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The extent and frequency of fire has increased in many arid systems over the last
century, with a large proportion of area in some regions undergoing transitions to
novel conditions. Portions of the Mojave Desert in southwestern North America have
undergone such transitions, most often from woody to herbaceous-dominated systems.
These transitions have often been attributed to the proliferation of invasive annual
grasses that promote more frequent fire, but recent evidence indicates that transitions
can also occur independent of fire frequency if burn severity is high. In addition, high
probability of ignition (i.e., potentially high fire frequency) and high burn severity may not
always be geographically related. Therefore, our goals were to: (1) map potential burn
severity, fire frequency, and probability of ignition across the Mojave; and, (2) evaluate
spatial association among predicted burn severity, fire frequency and probability of
ignition. We first mapped perimeters of 250 wildfires > 405 ha that occurred from 1972
to 2010, then extracted data on fire frequency (number of times burned from 1972 to
2010), burn severity (the difference Normalized Burn Ratio), and 15 predictor variables
representing physiography, climate, ignition, and vegetation. Maximum entropy was
used to predict probability of ignition and Random Forest models were used to predict
dNBR and fire frequency. Areas with high burn severity and high ignition probability had
opposite spatial trends; areas with high burn severity were predicted to predominantly
be in the northwest part of the region whereas areas with high ignition probability were
predicted to be in the northeast. The models indicate the existence of a number of
spatially structured but temporally dynamic fire regimes throughout the Mojave Desert.
Two prevalent and ecologically significant regimes include one with frequent fires of low
to moderate severity and another with infrequent fire of high severity. Areas with high
fire frequency are currently limited in extent (<1% total area). However, cover of invasive
grasses can remain high decades after a burn of high or moderate severity, so grass-fire
cycles could develop in areas where there may be expectations of infrequent fire as well
as those with relatively high fire frequency.

Keywords: fire regimes, gradients, heterogeneity, invasive species, grass-fire cycle, machine learning, point
process models, spatial dynamics
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INTRODUCTION

Fire in the North American deserts was historically characterized
as a regime of relatively small, infrequent, and patchy burns
(Wright and Bailey, 1982). This perspective has gradually
evolved with increasing recognition that it applied mainly
to lower elevations where productivity is low and vegetation
discontinuous (Brooks et al., 2018). Moreover, an interplay
between elevation, latitude and topography results in significant
climatic variation both among and within the four major
North American deserts (Great Basin, Mojave, Sonoran, and
Chihuahuan; MacMahon and Wagner, 1985; Hereford et al,
2006; Brooks and Chambers, 2011). These physiographic-
climatic interactions potentially result in not just one but
multiple fire regimes both within and among the desert regions
of North America (Tagestad et al., 2016; Brooks et al., 2018;
Chambers et al., 2019).

Interest in fire in the North American deserts has been
increasing (Brooks and Pyke, 2001; Abatzoglou and Kolden,
2011, Brooks and Chambers, 2011), but appreciation of how
variation in vegetation, topography, and climate shapes desert
fire regimes has been slow to take hold. There have been a
number of recent studies on wildfire activity in the western
United States, especially in forests and shrublands (Collins
et al., 2006; Westerling et al., 2006; Littell et al., 2009; Miller
et al., 2012; Abatzoglou and Kolden, 2013; Dennison et al,
2014). Deserts were integrated into some of these studies,
but the criteria used to delimit them differed considerably
among the studies. In some the boundaries were based on
administrative or management borders, while others pooled
or split the deserts irrespective of fundamentally different
ecological characteristics. Thus, from a bioregional perspective,
the delineations made little ecological sense. Moreover, not
accounting for the extensive physiognomic heterogeneity among
and within the deserts implied they were represented by one fire
regime. As a result, while the studies reported an increase in
numbers of fires and area burned in the western United States,
inferring that those trends are representative of the deserts is
problematic. This becomes especially apparent when studies
that were focused on a specific desert report patterns markedly
different from the patterns reported in the large-scale studies
(Brooks and Matchett, 2006; Syphard et al., 2017; Klinger
et al. unpublished).

Despite these problems, it would be inappropriate to think that
the factors generally regarded as being responsible for increased
fire activity in forests and shrublands do not also influence fire
regimes in the deserts. These include shifts in climate (Westerling
et al., 2003; Littell et al., 2009), the buildup of woody vegetation
(often because of historic fire suppression by humans), and
promotion of high ignition rates by invasive annual grasses
(D’Antonio and Vitousek, 1992; Brooks et al., 2004). These factors
rarely act in isolation though. Rather, their interactions are the
critical elements of both fire activity and dynamics in post-
fire vegetation (Abatzoglou and Kolden, 2013; Overpeck, 2013).
Moreover, both the magnitude and direction of their interactions
can be modified by the complex physiography of the deserts
(Klinger and Brooks, 2017).

The amount and seasonality of precipitation are recognized
as the most important large-scale drivers of fire in the
deserts (Brooks and Chambers, 2011; Tagestad et al., 2016).
Precipitation is influenced greatly by elevation, latitude and
longitude, so rainfall patterns among and within the deserts have
high heterogeneity (MacMahon and Wagner, 1985; Hereford
et al., 2006). Because vegetation biomass is strongly related to
precipitation in arid ecosystems it varies greatly along gradients
of elevation and latitude (Chambers et al., 2019). This results in
fire activity potentially being limited by fuel at lower elevations
and latitudes and by ignition at higher elevations and latitudes
(Brooks and Matchett, 2006). The interplay between fuel and
ignition can be altered by invasive annual grasses though. They
produce a fuel layer that is continuous and easily ignited, which
can lead to more frequent ignitions as well as communities where
they are the dominant species (Brooks and Pyke, 2001). In some
instances impacts from invasive annual grasses can be localized
and diminish over time (Klinger and Brooks, 2017), but in others
they can result in the transformation of entire ecosystems (Brooks
et al., 2004; Zouhar et al., 2008).

The grass-fire cycle (GFC) is a conceptual representation
of the positive feedback between fire regimes and post-fire
vegetation communities (D’Antonio and Vitousek, 1992; Brooks
etal.,, 2004). Most research has focused on how the GFC increases
fire frequency (i.e., shortens fire return intervals), resulting over
time in conversion of woody-dominated communities to
invasive grass-dominated communities. Frequency is only one
component of a fire regime though. A recent chronosequence
study throughout the Mojave Desert (Mojave from hereon)
reported long-term (30-40 years) conversions occurred
following single fires that were of moderate to high burn severity
(Klinger and Brooks, 2017). High fire frequency also resulted
in long-term shifts in herbaceous communities independent
of burn severity, indicating the existence of two pathways
for fire-driven transformation of vegetation communities
(Klinger and Brooks, 2017).

The GFC has been reported to occur in the Mojave for more
than 20 years (Brooks, 1999; Brooks and Esque, 2002; Brooks and
Matchett, 2006). A large portion of the region has suitable habitat
for several invasive grass species (Underwood et al., 2019) and fire
frequency tends to be high where habitat for invasive annual grass
species is suitable (Balch et al., 2013; Underwood et al., 2019).
This suggests the GFC could potentially occur throughout a very
large portion of the Mojave (Brooks and Matchett, 2006; Klinger
and Brooks, 2017; Fusco et al., 2019; Underwood et al., 2019).
However, its occurrence has only been substantiated in specific
elevation zones and regions (Brooks et al., 2018).

Theoretically, a combination of high burn severity and
high fire frequency would have the highest expectation for
establishment of a GFC. This is likely to be very uncommon
though, because heavy woody fuel is sparse when an area burns
repeatedly in a relatively short period of time (Steel et al., 2015).
In a region such as the Mojave, where physiography and climate
have such high heterogeneity (Tagestad et al., 2016; Klinger et al.,
2019), there is potential for spatial structuring in both fire regimes
and post-fire vegetation communities (Brooks et al., 2018). In
some parts of the region fire could be a relatively frequent event
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but of low to moderate severity, resulting in largely herbaceous
post-fire plant communities dominated by invasive annual grass.
In other parts fire could be considerably less frequent, but when
it did occur a large portion of the area that burned would likely
be of high or very high severity. These high severity sites would
be predisposed to greater establishment of invasive annual grass,
and whether they underwent long-term conversion or not would
depend on distribution and abundance of invasive annual grasses
in the area (Brooks and Berry, 2006; Underwood et al., 2019).
If sites did become dominated by invasive annual grasses, the
possibility of a GFC developing would increase greatly.

