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Hidden Markov models (HMMs) are being widely used in the field of ecological modeling,

however determining the number of underlying states in an HMM remains a challenge.

Here we examine a special case of capture-recapture models for open populations,

where some animals are observed but it is not possible to ascertain their state (partial

observations), whilst the other animals’ states are assigned without error (complete

observations). We propose a mixture test of the underlying state structure generating

the partial observations, which assesses whether they are compatible with the set of

states observed in the complete observations. We demonstrate the good performance

of the test using simulation and through application to a data set of Canada Geese.

Keywords: multievent model, capture-recapture, partial observations, mixture of multinomials, Hidden markov

model

1. INTRODUCTION

Besides its known use for the estimation of the size of a closed population (Pledger, 2000; Yang and
Chao, 2005; Bartolucci and Pennoni, 2007) originating in the work of Otis et al. (1978), capture-
recapture is also a widely used technique to follow the dynamics of open animal populations
(Cormack, 1964; Williams et al., 2002). The protocol remains the same: animals are uniquely
marked, then released and resighted/recaptured at subsequent sampling occasions. In the multi-
state framework (Lebreton et al., 2009), at each occasion, individual animals’ states are recorded
upon resighting; if an animal is not seen at a given occasion, this is denoted by a 0. If it is seen, a
code, commonly a number, specifies the state (see example data set in Supplementary Material).
Hence, the data resulting from a multi-state capture-recapture experiment consists of individual
encounter histories, formed by the series of records made for each animal. Multi-state models
allow the estimation of the survival and transition probabilities of animals between the states,
whilst accounting for imperfect detection. Within this modeling framework, states are assumed
to be assigned without error (Kendall, 2004). However, this assumption can be unrealistic in
certain situations such as the assessment of sex in a monomorphic species or of health status
when biological testing is not possible in the field. Pradel (2005) developed multievent models
to account for the uncertainty in state assignment. These models belong to the family of Hidden
Markov Models (Zucchini et al., 2016) and distinguish the events, which are observed, from the
states, which are underlying. The process governing the transitions between states is Markovian
(generally assumed of order 1) and the events are generated by the states. Multievent models have
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a structural absorbing state (death). Transitions are
almost systematically time-dependent, which precludes the
consideration that the system has reached an equilibrium.
Also, because the chance that an individual is missed is state
dependent, non-observations cannot be considered as data
missing at random. They are informative events like any other
outcome of the experiment.

In this paper we focus on a special case of multievent models,
where, at a given occasion, the state cannot be ascertained
for a proportion of the observed animals, leading to partial
observations, whilst the underlying states are directly observable
for the other observed animals (complete observations). In
analysing this type of data, it is usually assumed that the
range of potential states is limited to the set of states observed
in the complete observations (see Figure 1). However, some
states may not be directly observable, yet capable of generating
partial observations (see Figure 2). We propose a new diagnostic
tool to assess whether the partial observations are consistent
with being generated only by the directly observable states
(H0) or whether partial observations may be generated by at
least one additional unidentified state never directly observed
(H1). For instance, in a study of movements, animals may
move between the set of monitored sites, where observations
are made, and an additional unmonitored site (see scenarios
2PO and 3PO of the Canada geese example below). Such
a test is currently lacking in the literature and pragmatic
approaches need to be taken (see for example Pohle et al.,
2017).

Our test builds on the approach used by Pradel et al. (2003)
to construct a mixture test for the multi-state framework, as well
as the sufficient statistics and likelihood components developed
by King and McCrea (2014) for the special case of partial
observations. Indeed, we show that if partial observations are
generated only by the directly observable states, the number of
animals partially observed at a given occasion i and re-observed
later in a known state, follows a conditional multinomial
distribution, which is a mixture of the conditional multinomial
distributions followed by the number of animals released at
occasion i in the observable states. Based on this mixture
property, we then use usual goodness-of-fit measures to assess the
fit of a model where only the directly observable states generate
the partial observations.

