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Climatic oscillations over the Quaternary have had a lasting impact on species’
distribution, evolutionary history, and genetic composition. Many species show dramatic
population size changes coinciding with the last glacial period. However, the extent and
direction of change vary across biogeographic regions, species-habitat associations,
and species traits. Here we use genomic data to assess population size changes
over the late Quaternary using the Pairwise Sequential Markovian Coalescent (PSMC)
approach in two Eurasian Owlet species—the Spotted Owlet, Athene brama, and the
Jungle Owlet, Glaucidium radiatum. While Spotted Owlets are typically associated
with open habitats, Jungle Owlets are found in deciduous forests and scrublands.
We find that the effective population size for the Spotted Owlet increased after the
Interglacial period till the Last Glacial Maxima and subsequently declined toward the
Mid-Holocene. On the other hand, effective population size estimates for the Jungle
Owlet increased gradually throughout this period. These observations are in line with
climatic niche model-based predictions for range size change for both species from a
previous study and suggest that habitat associations at the local scale are important in
determining responses to past climatic and vegetational changes. The Spotted Owlet
result also aligns well with the expectation of open habitat expansion during the arid
Glacial Maxima, whereas for the Jungle Owlet the contrasting expectation does not hold.
Therefore, assessing the impacts of glacial history on population trajectories of multiple
species with different habitat associations is necessary to understand the impacts of
past climate on South Asian taxa.

Keywords: PSMC, population genomics, South Asia/India, climatic niche models, Owlets, last glacia maximum

INTRODUCTION

Quaternary climatic fluctuations, characterized by repeated cycles of cool and arid glacial periods
punctuated by warm “interglacials,” are notable for their role in shaping the distribution and
evolutionary history of species globally (Hewitt, 2000, 2004). Northern latitudes experienced far
greater extremes with glacial periods being marked by an expansion of ice sheets, retraction

Frontiers in Ecology and Evolution | www.frontiersin.org 1 December 2020 | Volume 8 | Article 608339

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2020.608339
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-3109-5498
https://doi.org/10.3389/fevo.2020.608339
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2020.608339&domain=pdf&date_stamp=2020-12-22
https://www.frontiersin.org/articles/10.3389/fevo.2020.608339/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-608339 December 16, 2020 Time: 15:26 # 2

Natesh et al. PSMC Analysis of Indian Owlets

of temperate and boreal forests, and expansion of tundra
vegetation (Hofreiter and Stewart, 2009; Beyer et al., 2020).
Lowered sea levels exposed a greater land area and created land
bridges. Though less pronounced, the tropics too experienced
changes in temperature and precipitation, with glacial periods
being drier and cooler, leading to contraction and fragmentation
of tropical forests, expansion of grasslands, or dry woodlands
(Qian and Ricklefs, 2001; Ray and Adams, 2001). Coincidental
with these shifts in vegetation and available habitat, species ranges
changed dynamically through the Quaternary, varying in their
extent and geographical location (Dynesius and Jansson, 2000),
impacting community composition and species distribution
(Fuchs et al., 2019). Along with this, changes in population size
and isolation-migration patterns altered the genetic composition
of populations (Hewitt, 2000).

In the tropics, there is considerable empirical support for
the impact of forest fragmentation and open habitat expansion
during the glacial periods on the population history of many
species (Schneider and Moritz, 1999; Cabanne et al., 2007;
Wurster et al., 2010; Piñeiro et al., 2017; Song et al., 2020).
However, data contradicting this general pattern (Batalha-Filho
et al., 2012; Rocha and Kaefer, 2019) underscore the importance
of understanding regional patterns across taxonomic groups.
Among tropical regions, South Asia remains poorly represented
in studies that include genetic data (Reddy, 2014), even fewer
that examine historical climatic oscillation-induced species range
dynamics. Global reconstructions of vegetation indicate that the
region saw an expansion of open habitats including grasslands
and dry scrubland during the last glacial period (Beyer et al.,
2020). Palynological and isotope analysis suggest that monsoonal
activity was also reduced during this period while being stronger
during the interglacial (Prabhu et al., 2004). These changes are
likely to have impacted forest and open-habitat associated species
in an opposing manner, but to varying degrees depending on the
strengths of association with the habitat.