Prior studies of spatio-temporal patterns of fire in the Mojave
either focused on the number of fires and area burned (Brooks
and Matchett, 2006; Tagestad et al., 2016) or were restricted in
spatial and/or temporal extent (Hegeman et al., 2014). Therefore,
we undertook this study to address five main questions:

(1) How did fire frequency and burn severity interact to shape
fire regimes across the Mojave along gradients of latitude,
longitude, and elevation?

(2) What were the predicted spatial patterns of probability of
ignition fire frequency, and burn severity across the Mojave
along gradients of latitude, longitude, and elevation?

(3) What were the most important climate, physiographic,
and vegetation variables related to predicted patterns of
ignition, fire frequency and burn severity?

(4) What was the spatial association between predicted
probability of ignition and burn severity?

(5) How extensive was the grass-fire cycle in the Mojave and
where was it most likely to occur?

Our objectives were to: (1) map and evaluate the spatial
patterns of large (>405 ha) wildfires across the Mojave from
1972 through 2010, especially in regard to fire frequency; (2)
model the probability of ignition, fire frequency, and level of
burn severity across the Mojave and evaluate the contribution of
variables related to climate, physiography, and vegetation to the
models; and, (3) evaluate spatial relationships among probability
of ignition, fire frequency and burn severity to identify what
fire regimes occurred in the Mojave and where those driven
predominantly by fire frequency occurred and where those driven
predominantly by burn severity occurred.

MATERIALS AND METHODS
The Mojave Desert

The Mojave is the smallest of the four major North American
deserts (~152,000 km?) and considered transitional in climate
between the colder Great Basin Desert to the north and
the warmer Sonoran Desert to the south/southeast. Winter
temperatures range from —20°C at higher elevations to —5°C
at lower elevations, while summer temperatures range from
30°C (high elevation) to 50°C (low elevation). It is the
driest of the four major North American deserts, but there
is substantial geographic variability in precipitation patterns
(Hereford et al., 2006; Tagestad et al., 2016). The total annual
amount tends to be greater at higher latitudes and elevations,

while the proportion occurring in the summer monsoon
season is generally greater in the eastern and southeastern
parts of the region (~24% to 29% vs. 13% to 18% in more
westerly areas). This strong variability in precipitation, as well
as temperature, topography, and vegetation, has led to the
designation of six subregions within the Mojave (Figure 1;
Webb et al., 2009).

The Mojave is bounded by the Sierra Nevada range to the west,
the Colorado Plateau to the east, and the San Bernardino, San
Gabriel, and Tehachapi ranges along its southwestern margins.
Dozens of small mountain ranges are interspersed throughout
the region, resulting in complex topography where elevations
range from -85 m to 3,633 m. The mountain ranges bordering the
Mojave create a rain shadow effect on west/northwest originating
winter storms and are a major reason why the region is so arid.
Monsoon season (July-September) precipitation results largely
from the influence of the Colorado Plateau and the interior
mountain ranges on moist southerly airflows. This pattern creates
localized thunderstorms with numerous lightning strikes, which
are the main source of ignition for the majority of large fires
in the region (Brooks and Matchett, 2006; Tagestad et al., 2016;
Brooks et al., 2018).

Vegetation in the Mojave is assembled primarily along
an elevation gradient, although soils contribute to structure
and composition as well (Brooks et al., 2018; Klinger et al.,
2019). Native-dominated communities in the lower elevations
(~<1,200 m) are comprised primarily of sparse shrub cover (~7-
10%) of low stature (0.5-1.5 m). Native-dominated communities
in the mid-elevations (~1,200-1,800 m) are also dominated by
shrubs, but cover is generally greater (~15-20%) and stature of
the shrubs tends to be higher (1-2 m) than in the lower elevations.
Higher elevation communities are a mix of shrubs and trees
[e.g., junipers (Juniperus spp.) and pines (Pinus spp.)]; woody
cover typically ranges from ~25-40%. Native forb and perennial
grass species are common in all communities along the elevation
gradient. Their cover is generally low (<~3%), but during wet
years it can increase 10-20x.

There are few widespread non-native species in the Mojave
Desert (Abella, 2010), although cover of three annual grass
[Mediterranean split grass (Schismus barbatus and Schismus
Arabicus), red brome (Bromus rubens), cheatgrass (Bromus
tectorum)] and one annual forb species [red-stemmed filaree
(Erodium cicutarium)] can be high in burned areas, especially
in the initial 5-10 years after fire (Brooks, 1999; Klinger and
Brooks, 2017; Underwood et al., 2019). The three grasses are
generally considered to be transformer species (Richardson et al.,
2000) in the North American deserts because they can alter
fire regimes and dominate post-fire communities (Brooks, 1999;
Chambers et al., 2007; Bradley et al., 2018). In the Mojave these
grasses sort along an elevation gradient, with split-grass being
most abundant at lower elevations, red brome in mid-elevations,
and cheatgrass in upper elevations (Underwood et al., 2019).
The distribution of red-stemmed filaree is similar to that of
red brome, but while it can dominate post-fire communities
it is not a significant fine fuel component and thus does not
have any meaningful effect on fire regimes (Brooks et al., 2018;
Underwood et al., 2019).
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FIGURE 1 | The Mojave Desert of North America. SE, southeastern subregion; SC, southcentral subregion.
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Fire Atlas

Data on fire perimeters and burn severity across the Mojave
from 1984 to 2010 were acquired from the Monitoring Trends
in Burn Severity (MTBS) database'. MTBS uses Landsat satellite
data to delineate the perimeters and burn severity indices for
fires >405 ha (1,000 acres) on all public and private lands
across the western United States. Perimeters are identified by
comparing pre and post-fire images of the Normalized Burn
Ratio (NBR; Key and Benson, 2006; Eidenshink et al., 2007),
then burn severity indices (30 m resolution) based on NBR
are derived. The indices include the difference Normalized
Burn Ratio (dANBR), relativized dNBR (RANBR), and an ordinal
scale (unburned, low, moderate, high, and very high). Non-
disturbance related differences between pre and post fire Landsat
images can bias comparisons of severity among fires. Therefore,
we used an offset to calibrate the dNBR layers to a more
equivalent baseline, thereby improving comparisons among
multiple individually mapped burn areas (Klinger et al., 2019).
The offset (a plus or minus shift to the dNBR values) was
based on the mean unchanged pixel value contained within
individual MTBS metadata files (identified there as the “RANBR
offset”) and comes from a sample of unchanged pixels outside of
the fire perimeter.

Uhttp://www.mtbs.gov/

Monitoring Trends in Burn Severity data are not available
prior to 1984 but Landsat imagery is available back to 1972.
Therefore, we extended our time period an additional decade
(1972-1983) by accessing Landsat 4/5 Multispectral Scanner
(MSS) imagery and then using methods similar to those of
the MTBS program to delineate fire perimeters. We selected
one high-quality scene for the spring (April, May, and June)
and one for the late summer/early fall (August, September, and
October) of each year, corresponding to the beginning and end
of the Mojave’s fire season. Scenes were selected to minimize
cloud cover (<10%) and other anomalies (e.g., missing data
and bad lines) that occur sometimes in older Landsat images.
Although the images we selected were of high quality, MSS
lacks the shortwave infrared (SWIR) spectral band required to
derive dNBR and its resolution is coarser (79 m) than that
of later Landsat satellites (30 m). Nevertheless, MSS bands do
allow the calculation of the difference Normalized Difference
Vegetation Index (dANDVI; Petorelli, 2013), which provides
comparable estimates of severity as dNBR (Zhu et al., 2006;
Hudak et al., 2007). We integrated dNDVT with other geospatial
data (digital elevation models, topographic maps, etc.) to identify
fire perimeters, and in so doing found the difference in resolution
to be a trivial issue for delineating perimeters of the burns.