We use simulation to empirically assess the test and apply it
to a Canada Geese, Branta canadensis, dataset (Hestbeck et al.,
1991), in which we artificially create partial observations. This
demonstrates that the test can work well under practical settings
and sample size.

2. PARTIALLY OBSERVED
CAPTURE-RECAPTURE DATA AND
MIXTURE PROPERTIES

Consider a capture-recapture experiment with T sampling
occasions and R live states. If individuals are assigned to state r
upon capture, this is done with certainty and the corresponding
event is denoted by r: “observed in state r.” When an individual’s

state cannot be determined, the corresponding event, a partial
observation, is denoted byU: “observed with state unknown” and
the animal can be in any one of the underlying R states.

The state and time-dependent parameters of the partial
observation capture-recapture model (King and McCrea, 2014)
are defined by:

• φrt is the probability an individual in state r at time t survives
until t + 1, for t = 1, . . . ,T − 1 and r = 1, . . . ,R.

• prt is the probability of recapture at time t for an individual in
state r, for t = 2, . . . ,T.

• ψ
r,s
t is the probability an individual is in state s at time t + 1

given that it was in state r at time t and is alive at t + 1, for
t = 1, . . . ,T − 1, r = 1, . . . ,R, and s = 1, . . . ,R.

• αrt is the probability an individual is assigned to state r given
it was recaptured at time t and in state r at that time, for
t = 2, . . . ,T and r = 1, . . . ,R. βrt = 1 − αrt is then defined
as the probability an individual is assigned as unknown (U) at
time t given the individual is recaptured, and in state r at this
time, for t = 2, . . . ,T and r = 1, . . . ,R. An animal is either
assigned to the correct state or unassigned but there are no
assignment error.

• π r
t is the initial state probability of individuals in an unknown

state when first observed. This corresponds to the probability
an individual is in state r at time t, given it was first observed
in U at t, for t = 1, . . . ,T−1.

The sufficient statistics are based on partitioning the encounter
histories (EH) into the following pieces: the EH between
observations in two known states; the EH between first
observation in unknown state and first re-observation in a known
state; the EH following the last observation in a known state; and
the EH following the first observation in an unknown state, for
animals who are never seen in a known state (Table 1 provides
examples). We define the following sufficient statistics:

• n
r,z(t1+1) :(t2)

,s

t1 ,t2+1 denotes the number of animals observed at time
t1 in known state r, next observed in known state s at t2 + 1
with partial capture history z(t1+1) :(t2) between these two time
points. Note that when t1 = t2, z(t1+1) :(t2) is denoted by−.

• w
U,z(t1+1) :(t2)

,s

t1 ,t2+1 denotes the number of animals observed for the
first time at t1 in an unknown state, re-observed for the first
time in known state s at time t2+1 with partial capture history
z(t1+1) :(t2) between these two time points.

• vrt1 is the number of animals observed in known state r at t1
and never seen again in a known state (i.e., never seen again or

only ever re-observed in an unknown state).
• bUt1 is the number of animals first observed in an unknown state

at t1 and never seen again in a known state.

Building upon the notation and probabilities introduced in the

previous section, we will demonstrate that the number of animals

partially observed at time i and later seen again in a known state,

follows a multinomial distribution which is a mixture of the

multinomial distributions of the animals released in a known state

at time i and seen again in a known state later. The multinomial
cells correspond to the time and state of the first re-observation
in a known state after time i.
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FIGURE 1 | Diagram of the capture recapture multievent model for partial observations with two observable live states under the null hypothesis. The state “dead” is

represented by †. Four events are generated by the three states: “Not observed,” which is obligatory for the state “dead”; two complete observations, “Observed in

state 1” and “Observed in state 2”; and the partial observation “Observed state unknown,” which may be generated by either live state.

FIGURE 2 | Diagram of the capture recapture multievent model for partial observations with two observable live states under the alternative hypothesis where there is

one additional non-observable live state (state 3). This last state is never recognized upon observation. See Figure 1 for more details.