Here we examine the impact of the late Quaternary climatic
events on two phylogenetically close (from the same family—
Strigidae) but ecologically differentiated avian species from the
Indian subcontinent. The Spotted Owlet, Athene brama and
the Jungle Owlet, Glaucidium radiatum, are small owls, widely
distributed, and sympatric over large parts of their current
distribution. Nevertheless, they have distinct dietary habits and
breeding seasons (Mehta et al., 2018), and despite their range
overlap, at smaller spatial scales they are segregated by their
habitat preferences. Spotted Owlets avoid dense forests and are
primarily associated with more open habitats such as cultivated
areas, semi-desert areas, and open woodlands (Ali and Ripley,
1983; Holt et al., 2020b). Jungle Owlets are typically found
in forested areas, including dense and secondary dry/moist
deciduous forests, scrublands, and riparian areas (Ali and
Ripley, 1983; Holt et al., 2020a). Therefore, it is likely that
suitable habitats for the two species expanded and contracted in
opposition to each other, with the glacial periods being favorable
for Spotted Owlets and the interglacials for Jungle Owlets.
Genomic data allow us to assess such predictions by looking
for temporal changes in effective population size (Ne) coinciding
with major climatic events.

The Pairwise Sequentially Markovian Coalescent (PSMC)
model has frequently been used to infer changes in Ne in the
context of past climate (Nadachowska-Brzyska et al., 2015; Vijay
et al., 2018; Lucena-Perez et al., 2020). This model relies on the
rate of coalescence along a single diploid genome and uses this to
infer population size over time (Li and Durbin, 2012). The PSMC
framework has been particularly useful in cases where acquiring
large genomic datasets is still logistically prohibitive (Mays et al.,
2018). Based on PSMC curves, several species show dynamic
changes in Ne during the past glacial cycles, suggesting a strong
impact of glacial cycles on population history (Nadachowska-
Brzyska et al., 2015; Kozma et al., 2016; Mays et al., 2018; Vijay
et al., 2018; Feng et al., 2019). Such analyses have often been used
to complement and corroborate evidence from climatic niche
models (Kozma et al., 2018; Mays et al., 2018). Moreover, long-
term Ne trends help understand contemporary genetic variation
(Xue et al., 2015) and extinction risk (Hung et al., 2014), thus
providing an evolutionary context for current population trends.

OBJECTIVES

Here we test the hypothesis that the demographic history of
species will be strongly affected by the ecological differences,
specifically habitat preferences. We expect to see an increase in
Ne from LIG-LGM followed by a decline in the LGM-MDH
period for the Spotted Owlet. We expect the reverse trend for the
Jungle Owlet, with contraction in Ne during the glacial period and
expansion toward the Holocene. However, a previous study using
climatic niche models suggests that the extent of Jungle Owlet
habitat was reduced (relative to the Spotted Owlet) during the
LIG and gradually increased toward the MDH (Koparde et al.,
2019). We use the PSMC-based reconstruction of past Ne from
whole-genome sequence data to investigate past population size
dynamics of the Spotted Owlet and the Jungle Owlet over the
late Quaternary.

MATERIALS AND METHODS

Sample Collection
We obtained one sample per species from Central (Jungle
Owlet) and Southern (Spotted Owlet) Western Ghats, with due
permits from the Forest Department and extracted DNA using
the DNeasy Blood and Tissue kit following the manufacturer’s
protocol with slight modifications. Whole DNA concentration
was quantified using a Qubit 4.0 fluorometer and DNA integrity
was visualized using 1% Agarose Gel electrophoresis and
Tapestation. Samples were sequenced on an Illumina HiSeq 10X
platform (150 bp paired-end), targeting 30x genome coverage.

Read Mapping and Variant Calling
Raw sequences were inspected for overall quality, adapter
content, and the number of reads to ensure that it met the
required quality standards using the program TrimGalore!1.