We calculated fire frequency by using the raster package
(Hijmans, 2020) in R (R Core Team, 2019) to overlay the
fire perimeters (1972-2010) and sum their overlap. We used
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dNBR to index burn severity (1984-2010) because it relates
very well with changes in ground-based measures of severity
(woody cover and density) in the Mojave and has a more direct
ecological interpretation than either RANBR or the ordinal scale
(Klinger et al., 2019). Wildfires in the Mojave occur as a result
of human and natural ignitions (Hegeman et al., 2014; Brooks
et al., 2018), but virtually all large ones (>405 ha) are due
to lightning strikes (Brooks et al., 2018). Thus, our atlas of
large Mojave wildfires represents those resulting exclusively from
natural ignitions.

Environmental Predictor Variables

We identified 15 variables as potential predictors of probability
of ignition and frequency of fire, and 13 as predictors of burn
severity (Table 1). Topography variables were derived from a
digital elevation model® (30 m resolution) and included elevation,
slope, an index of terrain ruggedness (TRI; Wilson et al., 2007),
aspect (cosine transformed), and hillshade (an index of localized
heating). Five climate variables were derived from the ClimSurf
climate surface (Alvarez et al, 2013), including mean wet
(October-March 1949-2010) and monsoon season precipitation
(July - September 1950-2010), proportion of monsoon season
precipitation, mean minimum January temperature (1950-2010),
and mean maximum July temperature (1950-2010). Vegetation
variables included habitat suitability values for two brome grasses
(B. rubens and B. tectorum), habitat suitability values for two
Mediterranean split grass species (S. arabicus and S. barbatus),
and mean growing season NDVI (March - June 1990 - 2010).
In a previous study, we found habitat suitability values of the
three invasive grass taxa had strong positive correlations with
their cover values (Underwood et al., 2019). Therefore, we
extracted the suitability values from maps developed in that
study as a region wide proxy to their abundance. Although peak
cover values of the grasses diverge with elevation, the bromes
overlap from ~1,400—2,000 m and distributions of the split grass
species are almost indistinguishable (Underwood et al., 2019).
However, overlap between the bromes and split grass species
is limited (Underwood et al., 2019). This suggested that it was
appropriate to combine bromes together (Bromes) and split grass
together (Schismus), but these two variables should be separate
predictors (Table 1). NDVT values were derived from the USGS
Analysis Ready Data (ARD) database (Dwyer et al., 2018). ARD
are produced from Landsat 4-8 satellite images that have been
accurately georegistered, calibrated, and pre-processed (top of
atmosphere and atmospheric correction).

We acquired lightning strike point data beginning in January
1990 and ending in December 2010 from the National Lightning
Detection Network (NLDN) accessed through NOAA-NCEP.
Data included the geographic coordinates of the strikes, the
date, and polarity (amperes with positive or negative charge).
We calculated the density of strikes by dividing the region into
10 km x 10 km blocks, summed the number of positive and
negative strikes in each 100 km? block, and then calculated the

Zhttps://www.sciencebase.gov/catalog/item/4f70aa71e4b058caae3f8del

3https://www.ncde.noaa.gov/data-access/severe-weather/lightning- products-
and-services

mean per block (1990-2010). We calculated positive and negative
strike densities separately because negative strikes are 10-20x
more frequent than positive strikes, but positive strikes have 1-
2 orders magnitude greater energy than negative strikes. This
creates the potential for lightning regimes differing in strike
intensity and energy.

All processing of the environmental variables was done in R.
We used the raster package to derive the topographic variables,
the greenbrown package (Forkel et al., 2013, 2015) to derive mean
growing season values for NDVI, and the spatstat package to
calculate lightning density (Baddeley et al., 2015). The climate
and lightning rasters were resampled to a resolution of 30 m.

Spatial Analysis of Fire Frequency
1972-2010

We used point process models (PPMs) to analyze the spatial
distribution of fire frequency. PPMs are a regression approach
for modeling point data (i.e., geographic coordinates) for an
event, which in our case was how frequently a local area
(30 m pixel) had burned between 1972 and 2010. PPMs are
closely related to generalized linear models (GLMs) but differ
in that they model the intensity of points (i.e., points per
unit area) rather than the level of a random response variable
(Baddeley et al., 2015). Models can be specified that assume
a Poisson process where intensity is constant across a study
area (homogenous point process) or, much more typically,
where intensity varies because environmental conditions are not
uniform (inhomogenous point process). Thus, the relationship
that intensity (\) has with geographic position (spatial trend)
and/or environmental variables can be modeled as in regression,
with predicted values having a direct interpretation as a measure
of points per unit area.

When points are assigned attributes they are known as
marked. We converted our raster data to points by calculating
the centroid of each pixel and assigned each point one of
three marks f based on the number of times it had burned
from 1972 through 2010: once (=1), twice (=2), or >2 times
(=3). We then specified and compared five models of
(1) an interaction between N spatial trend, and the second-
order effect of elevation; (2) an interaction between ks, spatial
trend, and the linear effect of elevation; (3) the interaction
of M and spatial trend; (4) the interaction of N, and the
second-order effect of elevation; and, (5) the interaction of
Ar, and the linear effect of elevation. The models were based
on a non-stationary Gibbs process, where )y, was a log-linear
function with spatial dependence among points. We included
the second-order effect of elevation because previous studies
had reported fire activity was greatest in the mid elevation
zone of the Mojave (Brooks and Matchett, 2006; Tagestad
et al, 2016). PPMs are computationally intensive and large
values can prevent them from converging, therefore we rescaled
the spatial coordinates (Universal Transverse Mercator) and
elevation values by subtracting their mean and dividing by their
SDs (standardization).

It was computationally prohibitive to use all of the fire
frequency data points (>7 x 107) in one analysis, so we used
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TABLE 1 | Potential predictor variables in models of probability of ignition, fire frequency, and burn severity (difference normalized burn ratio; dNBR) in the Mojave Desert

of North America.

Models where included

Predictor variable Code Group Ignition Frequency dNBR
Elevation Elevation Topography 1 1 1
Slope' Slope Topography

Terrain Ruggedness Index TRI Topography 1 1 1
Hillshade Hillshade Topography 1 1 1
Aspect? Aspectcos Topography

Mean minimum January temperature® Tmin01 Climate

Mean maximum July temperature® Tmax07 Climate

Mean wet season precipitation PPTWint Climate 1
Mean monsoon season precipitation* PPTMons Climate 1
Mean annual proportion monsoon precipitation PropMons Climate 1 1 1
Habitat suitability for Brome grasses® Bromes Vegetation 1 1 1
Habitat suitability for Mediterranean split grass® Schismus Vegetation 1 1 1
Normalized difference vegetation index NDVI Vegetation 1 1 1
Density of negatively charged lightning strikes® Strikes100Neg Lightning

Density of positively charged lightning strikes” Strikes100Pos Lightning

Derived from above variables

Mean annual precipitation® Precip Climate 1 1

Density of lightning strikes® Lightning Lightning 1 1 1

1 = variable was included in final model

" Not included because of strong correlation with TRI (r = 0.983).

2Not included in final models because of negative variable importance values.
SNot included because of strong correlation with elevation (r = —0.891).

4Not included in ignition and frequency models because of strong correlations with Strikes100Neg (r = 0.875) and Strikes100Pos (r = 0.870).
SExtracted from models of habitat suitability for red brome, cheatgrass, and Mediterranean split grass (Underwood et al., 2019).

6Not included because of strong correlation with Strikes100Pos (r = 0.915).
’Not included because of strong correlation with Strikes100Neg (r = 0.915).
8PPTWint + PPTMons.

9Number of lightning strikes per 100 km?; Strikes100Neg + Strikes 100P0s.

non-parametric bootstrapping for parameter estimation. We
randomly selected 10,000 points without replacement in each of
200 bootstrap samples and ran each model for each sample. We
used Akaike’s Information Criterion (AIC) to compare models
and selected the one whose AIC weight (WwAIC) was >0.90
(Burnham and Anderson, 2002). Final parameter estimates and
95% CIs were based on the mean of the 200 bootstrap samples
and the 2.5 and 97.5% quantiles of the distribution of parameter
values, respectively. We used the R package spatstat (Baddeley
etal., 2015) to conduct the PPMs.