The mixture property is illustrated for a simple example in
Table 2 for occasion i = 2 of a T = 4 occasion capture-recapture
study with two live states A and B. The number of animals
released in state A at occasion 1 first re-captured in a known
state at the different occasions, and those never seen again in a
known state, follow a multinomial distribution (row 1). Similarly
for those released in state B at occasion 1 (row 2), and those
first released in an unknown state at occasion 1 (row 3) and at
occasion 2 (row 4).

When the number of sampling occasions increases, capture
histories are long and there are a great number of possible
intermediate capture histories, formed of combinations of 0s and
Us, before the first observation in a known state appears. In
order to lower the chances of a sparse table, we opt to build
the multinomials based on the time and state of the first known

re-observed state, thus pooling over all possible intermediate
capture histories.

In Supplementary Material (section 2), we show that the
number of animals previously released in a known state r,
partially observed at occasion i and re-observed later in a known
state, follows a conditional multinomial distribution, which is a
mixture of the conditional multinomial distributions followed
by the animals released at occasion i in the observable states.
We also show that the number of animals first released before
i or at i in an unknown state, partially observed at occasion i
and re-observed later in a known state, follows a conditional
multinomial distribution (denoted in blue in Table 1), which is
a mixture of the conditional multinomial distributions followed
by the animals released at i in the observable states (denoted in
red in Table 1).
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Using the following property cited from Pradel et al. (2003):
“if B1 and B2 are mutually independent stochastic vectors, which
are multinomially distributed, and if M1 and M2 are mutually
independent stochastic vectors whose distributions are separately
mixtures of the distributions of B1 and B2, then the distribution
of M1 + M2 is itself a mixture of the distributions of B1 and B2,”
the conditional multinomials of the animals released in a known
state or first released in an unknown state before or at i, and
partially observed at i can be pooled as shown in Table 3. Thus,
the table used to test the mixture property of partial observations
at occasion i is given in Table 3.

3. TESTING THE UNDERLYING STATE
STRUCTURE GENERATING THE PARTIAL
OBSERVATIONS

Based on the mixture property of partial observations at a
given occasion demonstrated in the previous section, we use the
Multinomial Maximum Likelihood Mixture approach (MMLM)
developed by Yantis et al. (1991) to assess the goodness-of-
fit of a model where the partial observations are generated
only by the directly observable states. The MMLM approach
is targeted to mixtures of multinomial distributions and is

TABLE 1 | Illustrating how example individual capture histories contribute to the

sufficient statistic terms, for a capture-recapture experiment with two observable

states A, B, and five sampling occasions.

Capture history Sufficient statistic

U A U U B wU,−,A
1,2 , nA,UU,B2,5

A U U U A nA,UUU,A1,5

A U 0 U 0 vA1

U U U U B wU,UUU,B
1,5

0 0 U 0 1 wU,0,1
3,5

0 A B U U nA,−,B
2,3 , vB3

0 U 0 U U bU2

Partial observations are denoted by U. The elements of capture history determining the

indices within the statistics are denoted in bold.

used when independent samples are available from both the
mixtures and their associated components. This approach
consists of two steps: first estimating the cell probabilities of
the mixture components and the mixing weights via maximum-
likelihood, then assessing the goodness-of-fit of the hypothesized
model structure (mixtures and associated components) using
a classical measure of comparison between observed and
expected frequencies.

Hence, based on the mixture property of the partial
observations demonstrated in the Supplementary Material and
reported in section 2, there is no need to estimate the
numerous capture-recapture parameters for the purpose of the
test, the information needed is summarized in simpler terms:
one parameter per component-cell and the mixing weights as
illustrated in Table 4.

For the goodness-of-fit assessment, various statistics based
on the distance between expected values under the model and
observed values may be considered: Pearson’s χ2, the log-
likelihood ratio statistic G2 (Cressie and Read, 1988, p. 10); and
more generally, due to the different properties of these statistics
depending on the alternatives or sparseness of the table, the
power-divergence family of statistics (Cressie and Read, 1988),
which encompassesG2 and χ2 as special cases. Within this paper,
we present the results obtained with Pearson’s χ2 as all the
various statistics used gave similar results.

