A), niche expansion (proportion
of niche B non-overlapping with niche A), and niche unfilling
[unique proportion of niche A (i.e., non-overlapping with niche
B); Guisan et al., 2014]. These metrics were developed to compare
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FIGURE 2 | Workflow for niche overlap assessments and distribution modeling. Panel (A; top): Regional species distribution datasets were compared to assess
niche conservatism for Acacia longifolia and Trichilogaster acaciaelongifoliae. Niche overlap among species was quantified (overlap), tested (equivalency and
similarity), and characterized (stability, expansion, and unfilling) to assess ecological overlap in environmental space. Panel (B; bottom): Distribution modeling was
used to project ecological overlap into geographic space and predict the potential ability of T. acaciaelongifoliae to establish in areas susceptible to A. longifolia
invasion in the Mediterranean basin. Acronyms: AU: Australia, SA: South Africa, and PT: Portugal.

native and exotic niches, and represent the proportion (0–1)
of the realized niche that remains constant (stability), is gained
(expansion), or is lost (unfilling) during introduction/invasion.
Application outside of an explicit comparison of native vs
introduced ranges (such as when comparing two unrelated
taxa like A. longifolia and T. acaciaelongifoliae) requires an
arbitrary assignment of each group to either niche A or B,
which will alter the order in which niche expansion and
unfilling are calculated but will not affect the final results or
interpretation. Background areas for each group were spatially
delimited using the same areas used for calibration of niche
models. For each pairwise comparison, background areas of
the two groups under comparison were merged. Environmental
space was defined by the 19 bioclimatic variables available
from Worldclim v2.0 (Hijmans et al., 2005), at a resolution of
10 × 10 km. Though several of these variables are correlated
in geographic space, the PCA-based approach addresses this
by creating an orthogonal linear combination of the original
variables. This approach allows the inclusion of all available
bioclimatic variables, maximizing the environmental variance
under consideration for niche assessments and minimizing
assumptions about variable importance. Given what little is
known about the ecology of T. acaciaelongifoliae, we opted to
minimize such assumptions. Niche overlap was calculated and

niche equivalency and similarity tests were performed among
regions for each species, and across species. We also calculated
metrics of niche stability, expansion and unfilling using the
same framework. For all tests among species, A. longifolia
was considered as group A and T. acaciaelongifoliae as group
B. All analyses were performed in the R package ecospat
(Di Cola et al., 2017).

Species Distribution Models
Based on the evidence for niche conservatism for both
A. longifolia and T. acaciaelongifoliae (see Results section),
species distribution models were calibrated using all available
records for southeastern Australia, South Africa and (for
A. longifolia) Portugal. This allows maximization of the
number of occurrence records used to train the models and a
better sampling of relevant environmental gradients. To avoid
overparametrization, distribution models were developed using
a subset of the bioclimatic variables used for niche overlap
analysis. This approach precludes direct comparison between the
two methods. Consequently, we treat the distribution models
strictly as niche-based tools for predicting distributions rather
than accurate representations of the niches, relying solely on the
niche overlap tests for any inferences regarding the dynamics and
relationships of niches. Spatial correlation between bioclimatic
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variables was assessed in ArcMap 10.1 (Environmental Systems
Research Institute, 2012), and multicollinearity was assessed
by calculating the Variance Inflation Factor (VIF) using the
usdm package in R (Naimi et al., 2014). When two or more
variables were highly correlated, preference was given to the
one with the most biological sense. A set of five and six
slightly correlated (Pearson’s r < 0.7) and non-collinear variables
(VIF < 5; e.g., Vicente et al., 2013) were selected to create
models for T. acaciaelongifoliae and A. longifolia, respectively,
(Table 1). An ensemble modeling approach was performed in the
R package biomod2 (Thuiller et al., 2009) using a combination of
seven modeling techniques: Generalized Linear Models (GLM),
Generalized Boosting Models (GBM), Flexible Discriminant
Analysis (FDA), Classification Tree Analysis (CTA), Multivariate
Adaptive Regression Splines (MARS), Random Forests (RF),
and Maximum Entropy (MAXENT). Models were created
using 5 datasets of 1000 pseudoabsences randomly distributed
through the training areas, and 8 replicates were performed
for each combination of pseudoabsence dataset and modeling
algorithm, for a total of 280 models per species. Each model
was calibrated setting aside 30% of available presence records
for model evaluation. The resulting testing datasets were used
to evaluate model discrimination by calculating the area under
the curve of the receiver operating characteristic curve (AUC),
and ensemble models across all modeling techniques were
created for each species (e.g., Petitpierre et al., 2017), using
the mean of all models where AUC > 0.7. Individual models
were projected for the Mediterranean Basin and binary ensemble
models were created using the Maximized Sum Threshold criteria
(MST; Cantor et al., 1999), implemented in biomod2 under
the “binary.meth = ‘ROC”’ argument (Thuiller et al., 2009).
This method selects the threshold which maximizes the sum
of sensitivity and specificity. We opted to use this approach
due to its good general performance in comparative studies and
particularly for its superior performance with low-prevalence
datasets and ability to minimize omission errors, which are
generally more costly in conservation applications such as
identifying areas under risk of biological invasion (Liu et al.,
2005; Jiménez-Valverde and Lobo, 2007). The importance of