We used a modification of resource selection ratios (Manly
et al., 2002) to evaluate the occurrence of fire relative to the area
of three elevation zones: low (<1,200 m), mid (1,201-1,700 m),
and high (>1,700 m). The analysis used the proportion of area in
each elevation zone z throughout the Mojave (“available”) and the
proportion of area in each elevation zone that burned to construct
a ratio W, = burned,/available,. We used an omnibus log-ratio
test to first determine if fire occurred disproportionally across
the zones, followed by z-tests for each zone to evaluate those
that had disproportionally more or less fire activity. A second
index B was constructed as B, = W,/XW,, which allowed
us to compare fire occurrence in a given zone relative to a
“baseline” zone. The zones corresponded to the major vegetation
types in the Mojave (Brooks et al., 2018; Klinger et al., 2019):

low elevation shrubland typically dominated by creosote
bush (Larrea tridentata) and burroweed (Ambrosia dumosa);
mid-elevation shrubland dominated by blackbrush (Coleogyne
ramosissima), snakeweed (Gutierrezia sarothrae), Mormon tea
(Ephedra nevadensis and Ephedra viridis), and turpentine broom
(Thamnosma montana); high elevation woodland and shrubland
dominated by sagebrush (Artemisia tridentata), antelope bush
(Purshia tridentata), juniper tree (Juniperus osteosperma), and
single-leaf pinyon (Pinus monophylla). We reasoned that if
fire occurred more than expected in an elevation zone this
was consistent with there being higher fuels, greater rates
of ignition, or both. If fire was less than expected this was
consistent with a zone having sparser fuels, lower ignition rates,
or both. If fire occurred proportional to the area of a zone
this would be consistent with burning being area dependent
more so than strong effects from either fuels or ignition. We
used a similar approach as we did with the PPMs, with 10,000
random samples drawn without replacement for each of 500
bootstrap samples.

Modeling Probability of Ignition

While it would be reasonable to expect that probability of ignition
(i.e., the likelihood of a fire starting) and fire frequency would
have a positive correlation, this may not always be so in the
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Mojave because of the high heterogeneity in topography and,
especially, fuel type (Brooks et al., 2018). Therefore, we developed
separate models for probability of ignition and fire frequency.

Maximum Entropy (Maxent) modeling was used to calculate
the probability of ignition across the Mojave. Maxent is a
machine learning algorithm that contrasts the conditions at
locations where an event is known to have occurred with those
at background locations (Phillips et al., 2006). It is one of the
most widely used predictive modeling algorithms for studies in
the environmental sciences, especially those focused on species
distributions (Elith et al., 2011). Over the last decade it has seen
increasing use in studies examining how vegetation, climate, and
human activities influence fire activity (Parisien and Moritz, 2009;
Batllori et al., 2013; Syphard et al., 2013; Parisien et al., 2016;
Martin et al., 2019). Maxent iteratively adjusts the probabilities of
a uniform (null) distribution based on the predictor variables at
each location. The iterations stop when the distribution becomes
one with maximum entropy, which is the best approximation
of how the predictor variables change the null distribution
(Elith et al., 2006). The final output is an exponential function
that assigns a predicted value proportional to the probability
of occurrence to each site or cell of a map (Renner and
Warton, 2013). Maxent has several beneficial features, including
the ability to model complex functional relationships between
response and predictor variables, quantification of the relative
importance of the predictor variables, and the capability to
adjust calculations to avoid overfitting (regularization; Phillips
and Dudik, 2008).

To implement the Maxent model we used the dismo package
in R (Hijmans et al., 2017) as an interface to the MAXENT
package (Phillips and Dudik, 2008). Fire occurrence was the
response variable and there were 15 potential predictor variables
(Table 1). We randomly selected a total of 10,000 points separated
by >90 m and sampled proportional to the area of the fire
perimeters, then extracted the values of the predictor variables
at each point. We did a preliminary analysis of the pairwise
correlation among the predictor variables and removed one of
each pair with a correlation (r) > 0.70, resulting in N = 10
standardized predictor variables (Table 1).

We used 10-fold cross-validation to partition the response
variable into training and test data sets and then calculated the
mean and SD of the Area Under the Curve of the Receiver
Operator Characteristic (AUC from hereon) as a threshold
independent measure of model performance. Because there is
potential for AUC to be biased (Lobo et al., 2007), we evaluated
the values in our partitions using point-wise distance sampling
(Hijmans, 2012). We used 10,000 randomly selected background
points in each model partition. The response and background
points were divided into training (70%) and test sets for each fold.

Two approaches were used to evaluate importance of the
predictor variables. The first was calculated as the increase
in prediction gain when the coeflicient for each variable was
changed. The amount of change is summed for each variable
and expressed as a percentage of the total gain (Phillips and
Dudik, 2008). The second approach consisted of jackknifing
to calculate: (1) the decrease in training and test gain when a
variable was removed from a model; and, (2) the highest training

and test gain when a variable was the only one in a model
(Phillips and Dudik, 2008).

Modeling Fire Frequency and Burn

Severity

We used Random Forests (RF from hereon; Breiman, 2001) to
evaluate how effectively the environmental variables predicted
fire frequency and burn severity. RF is a supervised machine
learning algorithm that extends the capabilities of classification
and regression trees (CART; Olden et al., 2008). It recursively
creates many trees from bootstrap samples of the dataset and
compares the predictions of each tree to the data not in that
bootstrap sample (the validation or “out-of-bag” sample). In
effect, this creates numerous internally cross-validated models.
Unlike CART the trees are not “pruned”; instead, each develops
to its full extent. Variable importance is calculated by randomly
permuting the values of each variable one at a time within each
recursive run and calculating change in model performance.
Final predictions and accuracy estimates are calculated by
averaging the predictions of all the trees. Prediction values are the
probability of belonging to a particular class (fire frequency = 1,
2, etc.) or, for continuous response variables (INBR), an estimate
of the response variables value.

Random Forests has many strengths. Each of the realizations
of the recursions not only uses a different random subset of the
data but also a different random subset of the predictor variables,
which inherently makes it an ensemble modeling procedure.
The algorithm processes high-dimensional data efficiently and
it avoids overfitting data, outliers and spatial autocorrelation
have much less influence on predictions than in parametric
models, and complex non-linear relationships can be revealed.
There are tradeoffs though relative to parametric models. It
is non-parametric so there are no regression coefficients with
measures of uncertainty, which is one of the principal issues
in criticisms of using RF (or machine learning in general)
for explanatory models (Humphries et al., 2018). Individual
trees cannot be examined, which gives a perception of the
algorithm being a black box. Despite these concerns, RF has
become increasingly recognized as one of the most useful and
effective machine learning algorithms when prediction is the
primary goal of a study (Cutler et al, 2007; Crisci et al,
2012).

Our data consisted of a random selection of 20,000 points
each within and outside the fire perimeters, with a minimum
distance between sample points >90 m. Samples from within
the perimeters were stratified by the area of the polygons. We
split the points into training (75%) and test (25%) data sets. The
training data were then partitioned with 10-fold cross-validation,
with model runs for each partition k split into training (70%) and
out-of-bag (OOB from hereon) sets. Fire frequency was divided
into four classes based on the number of times a pixel had burned
between 1972 and 2010: Unburned (=0), 1 burn (=1), 2 burns
(=2), and more than 2 burns (>2). We used the same set of
potential predictor variables in the fire frequency models as we
did with the probability of ignition models (Table 1). We did not
include lightning in the models for ANBR because it would have
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little if any effect on burn severity, and only data from within the
fire perimeters were used in the dNBR model runs.