Under the null hypothesis, animals partially observed at i and
re-observed later in a known state are consistent with being a
mixture of animals observed in the directly observable states at i
and re-observed in the same conditions: the partial observations
are generated solely by the observable states (Figure 1). Using
the usual H0 notation for the null hypothesis and H1 for the
alternative, H1 = H̄0. A large array of situations come under
the alternative hypothesis: from the partial observations being
generated by the directly observable states and another state
which is never directly observable (Figure 2) to the most extreme
case of partial observations all being generated only by one (or
more) states which are never directly observable.

Under the null hypothesis, the Pearson goodness-of-fit
statistic presented above follows a χ2 distribution (Cressie and
Read, 1984) with K − p− 1 degrees of freedom (Moore, 1986, p.
66) where K denotes the number of observed frequencies and p

TABLE 2 | The sufficient statistics for multinomial distributions corresponding to individuals released before or at i = 2 in an capture-recapture experiment with four

occasions where individuals can be in any of two live states.

nA,-,A1,2 nA,-,B1,2 nA,0,A1,3 . . . nA,0U,B1,4 nA,U,A1,3 nA,U,B1,3 nA,U0,A1,4 nA,U0,B1,4 nA,UU,A1,4 nA,UU,B1,4 vA1

nB,-,A1,2 nB,-,B1,2 nB,0,A1,3 . . . nB,0U,B1,4 nB,U,A1,3 nB,U,B13 nB,U0,A14 nB,U0,B14 nB,UU,A14 nB,UU,B14 vB1

wU,-,A
12 wU,-,B

12 wU,0,A
13 . . . wU,0U,B

14 wU,U,A
13 wU,U,B

13 wU,U0,A
14 wU,U0,B

14 wU,UU,A
14 wU,UU,B

14 bU1

wU,-,A
23 wU,-,B

23 wU,0,A
24 wU,0,B

24 wU,U,A
24 wU,U,B

24 bU2

– – – – – nA,-,A23 nA,-,B23 nA0A24 nA0B24 nAUA24 nAUB24 vA2

– – – – – nB,-,A23 nB,-,B23 nB,0,A24 nB,0,B24 nB,U,A24 nB,U,B24 vB2

At each time for each individual, one of four events occurs: the individual is not encountered (code 0), the individual is encountered but its state is not recognized (event U), the individual

is encountered and recognized to be in state A (code A), the individual is encountered and recognized to be in state B (code B). In the electronic version of the paper the terms constitutive

of mixtures are denoted in blue whilst those constituting components are denoted in red. The terms in black will be conditioned upon. bUi -terms are the counts of animals with a first

partial observation at i (initial event U) that are never completely observed. w
U,h,S
i,j -terms are the counts of animals with a first partial observation at i and a first complete observation at j

in state S with intervening capture history h (-stands for the empty capture history). n
R,h,S
i,j -terms are the counts of animals with two successive complete observations respectively at

times i and j in states R and S with intervening capture history h. vSi -terms are the counts of animals observed completely for the last time at i in state S.
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TABLE 3 | Table used for testing the mixture property of partial observations at

occasion i in a capture-recapture experiment with T occasions where individuals

can be in any of R live states.

j = i + 1 . . . T

s = A . . . R . . . A . . . R

∑i−1
f=1 n

A,.,A,h(i)=U
f ,i+1 . . .

∑i−1
f=1 n

A,.,R,h(i)=U
f ,i+1 . . .

∑i−1
f=1 n

A,.,A,h(i)=U
f ,T . . .

∑i−1
f=1 n

A,.,R,h(i)=U
f ,T

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
∑i−1

f=1 n
R,.,A,h(i)=U
f ,i+1 . . .