environmental variables for each model was determined by
average permutation importance (Phillips et al., 2006).

RESULTS

Niche Characterization
Niche overlap among A. longifolia was overall low between
the three regions (less than 0.5, with 0 corresponding to no
overlap and 1 to complete overlap), with the greatest overlap
occurring between A. longifolia in South Africa and Portugal
(0.416; Table 2). Niche equivalency, i.e., whether niche overlap
remains constant when randomizing occurrences among groups,
was found in all pairwise tests except for A. longifolia in Australia
vs. Portugal and South Africa vs. Portugal. Niche similarity,
i.e., whether groups are more similar than expected considering
available background, was found in all pairwise tests. Similar
niche dynamics were found for all A. longifolia comparisons,
with predominant niche stability (>0.89), analogous niches
across regions and very little expansion into novel areas of
environmental space during introduction. Niche unfilling, i.e.,
areas of environmental space present in original range but not
after introduction, ranged between 0.2 and 0.26 for all pairs
except South Africa vs. Portugal, which had very little unfilling
(<0.01). For T. acaciaelongifoliae in Australia vs. South Africa,
niche unfilling was of similar magnitude to A. longifolia (0.25),
but niche expansion was much more pronounced (0.56), with a
corresponding decrease in niche stability (0.44; Table 2).

For comparisons between A. longifolia and
T. acaciaelongifoliae, niche overlap ranged between 0.53 (in
Australia) and 0.85 (in South Africa). The niches of the two
species were found to be equivalent and similarity was not
rejected in any pairwise test. Niche stability was higher than
0.96 in all comparisons, with corresponding low values of niche
expansion from A. longifolia to T. acaciaelongifoliae (<0.04).
Niche unfilling from A. longifolia to T. acaciaelongifoliae was
lowest in South Africa (0.05) and highest in Australia (0.23;
Table 2). All significant (p-value < 0.01) niche similarity tests
corresponded to values of overlap greater than the distribution

TABLE 1 | Variable ID and minimum, maximum, and mean values across model training areas for Acacia longifolia and Trichilogaster acaciaelongifoliae of
ecogeographical variables used in model creation.

Acacia longifolia Trichilogaster acaciaelongifoliae

Min Max Mean Min Max Mean

BIO2 Mean diurnal range (C◦) 5.28 18.04 12.37

BIO3 Isothermality (%) 33.02 62.67 48.95 36.18 63.39 49.77

BIO4 Temperature seasonality 201.10 634.90 426.80

BIO6 Min temperature of coldest month (C◦) −6.15 13.42 3.18

BIO9 Mean temperature of driest quarter (C◦) 0.50 25.03 15.93

BIO13 Precipitation of wettest month (mm) 20.00 299.00 91.38

BIO14 Precipitation of driest month (mm) 1.00 119.00 26.93 2.00 119.00 25.85

BIO15 Precipitation seasonality 8.55 87.14 39.22

BIO19 Precipitation of coldest quarter (mm) 11.00 842.00 174.60

Variables are represented only for the species in which they were utilized for model creation.
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of pseudoreplicates, indicating that the groups are more similar
than expected considering the available background.