Model development consisted of three steps. We first tuned
a model to determine the total number of trees and the optimal
number of predictor variables to include at each split in the trees.
We then ran an initial model using all of the predictor variables
and evaluated it based on three criteria: (1) stability of the model
mean squared error (MSE) as the number of trees increased; (2)
the minimum MSE of the cross-validations for models with N
variables; and, (3) the sign (positive or negative) of the variable
importance values. Variable importance was evaluated by the
proportional increase in MSE when a variable was not included
in the models. If the sign of the importance value was negative
this indicated the variable should be removed. The third step for
the fire frequency models consisted of running a model with the
optimal number of variables. The third step for ANBR models
was comparing the pseudo-R? (1 — [MSE/c>dNBR]) values for
those without topography variables, without climate variables,
and without vegetation variables to the pseudo-R? for models
with topography, climate, and vegetation variables.

We used three sets of information to evaluate the performance
of the fire frequency model: (1) the OOB error rate; (2)
classification success from a confusion matrix of the observed
and predicted frequency classes in the training and test datasets;
and, (3) AUC values for pairwise classification of frequency
classes (e.g., Unburned vs. 1 burn, Unburned vs. 2 burns) in
training and test datasets. ANBR models were evaluated with:
(1) pseudo—Rz; (2) the absolute differences in observed and
predicted dNBR values in the training and test datasets; and,
(3) proportional differences calculated from the log-ratios of
observed and predicted dNBR values in the training and test
datasets. The randomForest package in R was used to develop and
evaluate the models (Liaw and Wiener, 2002).

Association of Burn Severity With

Probability of Ignition and Fire Frequency
We used two approaches to examine the association between
probability of ignition and dNBR. First, a PPM was developed
that enabled us to contrast the spatial trends in the predicted
values of the two variables. We classified the continuous
predicted variables into five evenly spaced quantiles, then
specified an interaction model with the classes as marks and
the spatial coordinates as predictor variables. We estimated the
coeflicients and their SEs from 250 non-parametric bootstrapped
samples (N = 500 per sample), then compared the sign
and magnitude of the coefficients between the probability of
ignition and dNBR model runs. The models were based on
a non-stationary Gibbs process and the spatial coordinates
were standardized.

Next, we used a combination of redundancy analysis (RDA;
Legendre and Legendre, 1998) and permutational multivariate
analysis of variance (PERMANOVA; Anderson, 2001) to evaluate
variation in probability of ignition and dNBR among the six
Mojave subregions (Webb et al., 2009). RDA is a constrained
form of Principal Components Analysis (PCA) that relates
the variation among multiple response variables to a set

of predictor variables. PERMANOVA is a non-parametric
multivariate technique that compares both the centroids and
dispersion among different groups. Conceptually, RDA and
PERMANOVA are related in a similar way as linear discriminant
analysis (LDA) and multivariate analysis of variance (MANOVA).
However, LDA and MANOVA are least squares methods where
group differences are tested against probability distributions. In
contrast, RDA and PERMANOVA are based on distance matrices
and group differences are evaluated by Monte Carlo permutation
tests, freeing them from the restrictive assumptions of least
squares-based methods.

For the PERMANOVA we specified probability of ignition
and dNBR as response variables and subregion (North, East,
Southeast, Southcentral, West, and Central) as the predictor
variable. We randomly selected 500 points in each subregion
and then extracted the probability of ignition and dNBR values
for each point. We derived a Euclidean distance matrix and
tested if there were differences among the subregions with Monte
Carlo permutation tests (N = 999). PERMANOVA is sensitive
to differences among groups in location (group centroids) and
dispersion (variance; Anderson, 2001), therefore we conducted
a permutation-based test of multivariate homogeneity of group
dispersions and a post hoc Tukey test to help interpret patterns of
difference among the subregions. We then performed the RDA
to visualize positions of the subregions in multivariate space. We
tested the significance of the RDA with Monte Carlo permutation
tests (N = 999) and derived centroids for the subregions as well
as ellipses of the centroid SEs and 95% confidence bounds to
evaluate the interplay between location and dispersion among
subregions. The vegan package in R (Oksanen et al., 2020) was
used to conduct the PERMANOVA and RDA.

We used ordinary least-squares (OLS) regression to model
the relationship between predicted values of dNBR and fire
frequency along an elevation gradient. We selected 1,000 random
points in each frequency class (1, 2, and >2 burns from 1972
through 2010) and used the raster package in R to extract values
of dNBR, frequency, and elevation at each point. We specified
dNBR as the response variable and an interaction between the
frequency classes and the 2nd-order effect of elevation as the
predictor variables.

RESULTS

Spatial Pattern of Burning
We identified 250 fires (>405 ha) totaling 753,288 ha that
occurred between 1972 and 2010 (Figure 2). This comprised 5.8%
of the total area of the Mojave, with the vast majority burning
only once; <1% of the total area of the Mojave had burned two or
more times (Table 2). The distribution of area burned among the
fires was highly skewed, with 83% occurring from fires between
412 and 5,000 ha (Figure 3). However, three fires > 50,000 ha
each occurred in 2005, comprising 29% of the total area burned
between 1972 and 2010.

The PPM that included the interaction between )y, spatial
trend, and the second-order effect of elevation had complete
support; it was the highest ranked model in each bootstrap
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FIGURE 2 | Fire perimeters classified by fire frequency (number of times burned from 1972 to 2010; 1, 2, and > 2) for 250 fires >405 ha in the Mojave Desert of
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sample (N = 200), wAIC = 1 in each sample, and none of
the parameters overlapped zero (Supplementary Table 1). The
model indicated clear structuring in the spatial distribution of
the fires (Figure 4). There was a distinct increasing southwest
to northeast trend for all three frequency classes, especially
when fire frequency > 2. An overwhelming majority of pixels
that burned twice and virtually all that burned three or more
times clustered in the Eastern subregion. Intensity of pixels
that had burned once also clustered strongly in the Eastern
subregion, but clusters of similar intensity occurred in mountain
ranges in the Western, Southern, and Central subregions as
well. Intensity of burned pixels peaked at mid-elevations for
all three frequency classes (Figure 5). Fire occurred 1.4 and

TABLE 2 | The number and proportion of hectares burned in fires >405 ha in the
Mojave Desert of North America, 1972 — 2010.

Proportion burned

Frequency Hectares Burn area Mojave
1 636528 0.845 0.049
2 98681 0.131 0.008
3 15819 0.021 0.001
4 1507 0.002 <0.001
5 753 0.001 <0.001
Total 753288 0.058

Frequency is the number of times a pixel (30 m) burned during that period of time.
Burn Area is the proportion within the fire perimeters (N = 250) and Mojave is the
proportion of the region (13,059,918 ha).

2.7x more than expected in the high and mid elevation zones,
respectively, but was 1.8 x less than expected in the low elevation
zone (Supplementary Table 2). Relative to the low elevation
zone, fire was 3-5x greater in the high and mid elevation zones,
respectively (Supplementary Table 2).

Probability of Ignition

The AUC values were 0.967 (SD = 0.001) for the Maxent
training data model and 0.964 (SD = 0.002) for the test data
model (Supplementary Figure 1). Bromes, lightning, NDVI,
and Schismus comprised 96% of the contribution to predictions
in the training data model and 94% in the test data model
(Supplementary Table 3). Bromes alone accounted for 63%
of the contribution to predictions in both the training and
test data (Supplementary Table 3). There was little measurable
influence on either training or test gain when variables were
individually removed from the models, but meaningful increases
in both training and test gain occurred when Bromes, lightning,
NDVI, or precipitation were the only variables in a model
(Supplementary Table 3).

The pattern of predicted probability of ignition was one
of high heterogeneity (Figure 6). A large portion (68%) of
the Mojave had ignition probabilities > 0.20, but these areas
varied in size and continuity throughout the region. Consistent
with the variable importance rankings, values of probability
of ignition were highest in the more mountainous parts of
the region, especially in the East subregion (Figure 6). Other
than the fringing mountain ranges, extensive parts of the West,
Central and North subregions had low to moderate predicted
values (Figure 6).
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FIGURE 3 | Distribution of the area within the perimeters of 250 wildfires that burned in the Mojave Desert of North America from 1972 through 2010.
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Fire Frequency

Tuning of the RF model of fire frequency resulted in 250
trees with 6 predictor variables at each split in the trees
(Supplementary Figure 2A). Overall classification accuracy of
the fire frequency classes was 0.851 for the training data and
0.842 for the test data. Classification accuracy in the training and
test datasets > 0.92 for unburned and 1 burn classes and was
approximately 0.80 for the >2 burn class (Table 3). Classification
accuracy for 2 burns was the lowest of the four classes in both
training and test datasets, with most misclassifications occurring
in the 1 burn class (Table 3).