∑i−1
f=1 n

R,.,R,h(i)=U
f ,i+1 . . .

∑i−1
f=1 n

R,.,A,h(i)=U
f ,T . . .

∑i−1
f=1 n

R,.,R,h(i)=U
f ,T

∑i
f=1 w

U,.,A,h(i)=U
f ,i+1 . . .

∑i
f=1 w

U,.,R,h(i)=U
f ,i+1 . . .

∑i
f=1 w

U,.,A,h(i)=U
f ,T . . .

∑i
f=1 w

U,.,R,h(i)=U
f ,T

nA,Ai,i+1 . . . nA,Ri,i+1 . . . nA,.,Ai,T . . . nA,.,Ri,T

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

nR,Ai,i+1 . . . nR,Ri,i+1 . . . nR,.,Ai,T . . . nR,.,Ri,T

Notations are as in Table 2. The columns correspond to the circumstances (time and

state) of the first reobservation in a known state after i. They are pooled over the different

intervening partial histories (. notation), h(i) = U denotes that the animals are seen in U

at i. For individuals seen in U at i, the rows are pooled by last recognized state (first R

rows) and when there are no complete observations prior to i+1 (row R+1). For instance,

the first row is for animals seen in U at i and with A as their last recognized state; the

summation is over the timing of this last previous complete observation.

TABLE 4 | Simple model structure of mixtures and associated components used

to test the mixture property.

j = i + 1 . . . T

s = A . . . R . . . A . . . R

M1 γ1p
B1
1 + . . .+γRp

BR
1 . . . . . . . . . . . . . . . γ1p

B1
R×(T−i)+ . . . + γRp

BR
R×(T−i)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

MR π1p
B1
1 + . . .+πRp

BR
1 . . . . . . . . . . . . . . . π1p

B1
R×(T−i)+ . . .+πRp

BR
R×(T−i)

B1 p
B1
1 . . . . . . . . . . . . . . . p

B1
R×(T−i)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

BR p
BR
1 . . . . . . . . . . . . . . . p

BR
R×(T−i)

In the electronic version of the paper the mixing weights are denoted in blue and the

component cell-probabilities in red. Br is the basis corresponding to animals released at

i in state r, r = 1, . . . ,R. Mr is the mixture corresponding to animals partially observed at

i and most lately completely observed in state r, r = 1, . . . ,R. Only animals completely

reobserved at some point after i are used in the bases and mixtures. The cells of the

multinomials correspond to the time and state of the first complete observation after i.

They are ordered by states within times for a total of R× (T − i) cells. pBri is the probability

associated to cell i of basis Br , i = 1, . . . ,R× (T − i), r = 1, . . . ,R. γr , r = 1, . . . ,R, are the

mixing weights for M1. πr , r = 1, . . . ,R, are the mixing weights for MR.

denotes the number of parameters in the model. In order for the
asymptotic distributions to hold, expected frequencies in each cell
should be at least 2 for a level α = 0.05 (Moore, 1986, p. 71).

The tables used at each occasion i condition on known
states. Therefore, the test-statistics obtained at each occasion
are independent and a global test-statistic can be computed by
summing up the tests for each occasion. This global test-statistic
follows, under the null hypothesis, a chi-square distribution with
the number of degrees of freedom being the sum of the degrees
of freedom of the test-statistics per occasion.