1http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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Reads were processed using the GATK short reads pipeline
(McKenna et al., 2010) through which read-group information
was added and Illumina adapters were marked. For both
study species, no reference assembly was available. Therefore,
the Burrowing Owl (Athene cunicularia) assembly was used
as a reference genome (RAG1 nuclear gene p-distance—the
proportion of nucleotide sites at which the compared sequences
are different—with A. brama 1.07%; with G. radiatum 2.25%;
Supplementary Table S1.). The unmasked assembly (athCun1)
was downloaded from Ensembl (Yates et al., 2020). Reads were
mapped against the reference using the Burrows-Wheeler Aligner
(Li and Durbin, 2009; Li, 2013) with the “mem” option under
default settings. PCR duplicates were marked using Picard Tools2.
At this stage, the average depth and genome coverage for each
sample were summarized using the “Depth Of Coverage” option
from GATK as a quality check before proceeding further. The
Burrowing Owl assembly has an accompanying sequence report
which lists chromosomal information for each scaffold and
identifies them as occurring on autosomes, the Z chromosome,
or being unplaced. Therefore, reads mapping to the 51 autosomal
scaffolds from 28 chromosomes were selected. The scaffold N50
of the reference genome is 42,147,404 bp (42 Mb) and the shortest
scaffold used was 121,167 bp (0.12 Mb) long, making it suitable
for use with PSMC (Patton et al., 2019). A bed file identifying
autosomal scaffolds was created and used to extract reads aligning
only to autosomes using the program samtools (Li, 2011) with
the view option, along with -b -L flags. The aligned file was
filtered by setting a base quality threshold (q 20). Variants were
identified using the bcftools (Li, 2011) mpileup (with the -C50
flag) and call (with the -c flag) options and they were converted to
a consensus file with depth filters (minimum 10, maximum 100),
as suggested in the PSMC manual (Li and Durbin, 2012). The
bcftools/samtools variant-calling pipeline was used, as suggested
in the PSMC manual. Genome coverage was calculated using
samtools depth for different depth filters to see how the filtering
impacted the data.

Demographic History Through PSMC
The consensus file was converted to a suitable input format for
the PSMC pipeline following instructions in the PSMC manual.
PSMC analysis was repeated with different values of the “-t”
and “-r” parameters, controlling the maximum time to the most
recent common ancestor (TMRCA) and the number of free
atomic time intervals, respectively. For each value of “-t” (starting
with 15), “-p” was modified till each time span was supported by
at least 20 events after 25 iterations. The final set of parameters
was chosen to be “-N25 -t9 -r5 -p ‘26∗2 + 4 + 7 + 1’.”
Bootstrapping with 100 replicates was performed with the
identified set of parameters using a block size of 0.5 Mb. The
output was written to a text format (using the -R option with the
psmc_plot.pl script) for plotting in R. Estimates of the mutation
rate and the generation time are required to convert the scaled
population size (lambda) to effective population size (Ne) and the
time (in generations) to units of years. As the mutation rate for
the study species is unknown, it was assumed to be 4 × 10−9,

2http://broadinstitute.github.io/picard/

based on an average estimate of mutation rates from chickens
to passerines (Mueller et al., 2018). Nevertheless, additional plots
with alternative values of mutation rate based on estimates from
other species were also made for comparison. Generation time
was assumed to be 2 years, calculated as the age of sexual
maturity/reproduction (1 year; Pande et al., 2007) multiplied by
2, as suggested by Nadachowska-Brzyska et al. (2015). The scripts
used have been uploaded to GitHub3.

RESULTS

The Jungle Owlet and Spotted Owlet samples yielded 52.8 and
44.5 Giga bases, respectively (from 150 bp paired-end reads).
After alignment, the Jungle Owlet sample had an average depth
of 30X and the Spotted Owlet 26.5X. Genome coverage, depth
filters, and average depth are expected to impact the outcome
of PSMC and for reliable results, 75% of genome coverage
with a 10X depth filter is recommended (Nadachowska-Brzyska
et al., 2016). The genome coverage for both samples decreased
with quality filtering and removal of non-autosomal scaffolds
(Supplementary Figure S1) but was within the recommended
limit (Nadachowska-Brzyska et al., 2016).