Seven of the predictor variables had markedly more
importance than the remaining three (Figure 7): proportion
of monsoon precipitation, Bromes, lightning strikes, NDVI,
elevation, total annual precipitation, and Schismus. None of the
predictor variables had negative values, but the three with the
lowest importance were all topographic variables (Figure 7). The
10-fold cross validation indicated that there was little difference
in mean-squared error for models with >4 predictor variables
(Supplementary Figure 3), therefore we selected a final model
consisting of the test data and the seven predictor variables
with the highest importance values. Pairwise AUC values for the
predicted fire frequency classes were all >0.885 (Supplementary
Table 4), with overall AUC = 0.963.

Fire frequency was predicted to be highly heterogenous
throughout the Mojave (Figure 8). Notably, many areas where

frequency was predicted to be high had not actually burned
since at least 1972. This resulted in the area predicted to be
susceptible to burning being considerably greater than what
actually occurred between 1972 and 2010 (compare Figures 2, 8).
Although areas predicted to have high fire frequency occurred
patchily throughout the region, large areas where fire frequency
> 1 were clustered primarily in the East subregion (Figure 8).

Burn Severity

Tuning of the RF model of dNBR resulted in 250 trees with
3 predictor variables at each split in the trees (Supplementary
Figure 2B). Pseudo-R* values were higher for models that
included variables from the topography, climate, and vegetation
groups as opposed to models where variables from one of the
groups were omitted (Supplementary Table 5). The importance
value for aspect in the initial model runs was negative, therefore
it was removed from subsequent model runs. The remaining
variables all increased prediction success, with NDVI and
the proportion of monsoon precipitation having the highest
importance values (Figure 7).

The mean differences between observed and predicted dNBR
values were —3 in the training dataset and —4 in the test
dataset (median —7 in both training and test datasets).
Proportionally, the mean differences were within 6% of the actual
values (median = —3% in both training and test datasets). Half
of the predicted values occurred between —39 and 30 in the
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FIGURE 4 | Predicted density of fire occurrence (number of burned pixels
100 km?) in three fire frequency classes (number of times burned from 1972
to 2010) in the Mojave Desert of North America. Density was estimated with a
point process model of 250 wildfires.

training dataset and 38 and 30 in the test dataset (Supplementary
Figure 4); proportionally this was equal to being within —24
to 14% of actual values in both training and test datasets
(Supplementary Figure 5). 95% of the predicted values were
between —91 and 107 in the training dataset and —90 and 99 in
the test dataset; proportionally this was equal to being within —68
to 33% of actual values in both the training and test datasets.

Approximately 75% of the Mojave was predicted to have low
to moderate levels of burn severity (Table 4 and Figure 9).
Higher levels of dNBR were predicted to occur principally
in mountainous parts of the region, especially in the North
subregion (Figure 9).

Associations Among Burn Severity,

Probability of Ignition and Fire Frequency
There was a moderately high level of correlation between
probability of ignition and fire frequency (r = 0.785). Mean
probability of ignition in the 1-burn frequency class was 0.082
(SE = 0.005), while those in the 2-burn and >2-burn classes were
0.450 and 0.648, respectively (SE = 0.005 and 0.007).

Almost two-thirds of the Mojave was predicted to have low
fire frequency and burn severity (Table 4). Areas with moderate
to high predicted burn severity comprised 11.5% of the area of the
Mojave when probability of ignition was low (quantile = 0-0.25;
Table 4). This was 2.5x greater than the proportion of area when
probability of ignition was in a moderate range (quantile = 0.26-
0.50; Table 4). Areas where probability of ignition and burn
severity were predicted to be high comprised <1% of the region,
and areas where probability of ignition and burn severity were
predicted to be very high were virtually non-existent (Table 4).

The PPMs indicated that probability of ignition and dNBR
had distinctly different spatial trends (Supplementary Table 6).
The sign of the coefficients for longitude differed between
ignition probability and dNBR, as did those for the interaction
of longitude and the two highest quantiles of ignition and dNBR
(Supplementary Table 6). Density of ignitions had an increasing
southwest to northeast spatial trend, especially for the highest
quantile of predicted values (Figure 6 and Supplementary
Table 6). In contrast, there was a strong increasing southeast-
to-northwest trend in ANBR (Figure 9). Overlap in areas where
there were higher predicted values of ignition and dNBR occurred
principally in the North subregion and several of the interior
mountain ranges (Figures 6, 9).

The subregions differed in their positions in ordination
space (PERMANOVA F = 12231, df = 5, P = 0.001). The
Tukey HSD test pointed toward most differences resulting from
separation of the Northern and Eastern subregions from the
others (Supplementary Table 7). The Southcentral and Central
subregions also differed from one another, but there was no
meaningful divergence among them and the West subregion
(Supplementary Table 6). The dispersion test indicated that
heterogeneity in variance contributed to differences among the
subregions (F = 130.88, df =5, P = 0.001). This was also apparent
in the RDA, where the 95% confidence ellipses of the Northern
and Eastern subregions were markedly larger than those in
other subregions (Figure 10). The first RDA axis accounted
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for 71% of the variation among the subregions (P = 0.001)
and represented a gradient in dNBR, while the second axis
represented a gradient in ignition. The 95% confidence ellipses
overlapped among the subregions but the ellipses for their SEs
were completely separate. In tandem with the dispersion test,
this indicated that the subregions differed in both location and
variance. The first axis separated the East, West, and North
subregions from the others, with the East having lower dNBR
and higher ignition probability values than the West and North
subregions (Figure 10). The other subregions had lower values
for both probability of ignition and dNBR.

The OLS model accounted for 79% of the variation in
dNBR due to the interactive influences of fire frequency and
elevation (Supplementary Table 8). Predicted values of ANBR
were consistently higher in the 1-burn class than the 2-burn
and >2-burn classes, though the differences were larger at lower
and mid elevations than at higher elevations (Figure 11). dINBR
values in the 1-burn and 2-burn classes increased monotonically
with elevation, while those in the >2-burn class peaked at mid-
elevations (Figure 11).

DISCUSSION

The observed and predicted patterns for fire frequency, burn
severity and probability of ignition indicated the occurrence

of multiple spatially structured fire regimes throughout the
Mojave Desert. The regimes were characterized by an interaction
between fire frequency and the degree of burn severity, with the
interaction strengths of the two factors being largely opposite
each other. Variables that were related to climate and vegetation
were important predictors of both frequency and severity, while
variables related to topography had importance principally in
predicting burn severity. The extent of the GFC is currently
limited, but there appears to be great potential for it to become
far more widespread.

Two of the most ecologically significant regimes included one
characterized by frequent fire (two or more burns every 40-
50 years) primarily of low to moderate severity, and another
by infrequent fire (one burn every 50-100 years or more)
but of high severity. The high frequency regime appears most
likely to occur in the northeast part of the region, and, to
a lesser degree, in some of the interior mountain ranges. In
contrast, the high severity regime appears most likely to occur
in the north and northwest, though it is predicted to occur in
some interior mountain ranges as well. Two other regimes of
ecological importance are one with relatively high fire frequency
and burn severity and another with low fire frequency and
burn severity. The high frequency and severity regime is very
limited in extent, occurring patchily in some interior mountain
ranges as well as some of the ranges fringing the Mojave. In
contrast, the low frequency and burn severity regime is the
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absence data, the predicted values are proportional to true probabilities.

FIGURE 6 | Predicted probability of ignition in the Mojave Desert of North America. Predicted values were derived from a Maxent model (AUC = 0.967 for a test
dataset) with 10 variables representing variability in topography, climate, vegetation, and lightning. Because the model was based on background and not true

TABLE 3 | Confusion matrix of the proportional classification accuracy for four fire
frequency classes (number of fires from 1972 to 2010) in the Mojave Desert
of North America.