4. APPLICATIONS

4.1. Simulation Results
In order to minimize the chances of sparse data and verify that

the test works as expected in theory, we first used simulation

with very large sample size (N = 25,000 animals newly released

at each occasion), whilst also focusing on an extreme case

of the alternative hypothesis (results not presented here). We

then simulated the same scenarios under more realistic settings

as detailed below. First, we present simulations for two-state
capture-recapture data under the null hypothesis, arising from
two directly observable states, with K = 5 sampling occasions,
under two sample size settings: N= 5,000 and N = 1,000 animals
newly released per occasion. The capture, survival and transition
probabilities, are respectively set as pA = pB = 0.6, φA = 0.6,
φB = 0.9, ψAB = 0.8, ψBA = 0.7. This scenario is denoted by
2S. In order to introduce partial observations, we set to unknown
at random a varying percentage of the observed states (MCAR).
More specifically, we ran a binomial on each observed state in
scenario 2S to decide whether it should be kept as “observed in
the relevant known state” or changed to “observed in unknown
state.” We also simulated data under the alternative hypothesis,
where the partial observations are not generated by either of the
two directly observable states, but by a third state C which is
never directly observable, this scenario is denoted by 3S. Using
standard multievent notation (see for example Pradel, 2005), the
survival matrix is denoted by 8t with the diagonal terms being
the probability that an animal in state r at time t survives until
t + 1 and the last column being the probability of dying,

8t =









A B C Dead

A 0.7 0 0 0.3
B 0 0.8 0 0.2
C 0 0 0.9 0.1
Dead 0 0 0 1









for t = 1, . . . , 4; the transition matrix with the (r, s)th element
beingψ r,s

t , the probability that an animal is in state s at time t+1,
given it was in state r at t and that it is alive at t+ 1, is denoted by

9t =









A B C Dead

A 0.1 0.3 0.6 0
B 0.3 0.15 0.55 0
C 0.4 0.4 0.2 0
Dead 0 0 0 1









for t = 1, . . . , 4 and finally, the event matrix with the (r, e)th
element being the probability of observing event e for an animal
in state r at time t is denoted by

Bt =









0 A B U

A 0.45 0.55 0 0
B 0.45 0 0.55 0
C 0.45 0 0 0.55
Dead 1 0 0 0








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TABLE 5 | Testing the mixture property of partial observations: simulation results.

Scenario Sample size % MCAR i χ
2(%) N

2S H0

1,000

25

2 4.33 600

3 4.33 600

G 3.33 600

45

2 4.83 600

3 3.33 600

G 5.00 600

5,000

25

2 3.50 600

3 4.17 600

G 4.50 600

45

2 4.77 600

3 3.63 600

G 4.93 600

3S H1

100

– 2 26.44 435

– 3 45.84 373

– G 42.73 550

250

– 2 52.75 582

– 3 92.60 581

– G 94.33 600

500

– 2 83.47 599

– 3 99.83 600

– G 100.00 600

1,000

– 2 96.50 600

– 3 100.00 600

– G 100.00 600

30

2 76.30 600

3 97.50 600

G 99.80 600

For H0, we generated 2-state capture histories (scenario 2S) examining 2 sample sizes

(1,000 and 5,000 animals newly released per occasion) and 2 percentage of observations

rendered partial by setting the state to unknown (%MCAR). Different values of the binomial

parameter were considered. For H1, we generated 3-state capture histories (scenario

3S) examining four sample sizes: two states were fully observable while the third, never

observed, gave rise to all the partial observations. Values of the detection, survival, and

transition parameters for scenarios 2S and 3S are given in section 4.1. Under a variant

of scenario 3S with the largest sample size, 30% of the observations generated by the

2 observable states are also made partial at random. In all cases, 600 replicates were

simulated. Results are given as percentage of significant test results out of the number

of applicable tests (all expected values ≥ 2). G denotes the global test, i the sampling

occasion and %MCAR the percentage of observations set to “Unknown” and N denotes

the number of applicable tests. When 50% or more of the test-results were significant,

this is indicated in bold.

for t = 1, . . . , 5. Here the events (corresponding to the columns)
are, not observed, observed in state A, observed in state B and
observed in unknown state denoted by U.

We examine this scenario for the following numbers of
animals newly released at each occasion: N = 100, N = 250,
N = 500, and N = 1,000. We simulate 600 datasets for each
scenario. If any of the expected values are lower than two, the
corresponding test is deemed Non Applicable (NA). Since sparse
data were extremely likely to arise for the smaller sample sizes,
we automatically applied pooling strategies before performing
the maximum likelihood test: pooling across columns while the

TABLE 6 | Using different configurations of the Canada geese dataset to assess

the performance of the new mixture test for assessing the underlying state

structure of partial observations, under real-life conditions.