Species Distribution Models
All 280 models per species had AUC values above 0.7 and were
thus included in the ensembles. AUC values for A. longifolia
models ranged between 0.79 and 0.94, with a weighted average
of 0.90 ± 0.02 (±SD). AUC of models for T. acaciaelongifoliae
ranged between 0.71 and 0.92, with a weighted average of
0.85 ± 0.04 (±SD; Table 3).

Temperature seasonality (BIO4), minimum temperature of
the coldest month (BIO6), and precipitation of the coldest quarter
(BIO19) were the most important variables for the A. longifolia
models, with marginal contributions from the remaining
variables. Variable importance for T. acaciaelongifoliae was less
straightforward, with all variables contributing somewhat to the
models, yet isothermality (BIO3) and mean diurnal range of
temperature (BIO2) were the variables with the most explanatory
power (Table 3).

Suitable areas for A. longifolia were predicted through the
Atlantic coast of the Iberian Peninsula and Morocco, in some
areas extending up to 280 km inland (Figure 3). Suitability for
A. longifolia was also identified in northern Spain, southern
France, some areas of the Italian and Balkan peninsulas
(particularly along the Adriatic coast), most of the Mediterranean
coast of North Africa and the Middle East and all Mediterranean
archipelagos. T. acaciaelongifoliae is predicted to have suitable
climatic conditions in most of the Iberian coastline (except for a
gap of approximately 300 km in northern Portugal), the entirety
of the coastline of Morocco, most of the Mediterranean areas

of Libya, Egypt, Israel, and Palestine and areas in the Adriatic
coast and in the islands of Cyprus, Sicily and the Aegean sea
(Figure 3 and Supplementary Figure 1). In total, 19% of the
total area of the Mediterranean basin was predicted to be suitable
for A. longifolia, and 41% of the area identified as suitable for
A. longifolia is also predicted as suitable for T. acaciaelongifoliae.
Currently established population of T. acaciaelongifoliae were all
correctly identified as suitable by the modeling approach used,
with the exceptions of the population located in the city of
Coimbra (Figure 3 and Supplementary Figure 1) and a few very
recently observed populations in the northern coast (not shown).

DISCUSSION

Niche Dynamics of A. longifolia and
T. acaciaelongifoliae
While there are differences in niche dynamics between
different ranges of A. longifolia and T. acaciaelongifoliae,
the results are overall consistent with niche conservatism
during the invasion/introduction process, respectively. Evidence
for niche similarity on all cases suggests that observed
differences in niches are related to differences in habitat
availability and/or introduction pathways between Australia,
South Africa and Portugal. Comparisons between Australia and
South Africa revealed contrasting patterns for the two species,
with A. longifolia invasion being associated with niche stability,
and T. acaciaelongifoliae introduction being associated with
strong niche expansion. It’s unlikely that this reflects actual
expansion of T. acaciaelongifoliae into new environments in

TABLE 2 | Niche overlap and dynamics between all pairs of native (AU: Australia) and introduced (SA: South Africa; PT: Portugal) Acacia longifolia (Al) and Trichilogaster
acaciaelongifoliae (Ta).

Pairs PC1 PC2 Niche overlap
(D)

Equivalency
(sig = non-eq.)