Unburned 1 2 >2 Error
Training data
Unburned 0.939 0.061 0.001 0 0.0615
1 0.045 0.926 0.026 0.004 0.0740
2 0.007 0.233 0.727 0.034 0.2731
>2 0.002 0.089 0.096 0.813 0.1872
Test data
Unburned 0.947 0.052 0 0 0.0528
1 0.039 0.938 0.020 0.004 0.0619
2 0.014 0.265 0.687 0.034 0.3127
>2 0 0.089 0.115 0.796 0.2038

Error is overall classification error for a given frequency class.

most extensive one in the region, especially in the southern
and western parts.

The importance values of the predictor variables provided
insight into the spatial structure of fire in the Mojave. Intuitively,
probability of ignition and fire frequency would be expected to
have positive relationships with sources of ignition and fuels. This
was generally the case in the models; Bromes, lightning, NDVI,
Schismus, and monsoon precipitation were the highest ranked
variables for the probability of ignition model while monsoon
precipitation, Bromes, lightning, and NDVI were the highest
ranked variables for the fire frequency model. Both monsoon

storm activity and biomass of woody vegetation are high in
mountainous parts of the region, especially in the east and
northeast. Moreover, cover of Brome grasses is high in these
areas (Klinger and Brooks, 2017), as is the predicted suitability
of their habitat (Underwood et al, 2019). We suspect that
the importance of monsoon precipitation has less to do with
precipitation than the lightning and high winds that typically
occur with the storms (Tagestad et al., 2016). In combination with
high woody fuel loads and flammable invasive grasses, lightning
and wind dramatically increase ignition, spread and frequency
of fires in the eastern and northeastern parts of the Mojave.
The south and southeastern parts of the Mojave experience
considerable monsoon storm activity but elevations tend to be
lower. Thus, the sparser fuels reduce ignitions and limit spread
of fire. Fuel loads in the western Mojave can be as high as those
in the east and northeast, especially in the mountain ranges
bordering the region. Lightning activity is less than in the eastern
parts of the region though, limiting ignition probabilities and
frequency of fire.

NDVI and the proportion of monsoon precipitation were also
important predictor variables in the burn severity model. Their
importance makes intuitive sense because burn severity would
be expected to be greater in areas with large amounts of biomass
available to be removed and where high winds could lead to high
fire intensity. However, in contrast with models of probability
of ignition and frequency, topography variables had considerable
importance in the severity model. The influence of TRI, elevation,
and hillshade likely reflects several interactive effects, including
local ones of terrain (TRI and hillshade) on fire intensity and
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FIGURE 7 | Relative importance values of predictor variables in Random Forest models of fire frequency (number of times burned 1972-2010) and burn severity
(dNBR) in the Mojave Desert of North America. Full names and definitions of predictor variables are given in Table 1.

spread as well as a larger scale one of elevation on fuel loads greater in high than low elevation areas. Steep slopes promote
and fire spread. There is a strong positive correlation between intensity and spread of fire because vegetation is more exposed
TRI and slope, and fuel loads and steeper terrain tend to be to both radiant and convective heat. This effect likely compounds
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FIGURE 8 | Predicted distribution of fire frequency (Unburned, 1, 2, and >2) resulting from large wildfires in the Mojave Desert of North America. Predictions were
derived from a Random Forest model with 10 variables representing variability in topography, climate, vegetation, and lightning.

n
Frequency

TABLE 4 | Proportion of area in the Mojave Desert in combinations of predicted
quantiles of burn severity (difference normalized burn ratio; dNBR) and
ignition probability.

dNBR quantiles

0-0.25 026-0.50 051-075  0.76-1
Ignition quantiles (122 -228)  (229-334) (335 - 439) (>439)
0-0.25 0.6479 0.1068 0.0078 0.0001
0.26 - 0.50 0.0792 0.0394 0.0045 0
0.51-0.75 0.0558 0.0383 0.0026 0
0.76 - 1 0.0038 0.0133 0.0005 0

Ranges of dNBR are listed in parentheses below each quantile.

atlarger scales as biomass becomes greater in high elevation areas
with steep terrain. A potential exception is in low elevation areas
with high biomass of Schismus spp. Predictions of dNBR were
substantively improved with Schismus as a predictor variable,
which we attribute to interspaces among shrubs being filled
in by Schismus spp. (Brooks, 1999). This increase in Schismus
biomass would result in higher ANBR values. We stress though
that this interpretation is provisional because dNBR tends to
be in low to moderate ranges at lower elevations of the Mojave
(Klinger et al., 2019).

Brooks and Matchett (2006) hypothesized that fire activity
in the Mojave is an outcome of opposing gradients, with lower
elevations being largely fuel limited and higher elevations largely
ignition limited. Our findings and those of two other studies
(Hegeman et al, 2014; Tagestad et al., 2016) are generally
consistent with their hypothesis. Nevertheless, it may need to
be modified to account for spatial location. The potential for

widespread, albeit patchy, high severity fire is considerable due
to the mountain ranges that occur throughout the interior of
the region. The southeast-to-northwest spatial trend in dNBR
values and distribution of wildfires over the last 40-50 years
are compelling indications though that this potential has, for
the most part, not been realized. This implies spatial structuring
in burn severity results mainly from ignitions rather than the
distribution of conditions conducive to high severity burns, such
as high vegetation biomass. Thus, depending on location, the
relative importance of ignition vs. fuel could shift due to local
conditions (e.g., low elevation communities with relatively high
biomass of invasive grasses or high elevation communities in
areas of abundant lightning).

A tradeoff with predictor variables in machine learning
models is that they account for non-linear effects and complex
interactions better than parametric models do but, because they
are non-parametric, their interpretation is less direct. Given this
caveat, the importance rankings of the predictor variables in
our models generally made ecological sense. Nevertheless, the
complex interactions make it inappropriate to infer that statistical
rankings translated directly to ecological rankings. For instance,
precipitation is known to be one of the most important influences
on fire in the North American deserts (Brooks and Matchett,
2006; Balch et al,, 2013; Hegeman et al., 2014; Tagestad et al,,
2016; Chambers et al., 2019; Underwood et al., 2019), but in our
models it had intermediate or even low rankings. It would be
wrong though to think this was an indication that precipitation
was of lesser importance for fire activity in the Mojave. First,
its effects on fire are expressed indirectly through mediation of
vegetation biomass. This was well represented in our models
by NDVI and, to a lesser degree, by the Bromus and Schismus
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FIGURE 9 | Predicted values for an index of burn severity (difference normalized burn ratio; dNBR) in the Mojave Desert of North America. Predictions were derived
from a Random Forest model with 9 variables representing variability in topography, climate, and vegetation.
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variables (Balch et al., 2013; Underwood et al., 2019). Second,
our focus was on predicting patterns that were integrated over
time rather than year-to-year. Had our focus been on year-to-
year patterns as in some prior studies (Brooks and Matchett, 2006;
Hegeman et al., 2014), then the importance rankings would likely
have been higher. Broadly though, this provides a useful example
of why interpretation of variable rankings from machine learning
models needs to be done carefully and in a meaningful context.
Perhaps the most valuable insight from the variable rankings
was that predictions of the models were improved by combined
effects of the variables more so than any overriding effects of
just one or two of them. Pseudo-R? values must be interpreted
very cautiously because they are not a measure of explained
variance, nor do they range between 0 and 1 (McFadden, 1974).
They can be useful for comparing models though, and in this
context they gave a clear indication that the most accurate
dNBR model included topography, climate, and vegetation
variables. The removal of any one variable from the model of
probability of ignition did little to change gain in prediction
accuracy, and while topography was of minimal importance in
the ignition probability and fire frequency models, combined
effects of vegetation and climate variables had the greatest effect
on prediction accuracy in those models. Moreover, the most
important predictor variables in our ignition model compared
well with those from a parametric model of ignition probability
developed for a limited area of the Mojave (Hegeman et al., 2014).
Interpreting our models is best done within a more predictive