Configuration i p-value df

H0

MCAR15

2 0.14 1

3 0.14 1

4 0.60 1

G 0.21 3

MCAR25

2 0.57 1

3 0.09 1

4 0.85 1

G 0.35 3

MCAR45

2 0.84 1

3 0.82 1

4 0.85 1

G 0.99 3

H1

2PO 2 <0.001 1

3 <0.001 1

4 <0.001 1

G <0.001 3

3PO

2 0.13 1

3 <0.001 1

4 <0.001 1

G <0.001 3

Hyb25

2 0.25 1

3 0.28 1

4 0.04 1

G 0.07 3

Hyb45

2 0.37 1

3 0.08 1

4 0.07 1

G 0.06 3

Starting from an original data set where individually identified Canada geese have been

observed at three locations during six consecutive wintering seasons, we artificially

generated three scenarios under H0 by setting 15, 25, and 45% of the observed geese’s

locations to unknown : scenarios MCAR15, MCAR25, MCAR45, respectively, and 2

scenarios under H1 by setting all the observations at location 2 (resp. 3) to unknown:

scenarios 2PO (resp. 3PO). The p-value obtained at each occasion i is presented and the

associated global tests are denoted by G.

number of columns is greater than the number of components
plus one, and across the lines: all the mixtures are pooled together
to form just one mixture. The results obtained are given in terms
of percentage of significant test results out of the number of
applicable tests, at a 5% level, in Table 5.

In order to examine how the test would perform in the
more challenging situation where some partial observations are
generated by the observable states, we also examined for the
sample size N = 1,000 a variant of the 3S scenario where, in
addition to the partial observations corresponding to state C, 30%
of the observations generated by the observable states A and B are
set to partial at random (unknown state).

The simulation results show that for the datasets simulated
under the null hypothesis (scenario 2S), the Type I error rate
is close to 5%, whatever the percentage of partial observations.
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Importantly, the test showed good power for the datasets
simulated under an alternative hypothesis (scenario 3S), with
close to 50% of tests being significant for a sample size as small
as 100 animals newly released per occasion (i.e., 500 animals
altogether) and close to 100% of the global test being significant
for 250 animals released per occasion. The simulation results
show that the test reacts as expected from the derivation made
in the previous sections, when the partial observations are not
generated by the directly observable states, and that it can
work well for realistic sample sizes. When part of the partial
observations are generated by the observable states, the test is not
as powerful as could be expected but nonetheless rejects H0.

4.2. Canada Geese
We have shown theoretically and empirically that our test has the
ability to assess whether partial observations can be adequately
modeled as stemming solely from the directly observable states
in a capture-recapture experiment. In this section, we apply the
test to an ecological dataset, chosen so that the underlying state
structure is actually known.

We use the Canada geese dataset from Hestbeck et al. (1991)
which consists of 21,435 migrant geese individually marked with
neck-bands and re-observed at their wintering locations each
year, between 1984 and 1989 (Hestbeck et al., 1991; Rouan et al.,
2009). These wintering sites constituted the states in the capture-
recapture experiment: mid-Atlantic (New York, Pennsylvania,
New Jersey), Chesapeake (Delaware, Maryland, Virginia), and
Carolinas (North and South Carolina). Since the tables needed
for the test were quite sparse, we therefore used the following
pooling strategy: on the columns, pooled to the maximum until
there was one degree of freedom left for the test (the column
with the minimal sum is pooled with the column with the
second minimal sum and so on) whilst on the rows, all the rows
corresponding to mixtures are pooled so that there is just one
mixture left to test for.