Similarity
A- > B

Similarity
B- > A

Expansion Stability Unfilling

Acacia longifolia AU-PT 44.27 20.19 0.18 0.001* 0.052 0.07 0.084 0.916 0.257

AU-SA 37.24 26.64 0.33 0.263 0.012 0.009* 0.102 0.898 0.211

SA-PT 45.01 19.67 0.416 0.001* 0.011 0.013 0.06 0.94 0.004

Trichilogaster acaciaelongifoliae AU-SA 37.24 26.64 0.157 0.987 0.141 0.134 0.561 0.439 0.254

Among species AlSA-TaSA 35.02 27.08 0.846 0.604 0.004* 0.005* 0.039 0.961 0.053

AlAU-TaAU 48.96 22.37 0.526 0.94 0.094 0.084 0.001 0.999 0.227

AlAll-TaAll 39.71 24.08 0.556 1 0.09 0.09 0.013 0.987 0.106

Comparisons are made within each species and between the two species considering the native (AU) and introduced (SA) ranges where both occur. Tests between the
two species considering the full range where they occur (AU, SA and PT for A. longifolia; AU and SA for T. acaciaelongifoliae) are also presented (AlAll-TaAll). Percentage
of explained variation of the two first principal component (PC1 and PC2), niche overlap (Schoener’s D), p-values of equivalency and similarity tests (p < 0.01, significant
values marked with *) and indices of niche expansion, stability and unfilling are presented. All tests of niche similarity presented null distributions lower than the observed
overlap, indicating niche similarity.

TABLE 3 | Number of occurrence records (N), average (and SD) Area Under the Curve (AUC) and average (and SD) permutation importance of each ecogeographical
variable across all 280 species distribution model replicates for Acacia longifolia and Trichilogaster acaciaelongifoliae. ∗ Indicate highest contributing variables.

N AUC BIO3 BIO4 BIO6 BIO9 BIO14 BIO19

Acacia longifolia 1493 0.897 (0.022) 0.045 (0.033) 0.238* (0.089) 0.178* (0.089) 0.072 (0.052) 0.042 (0.051) 0.350* (0.094)

N AUC BIO2 BIO3 BIO13 BIO14 BIO15

Trichilogaster acaciaelongifoliae 140 0.846 (0.040) 0.501* (0.109) 0.527* (0.113) 0.251 (0.153) 0.343 (0.296) 0.261 (0.236)
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FIGURE 3 | Spatial overlap between model predictions of suitability for Acacia longifolia and Trichilogaster acaciaelongifoliae in the Mediterranean region.
Trichilogaster acaciaelongifoliae model was constrained to areas of predicted suitability for A. longifolia to prevent classification of suitability in areas where the
species cannot persist due to lack of its host plant. Bottom: Populations of T. acaciaelongifoliae already established in Portugal as of 2018

South Africa, as its dependency on A. longifolia would require
the host plant to do the same, which is rejected by the
evidence. Rather, non-climatic factors such as biotic interactions
are likely to constrain the distribution of T. acaciaelongifoliae
in Australia, where the species is native and as such suffers
higher levels of parasitism and competes with other bud-feeding
insects (Neser, 1984). Despite present, the lower level of such
interactions in South Africa (Manongi and Hoffmann, 1995;
Seymour and Veldtman, 2010) may have allowed the species
to expand into previously unoccupied areas of niche space
which are nonetheless contained within the realized niche of
A. longifolia. The evidence for niche expansion may also reflect
the low number of occurrence records for T. acaciaelongifoliae
in Australia, which thus fail to fully represent the realized
niche. Gall-forming insects, particularly in native regions
where they coexist with their hosts often in equilibrium, are
frequently overlooked and understudied organisms, despite the
importance of several species as biocontrol agents (Dennill, 1988;
Harris and Shorthouse, 1996) or pests (Gil-Tapetado et al., 2018;

Ferracini et al., 2019). This resulted in a relatively reduced dataset
in Australia, vulnerable to spatial biases, which are known to
affect niche estimates (Graham et al., 2008; Sánchez-Fernández
et al., 2011). Regardless, the evidence for niche conservatism
allowed us to combine the T. acaciaelongifoliae occurrence
records for Australia and South Africa for the development of
niche models, minimizing the effect of spatial biases.