The parameters chosen for PSMC resulted in a time-span
covering the LIG, the LGM, and the MDH i.e., the period of
interest. Altering the mutation rate and the generation time
based on other studies on owls and other birds (Nadachowska-
Brzyska et al., 2013; Fujito, 2020) had predictable effects on the
PSMC curve, as seen in other studies (Nadachowska-Brzyska
et al., 2015; Vijay et al., 2018), but did not alter the shape
(Supplementary Figure S2).

The two species show contrasting trends of population size
(Ne) change over the past 500,000 years (Figure 1). The Ne
of the Jungle Owlet rose gradually from approximately 14,500
during the LIG (120,000 YA) to about 78,000 during the LGM
(22,000 YA) and eventually to about 160,000 at the MDH (6,000
YA). In contrast, the Spotted Owlet had the highest Ne, about
293,000, around the LGM. It rose from about 33,000 around
the LIG and again fell after the LGM to about 45,000 around
the MDH. It must be kept in mind that PSMC results are less
robust on recent timescales (Li and Durbin, 2012; Patton et al.,
2019) and this affects the Ne estimates around the Mid-Holocene.
However, the population trends leading up from the LGM to
the MDH still indicate divergent trajectories for the Jungle and
Spotted Owlets. PSMC plots for the two owlets without scaling
are shown in Supplementary Figure S3 and show the same
contrasting pattern.

DISCUSSION

In this study, we elucidate population size trends for the Jungle
Owlet and Spotted Owlet over the major climatic events of the
past—the LIG—beginning of the Last Glacial Period, the LGM,
and the MDH. We find that both species show expansion from

3https://github.com/meghananatesh/JO
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FIGURE 1 | Estimated change in effective population size (Ne) for the Jungle (Glaucidium radiatum, dark blue) and Spotted (Athene brama, dark red) Owlets over the
past 500,000 years. The pale lines denote estimates from the 100 bootstrap replicates for each species. The vertical lines denote significant climatic transitions in the
past—the Last Interglacial (LIG—120,000 YBP), the Last Glacial Maximum (LGM—22,000 YBP), and the Mid-Holocene (MDH—6,000 YBP). To scale the plot, a
mutation rate of 4 × 10−9 per site per year and a generation time of 2 years were used.

the LIG to the LGM, although the Jungle Owlet has a much
greater degree of expansion. While the Jungle Owlet continues to
expand into the MDH, the Spotted Owlet shows a declining trend
after the LGM. The direction of these population trends is broadly
consistent with predictions from the species distribution models
from a previous study (Koparde et al., 2019), suggesting that
their distinct niches had a significant impact on their population
history. We note that we have sampled one individual of each
species and our data may not be representative of trends across
the range of these species. Therefore, we restrict our inferences
to the sampled Western Ghats populations of these widely
distributed species.

Temporal Trends in Ne Over the Late
Quaternary for the Two Owlet Species
The LIG was a warm and wet period in India (Prabhu et al.,
2004), with a strong southwest monsoon. Both samples show
reduced Ne during this period, a pattern observed in multiple
species from East-Asia (Dong et al., 2017). The LGM was
characterized by a cold and dry climate, increased aridification,
and reduced precipitation (Prabhu et al., 2004). In the Indian
peninsula, the rain forests were replaced by grassland vegetation
(Sukumar et al., 1995). These shifts are likely to have been
favorable for the Spotted Owlet, which shows a considerable
increase in population size toward the LGM. The Jungle Owlet
also shows an increasing trend, albeit to a much lower degree,
possibly due to the species’ preference for moist—dry forest and
scrublands in potential refugia. Following this, the transition
toward the Holocene climate resulted in a rise in temperature and
precipitation. During this time, much of peninsular India shifted

to wetter, forest habitats (Prabhu et al., 2004). The Spotted Owlet
shows a decline in this period, consistent with the prediction of
retraction of grasslands and open habitats, while the Jungle Owlet
continues to show an upward trend.