We examine the Canada geese dataset under both the null
and alternative hypotheses by artificially creating these situations
within the data. First, in order to create partial observations
generated by the observable states (H0), we set some observed
geese’s states to unknown (MCAR). We considered varying
percentages to see how the test reacts to the amount of partial
observations: 15, 25, and 45%. These situations are respectively
denoted by MCAR15, MCAR25, and MCAR45 in Table 6. Then
we examine situations that come under the alternative hypotheses
(H1) by setting all of the observations from a particular state to
“unknown” so that this particular state becomes unobservable
while the states remaining observable do not generate any partial
observations. We considered two situations: all observations in
state 2 are set to “unknown” (situation 2PO), or all those in state 3
are set to “unknown” (situation 3PO). Eventually, we considered
the hybrid situation where, in addition to the partial observations
generated by the unobservable state 3 as in scenario 3PO, 25%
then 45% of the observations generated by state 2 are also set to
partial: scenarios Hyb25 and Hyb45.

The p-values obtained from applying the mixture test to all
these configurations of the geese dataset are given in Table 6.
These results are very promising, with the test reacting as
it should under the different configurations examined. Under

all the null hypothesis configurations, the directly observable
states as sole underlying states for the partial observations,
there is insufficient evidence to reject the null hypothesis. For
the configurations under the alternative, the null hypothesis is
strongly rejected, with p < 0.001 for almost all of the tests
examined (by occasion and global). The non-significant test at
occasion 2 under scenario 3PO is due to the small number
of individuals captured in state 3 at this occasion, resulting in
insufficient power to detect the different properties of that state.
Hence, the results from configurations 2PO and 3PO lead to the
conclusion that the directly observable states do not provide an
adequate underlying state-structure for the partial observations.
When some partial observations are generated by the observable
states (Hyb25 andHyb45), there is a clear loss of statistical power.
The global tests are still very close to significance at the 5% level,
but more than 5 years of study would have been necessary to
detect the presence of the third unmonitored location.

5. DISCUSSION

We have derived a mixture test that assesses whether partial
observations in a capture-recapture study are generated
solely from the directly observable states. This test is based
on distributional properties which we have demonstrated.
It has been shown to perform well in theory, through
simulation and for real-data applications. Regarding the
interpretation of the test, if the null hypothesis is not
rejected, the observable states provide an adequate underlying
structure for the partial observations. However, similarly
to classical goodness-of-fit tests, the interpretation of a
significant test result is not as straightforward as the range
of alternatives to be considered is quite large. For example,
if the set of observable states are inadequate, it is not known
how many additional states should be considered for the
underlying structure and how the partial observations
should be modeled. Both of these questions do not have
obvious answers at this stage and constitute an area of
future research.

Partial observations might also stem from alternatives less
extreme than those considered in our applications: they could
be generated by one of the directly observable states and an
additional state that is never observable directly. Going further,
they may also stem from all the observable states and another
state which is never observable directly. In theory, the test will
react to this situation too. However, in practice, we surmise that
the other state would have to present different enough properties
from the directly observable states for the test to be powerful
enough to detect it.

Finally, determining a minimum sample size for which the
test is powerful enough is more complex than usual in this
framework, as it is not only the total sample size which matters
but also the proportion of partial observations, which will depend
on combinations of the parameter values. From a modeling
perspective, we would recommend fitting a model with one
additional state when the test is found to be significant.

This new test has sound theoretical basis, we showed it can
work well even with small sample sizes, and we believe that
it will be useful in a multi-state capture-recapture model, in
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statistical ecology and also other areas of application. Hidden
Markov models are used for a range of purposes in capture-
recapture modeling (see for example Langrock and King, 2013;
Worthington et al., 2019; Zhou et al., 2019), and the work
of this paper will considerably contribute to the theoretical
tools available for a wide range of applications. It will enable
practitioners to consider better fitting models and will also give
practical insight as to the existence of at least one state where the
animals go, that is different from those directly observed.

Clearly it is desirable to consider whether the approach
presented in this paper can be extended to other applications
of HMMs in ecology, for example in application to movement
models (Langrock et al., 2012), and beyond, and this is a current
area of research.
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