The very high niche overlap between A. longifolia and the
gall-former T. acaciaelongifoliae is consistent with the high
specificity of T. acaciaelongifoliae with its host plant (Dennill
et al., 1993; Marchante et al., 2011a). The realized niche of
T. acaciaelongifoliae is found to be almost fully contained
within the niche of A. longifolia on all regions where the two
species co-occur (reflected in high niche stability and near
zero niche expansion). In South Africa, niches of the two
species were found to be more similar than expected given
the available environmental background and niche unfilling was
found to be the lowest among all interspecies comparisons.
This suggests a near total colonization by T. acaciaelongifoliae
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of all environments where A. longifolia occurs, which has
been reported by some authors (J. Hoffmann, personal
communication). It also indicates that the aforementioned
expansion of T. acaciaelongifoliae in South Africa in the absence
of substantial negative biotic interactions took place exclusively
within the range of A. longifolia, highlighting the high specificity
of T. acaciaelongifoliae which is a key factor in its reliability
as a biocontrol agent. Australia had the lowest niche overlap
and highest niche unfilling among all interspecies comparisons,
highlighting that T. acaciaelongifoliae is not known to occur
(or reported) in many of the environments where A. longifolia
is present in its native range. Again, this likely reflects non-
climatic influences hindering the ability of T. acaciaelongifoliae
to successfully colonize all A. longifolia habitats.

Implications for the Management of
A. longifolia Including Biocontrol
The predicted suitable area for A. longifolia in the Mediterranean
basin far exceeds the current distribution. Besides environmental
conditions, introduction histories are known to greatly influence
species distributions (Donaldson et al., 2014). One of the
main pathways for A. longifolia introduction in Portugal was
for sand binding of coastal dunes (Marchante et al., 2003).
This coastal introduction, associated with habitat connectivity
and dispersal constraints, may account for the current species
distribution which is not known to extend as far inland as
predicted by our model (with a few exceptions in some particular
locations). This hypothesis seems likely when considering that
A. longifolia (sensu lato) is known to occur much further inland
in its native distribution than in Portugal (Court et al., 2020).
Likewise, in South Africa, where A. longifolia was introduced
also to stabilize inland slopes (Dennill and Donnelly, 1991),
the species is present as far inland as 500 km, demonstrating
that it can become established far from coastal climate given
the adequate means of dispersal. Regardless, we cannot dismiss
the possibility that factors not included in the models, such
as biotic interactions or non-climatic abiotic variables, may
constrain the distribution of A. longifolia beyond the model’s
prediction. The current model predicts risk of A. longifolia
invasion in most of the Mediterranean and, especially, Atlantic
coastline of the Mediterranean Basin region. Areas of current
A. longifolia invasion in the region besides Portugal include
north-western Spain (Community of Galicia), which is correctly
predicted as climatically suitable. A. longifolia is currently
present, even if not yet considered as invasive, in several
countries which are predicted as having suitable areas for the
establishment of the species, namely France, Italy, Greece and
Turkey (Akanil and Middleton, 2010; EFSA Panel on Plant
Health, 2015). Our results suggest that particular care should
be taken to prevent A. longifolia invasion in these regions
where the species is already present within an area of suitable
environment. The model for A. longifolia identified a small
area of suitability in the southern Pyrenees Mountains, a region
characterized by montane conditions that are uncharacteristic
for the species. Species distribution models have a limited ability
to extrapolate beyond the environmental conditions available

in the training area and may produce unexpected results when
environmental homology between training and projection areas
is not assured (Elith and Leathwick, 2009). Despite our efforts to
maximize homology by restricting the model projections to the
Mediterranean Basin, mountain ranges in the region are likely to
include extreme conditions which lead to extrapolation, resulting
in less reliable predictions in these areas.