One major concern with the PSMC model is the presence
of population structure which has a confounding effect on
the inference of population size changes (Mazet et al., 2015,
2016). For this reason, it is also possible that the population
decline seen in the Spotted Owlet after the LGM may also be
due to changes in population structure, and this needs to be
tested with more data. Disentangling the effects of population
structure and demography remains challenging, particularly with
sequentially Markovian Coalescent methods (Mather et al., 2020).
Another technical constraint is the absence of a reference genome
assembly of the study species, which would have allowed better
mapping of reads. Nevertheless, sampling more individuals and
inclusion of more populations from across the range, while not
logistically feasible for this study, may provide more conclusive
results in the future.

The Influence of the Last Glacial Period
on Species’ History in the Tropics
The Last Glacial Period has been a time of major population
size changes for many avian species (Nadachowska-Brzyska et al.,
2015). However, the direction and extent of the impact may differ
across species within the same region (Cabanne et al., 2016) and
within species across different regions (Nadachowska-Brzyska
et al., 2016). Moreover, the impacts of the Last Glacial Period
were variable within the tropics. While African forests retracted
into refugial fragments in favor of grassland expansion during
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the dry, cool LGM period, Amazonian forests may have been
relatively stable, even though the forest composition itself was
altered (Prentice et al., 2000; Lessa et al., 2003; Malhi and Phillips,
2004; Bush and de Oliveira, 2006; Piñeiro et al., 2017). A study on
11 East-Asian birds, on the other hand, shows a greater impact
of the LIG, where several species show range contraction, as
opposed to the glacial period, which is a period of expansion
(Dong et al., 2017).

In the Indian subcontinent, changes in diversification
rates and population history have been shown to coincide
with paleoclimatic shifts (Robin et al., 2010; Agarwal and
Ramakrishnan, 2017). A high-altitude forest specialist bird,
Sholicola albiventris, shows post-glacial population expansion,
aligning well with the idea of forest fragmentation during the
LGM (Robin et al., 2010). On the other hand, the Indian peafowl
Pavo cristatus—a generalist (occupying moist-dry deciduous
forests, to open forests and woodlands, and cultivated areas and
orchards), shows a stable population size throughout the Last
Glacial Period, despite earlier bottlenecks (Jaiswal et al., 2018).
The Spotted Owlet in our study, in line with observations for
many other species, shows a cyclic expansion and contraction of
population size around the LGM, whereas the Jungle Owlet does
not. Such differences could result from differences in the extent
of habitat change and the strength of the habitat association.
Moreover, our Jungle Owlet sample is from the more widely
distributed subspecies Glaucidium radiatum radiatum, collected
from central India. The subspecies from Southern India—
Glaucidium radiatum malabaricum, known to be associated with
more moist forests (Ali and Ripley, 1983), may show a population
history more consistent with other forest-associated species.

Ne Trends in Understanding Long-Term
Population History
The demographic reconstruction of population history of the two
Owlet species appears to be broadly consistent with predictions
from previously generated climatic niche models (Koparde
et al., 2019) in terms of the direction of change. PSMC-based
demographic inference coupled with Climatic niche models can
be an effective means of understanding the population history
of species (Kozma et al., 2018; Mays et al., 2018). Apart from
indicating past population size trends, they are an important
indicator of species vulnerability. Long-term declines have been
observed in species that are now of conservation concern
(Nadachowska-Brzyska et al., 2015) and are often considered to
indicate reduced genetic variation and increased genetic load
(Xue et al., 2015). While inferences from Ne curves alone are
valuable, incorporating niche models allows correlation with past
climate and vegetation. Moreover, population trends may not
be a simple reflection of past climatic and vegetation changes.
Other factors such as the dispersal ability of a species or
the rate of change of suitable habitat may interact with the
prevailing climatic and vegetation conditions to modify the
genetic consequences of range contraction (Arenas et al., 2012).
Therefore, genomic data can be highly valuable when combined
with climatic niche models to test predictions about the impact of
past climatic changes on species history.

The two owlet species in our study show evidence for
differential impacts of Quaternary climatic events, likely driven
by their differing ecological niches, despite the phylogenetic
similarity. Given our limited sampling, we highlight the need for a
larger investigation of the impacts of past climate on South Asian
taxa to understand the community and species-specific impacts
of past climate change.
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