than explanatory framework, but the predictions were consistent
with current understanding of how different environmental
factors influence fire in the Mojave (Tagestad et al., 2016; Brooks
et al,, 2018; Underwood et al., 2019). As a result, they provide
the theoretical foundation for parametric models of ignition and
severity that have a more explicit explanatory purpose.
Interactions among climate, fuel load, and invasive annual
grasses have been a major factor in a large proportion of the Great
Basin Desert undergoing conversion from native dominated
shrubland to invasive dominated grassland (Whisenant, 1990;
Pilliod et al., 2017; Bradley et al., 2018; Chambers et al., 2019).
Similar conversions have occurred in the other three North
American deserts, but they have not been as extensive or were
transient (Klinger and Brooks, 2017). There remains considerable
concern though that the other deserts might follow a similar
trajectory as the Great Basin (Brooks and Pyke, 2001; Chambers
etal.,2019; Fusco et al., 2019). Climate shifts could increase future
fire activity, with the magnitude of change likely structured by
fuel loads along gradients of elevation and latitude (Abatzaglou
and Williams, 2016; Tagestad et al., 2016). However, it is unlikely
changes in climate and fuel load alone will bring about large-
scale and long-term fire-mediated transformations in the Mojave.
Rather, most evidence suggests that invasive annual grasses will
be the key factor in these transformations, especially in regard
to how ubiquitous the GFC becomes (Balch et al., 2013; Fusco
et al, 2019; Underwood et al, 2019). The fire regime and
composition of post-fire vegetation are the two fundamental
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FIGURE 10 | Centroids and ellipses of SEs (solid lines) and 95% confidence bounds (dashed lines) for six subregions of the Mojave Desert along gradients of
predicted burn severity (difference normalized burn ratio; dNBR) and probability of ignition. The centroids and ellipses were derived from a Redundancy Analysis with
500 randomly selected points in each subregion from which values of dNBR and ignition probability were extracted. Monte Carlo permutation tests (N = 999) and
Tukey HSD contrasts indicated the subregions differed in both location (centroids) and dispersion (variance).

Subregion

North
Southeast
West

East
Southcentral
Central

SRR

Axis 1

components of the GFC, and our findings suggest these can
be meaningfully evaluated from two perspectives: their current
extent and magnitude and predicted extent and magnitude.

Currently, the proportion of the Mojave that has experienced
wildfire over the last 40-50 years is low. In addition, the
spatial extent of areas that have experienced multiple wildfires is
extremely limited and largely restricted to one part of the region.
There is evidence that GFCs have become established in some
areas where multiple wildfires occurred (Klinger and Brooks,
2017; Underwood et al., 2019), but our findings indicate they
do not occur extensively outside of those areas. Furthermore,
even when areas in the Mojave burn two times over several
decades and are dominated by invasive grasses in the initial
years after burning, this does not mean they will remain so
(Klinger and Brooks, 2017). It may take several decades to re-
establish, but shrub cover can be resilient, and even if herbaceous
cover remains higher than it would if a site was unburned the
dominant species may be native (Klinger and Brooks, 2017).
When looked at from this viewpoint, a reasonable assessment is
the extent and magnitude of changes in fire regimes and post-
fire vegetation communities in the Mojave have been limited.
Thus, the likelihood of the GFC becoming widespread is low, as
is the potential for vegetation communities to undergo extensive,
long-term transformations following fire.

A different assessment can be reached when looking at the
predicted patterns of probability of ignition, fire frequency, and
burn severity. A conspicuous distinction between the actual fire
perimeters and predicted pattern of ignition is that there are
extensive areas with moderate to high probabilities of ignition
where wildfires have not occurred in the last 40-50 years. This
is especially apparent in the northern and western parts of the
region, including mountain ranges where wildfires have either
not occurred or been of very limited extent. The contrast between
potential and actual occurrence is also apparent for fire frequency
and dNBR; areas predicted to have multiple wildfires are present
in most of the interior mountain ranges and large portions of the
central, western and northern parts of the region are predicted to
have moderate to high burn severity. From a plant community
perspective, the predicted frequency and burn severity patterns
have important implications. Broader extent of areas that burn
multiple times over the course of approximately a half-century
undoubtedly means that the GFC would become more prevalent
in the Mojave, especially when these areas have favorable habitat
conditions for invasive grasses (Underwood et al., 2019). There
is virtually no resilience in shrub cover when woody-dominated
areas burn more than twice in a half-century (Klinger and Brooks,
2017), hence transformations to invasive-dominated herbaceous
communities would become more widespread. In addition,

Frontiers in Ecology and Evolution | www.frontiersin.org

March 2021 | Volume 9 | Article 593167


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Klinger et al.

Mojave Fire Regime Spatial Dynamics

o
o
© _|
o
o
o _|
o
o
<+ |
&
z 3
o [So
o
o
N
° Fire Frequency
=] — 1
] 2
— 2
o _|
T T T T T T T
0 500 1000 1500 2000 2500 3000
Elevation (m)
FIGURE 11 | Relationship of predicted values (95% CI) of burn severity (difference normalized burn ratio; dNBR) and fire frequency (number of times burned from
1972 to 2010) along an elevation gradient in the Mojave Desert of North America. Estimates were derived by ordinary least-squares regression from 1,000 randomly
selected points in each fire frequency class.

because woody-dominated communities can be transformed to
invasive dominated communities following high or moderate
severity burns (Klinger and Brooks, 2017), transitions could
occur even when fire is infrequent. Moreover, such areas could
act as large-scale nascent foci (Moody and Mack, 1988) from
which invasive grasses could spread into adjacent unburned
areas. Shifts in precipitation patterns could further contribute
to altered fire regimes and plant communities in the next 50—
100 years (Tagestad et al., 2016), but widespread changes might
occur even sooner. Our findings indicate that conditions for the
GFC to become more common already exist, and it is just a matter
of time before it does. Moreover, the rate at which this occurs
could be greatly exacerbated by human-caused fires (Syphard
et al,, 2007, 2017; Hegeman et al., 2014; Balch et al., 2017). Thus,
based on potential effects, a justifiable assessment would be that
the likelihood of the GFC becoming widespread and vegetation
communities undergoing extensive, long-term transformations
following fire are high.

CONCLUSION

Reconciling the opposing perspectives on the degree to which
fire regimes and composition of post-fire vegetation communities
in the Mojave might be altered may depend on an interplay

between spatial and temporal dynamics of wildfire. Two studies
using an ecologically sensible delineation of the Mojave have
analyzed the annual number of wildfires and area burned,
and both found no evidence of a trend in either variable
(Brooks and Matchett, 2006; Klinger et al., unpublished). What
was perhaps their most important finding was that relatively
few or even no large wildfires (i.e., >405 ha) occurred in
most years, but then those periods would be punctuated at
10-15-year intervals by a year (“pulse years”) when larger
than normal numbers of wildfires and area burned occurred.
Moreover, there were uncommon but highly exceptional years
when the number of wildfires and amount of area burned
were orders of magnitude greater than normal or pulse years
(“mega years”). An example of a mega year was 2005, when
25% of the wildfires between 1972 and 2010 occurred and
the area burned was 176% that of the total area burned
between 1972 and 2004. In addition to the unusually large
number of fires and area burned that year, there was a
conspicuous spatial pattern of the fires occurring primarily
in the eastern part of the region. This suggests a possibility
that the distribution of wildfire in the Mojave is temporally
dynamic. Areas with disproportionally high fire frequency,
occurrence of the GFC, and altered vegetation communities
might remain concentrated in a few specific parts of the
region for many decades. The pattern could abruptly shift
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though because of an uncommon but abnormally high magnitude
wildfire event in another part of the region. This event would
shape trajectories in the structure and composition of post-
fire vegetation communities for many decades, with both the
GFC and altered communities becoming more prevalent in
parts of the region where they had been uncommon for long
periods of time. If this dynamic did occur, then the GFC
would likely appear to have a limited spatial distribution when
viewed over a few decades. But when viewed over many decades
or more, the occurrence of the GFC would likely appear
more widespread.
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