Trichilogaster acaciaelongifoliae is predicted to find suitable
climate in a significant part of the potential A. longifolia
distribution area. Current areas of A. longifolia invasion
where T. acaciaelongifoliae is not predicted to find suitable
conditions are located in the coastline of northern Portugal
and Galicia, as well in the most inland areas of Portugal.
Nevertheless, the existence of a well-established population of
T. acaciaelongifoliae in the Portuguese city of Coimbra and
very recent (2019; López-Núñez et al., in prep.) establishment
in northern areas of Portugal (classified as unsuitable by
the model) indicates that the approach used in this work
may not be sufficient to fully characterize the niche of
this species. Partial inconsistencies amongst modeling outputs
and field observations occur in other studies (e.g., Gallien
et al., 2012; Fischbein et al., 2019) for several reasons. In
our study, agreement between model predictions and known
distributions in the Mediterranean Basin was higher for
A. longifolia than for T. acaciaelongifoliae, likely reflecting
the difference in number and quality of occurrence records
between the two species. Moreover, this may be explained by
the fact that the biocontrol agent was only recently (2015)
introduced in Portugal (Marchante et al., 2017), still not
having enough time to spread and establish across the suitable
area. Furthermore, the life history of T. acaciaelongifoliae is
characterized by a near-total existence as an endoparasite, and
as such the microenvironmental conditions and interactions
with the host plant are likely to be better predictors of the
species’ ability to form viable populations than macroclimatic
factors. Despite the identification of ecogeographical variables
that have a limiting effect on T. acaciaelongifoliae, the
environmental triggers required for completion of this species’
life cycle are still poorly understood. T. acaciaelongifoliae has
shown to be sensitive to such triggers, as the change in
hemisphere (and consequent temporal mismatch between the
species’ life cycle and seasonal queues) upon introduction to
Portugal resulted in low establishment success in the first
years (Marchante et al., 2017, López-Núñez et al., in prep.).
Identifying these triggers is fundamental to properly assess the
long-term robustness of effective biocontrol of A. longifolia
mediated by T. acaciaelongifoliae. Ultimately, mechanistic
approaches to modeling which integrate microhabitat and biotic
interactions between host and parasite as well as an explicit
understanding of how these factors contribute to the life cycle of
T. acaciaelongifoliae (Palhas et al., in prep.) are expected to better
approximate the fundamental niche and, when integrated with
correlative approaches such as the one presented in this work,
allow for more accurate predictions.

Despite the limitations described above, the high niche
overlap between the two species shows promise regarding
the effectiveness of T. acaciaelongifoliae for biocontrol of
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A. longifolia in other invaded areas worldwide. Particularly
in New Zealand, where such a program is being considered
(Northland Conservancy Department of Conservation, 2005;
Northland Regional Council, 2019), distribution modeling
approaches such as the one presented here may offer insight on
whether and where biocontrol has a chance to be effective.

CONCLUSION

Predictive modeling is widely used for the prevention and
management of biological invasions. The ability to predict
invasion risk beforehand enables the application of preventive
measures which are generally more cost-effective than attempting
to eradicate already established invasive populations (Rejmánek
et al., 2013). We have developed a predictive mapping of suitable
areas for A. longifolia establishment in the Mediterranean basin,
from which several areas potentially under invasion risk were
identified in southern Europe. These areas represent priority
targets for preventive measures in order to prevent future
invasions. However, areas predicted as suitable are unlikely to
share a similar risk of invasion. We uncovered a likely important
role of introduction pathways in shaping the current distribution
of A. longifolia across its invasive range. Understanding landscape
permeability to dispersal and identifying dispersal corridors,
which can be accomplished by connectivity analysis (e.g.,
Gonçalves et al., 2016) can potentially improve risk mapping.

Distribution models and assessments of ecological overlap are
not frequently used to inform the implementation of biocontrol
programs. The potential of these approaches for quantifying
the adequacy of a biocontrol agent in terms of ecological
overlap with the target species and ability to establish in target
areas should not, however, be underestimated. Despite the
limited data available for T. acaciaelongifoliae, we were able to
identify substantial overlap between the biocontrol agent and
the target invasive plant. We also uncovered an important role
of biotic interactions constraining the realized distribution of
T. acaciaelongifoliae in its native range. In the absence of such
interactions in the introduced range, the species may be able to
explore previously unavailable parts of its fundamental niche,
potentially being able to colonize even more of the distribution
of A. longifolia than predicted by the current model. These are
promising predictions for the future of A. longifolia biocontrol in

Portugal and in the Mediterranean basin, but also in other regions
dealing with A. longifolia invasions.
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