
fevo-09-603757 April 1, 2021 Time: 13:23 # 1

PERSPECTIVE
published: 08 April 2021

doi: 10.3389/fevo.2021.603757

Edited by:
Galina Churkina,

Potsdam Institute for Climate Impact
Research (PIK), Germany

Reviewed by:
Stephan Pauleit,

Technical University of Munich,
Germany

Yuguo Qian,
Research Center

for Eco-environmental Sciences
(CAS), China

*Correspondence:
Diane E. Pataki

diane.pataki@utah.edu

Specialty section:
This article was submitted to

Urban Ecology,
a section of the journal

Frontiers in Ecology and Evolution

Received: 07 September 2020
Accepted: 24 February 2021

Published: 08 April 2021

Citation:
Pataki DE, Alberti M,

Cadenasso ML, Felson AJ,
McDonnell MJ, Pincetl S, Pouyat RV,
Setälä H and Whitlow TH (2021) The

Benefits and Limits of Urban Tree
Planting for Environmental

and Human Health.
Front. Ecol. Evol. 9:603757.

doi: 10.3389/fevo.2021.603757

The Benefits and Limits of Urban
Tree Planting for Environmental and
Human Health
Diane E. Pataki1* , Marina Alberti2, Mary L. Cadenasso3, Alexander J. Felson4,
Mark J. McDonnell5, Stephanie Pincetl6, Richard V. Pouyat7, Heikki Setälä8 and
Thomas H. Whitlow9

1 School of Biological Sciences, University of Utah, Salt Lake City, UT, United States, 2 Department of Urban Design
and Planning, University of Washington, Seattle, WA, United States, 3 Department of Plant Sciences, University of California,
Davis, Davis, CA, United States, 4 Faculty of Architecture Building and Planning, University of Melbourne, Parkville, VIC,
Australia, 5 School of Biosciences, University of Melbourne, Parkville, VIC, Australia, 6 Institute of the Environment
and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States, 7 U.S. Forest Service (Retired),
Washington, DC, United States, 8 Ecosystems and Environment Research Programme, Faculty of Biological
and Environmental Sciences, University of Helsinki, Lahti, Finland, 9 Department of Horticulture, Cornell University, Ithaca, NY,
United States

Many of the world’s major cities have implemented tree planting programs based
on assumed environmental and social benefits of urban forests. Recent studies
have increasingly tested these assumptions and provide empirical evidence for the
contributions of tree planting programs, as well as their feasibility and limits, for
solving or mitigating urban environmental and social issues. We propose that current
evidence supports local cooling, stormwater absorption, and health benefits of urban
trees for local residents. However, the potential for urban trees to appreciably mitigate
greenhouse gas emissions and air pollution over a wide array of sites and environmental
conditions is limited. Consequently, urban trees appear to be more promising for climate
and pollution adaptation strategies than mitigation strategies. In large part, this is due
to space constraints limiting the extent of urban tree canopies relative to the current
magnitude of emissions. The most promising environmental and health impacts of urban
trees are those that can be realized with well-stewarded tree planting and localized
design interventions at site to municipal scales. Tree planting at these scales has
documented benefits on local climate and health, which can be maximized through
targeted site design followed by monitoring, adaptive management, and studies of
long-term eco-evolutionary dynamics.

Keywords: urban ecology, forestry, sustainability, policy, climate mitigation, climate adaptation, ecosystem
services, ecosystem disservices

INTRODUCTION

Urban trees in parks, yards, streets, and remnant parcels have been features of urban design and
landscape architecture for centuries (Arnold, 1980), and are still integral components of civic
spaces that are well-recognized for their public value. Urban trees are purported to have a number
of environmental benefits, such as pollution absorption (Nowak et al., 2006, 2018), stormwater
mitigation (Bartens et al., 2009), atmospheric cooling (Shashua-Bar and Hoffman, 2000), reduced
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energy use (Akbari et al., 1997; Akbari, 2002; Donovan and
Butry, 2009; Hsieh et al., 2018), and habitat provision (Burghardt
et al., 2009). In addition, studies have indicated that proximity
to urban vegetation may increase property values (Sander et al.,
2010; Li and Saphores, 2012; Escobedo et al., 2015), facilitate
recuperation after stress and illness (Ulrich, 1983; Ulrich et al.,
1991; Li and Sullivan, 2016), and reduce mental fatigue (Houlden
et al., 2018). There is a substantial literature indicating that
trees provide benefits for municipalities and their residents,
and this perception, in part, has motivated local, regional and
global initiatives that promote the planting of urban trees
(McDonald et al., 2016).

However, there is also an increasing empirical understanding
of the limits of tree planting as a nature-based solution to
climate change and pollution. Urban forest dynamics, species
composition, soil dynamics, and the costs of planting and
managing designed spaces are important variables in urban
forest outcomes, and must inform urban planting practices for
successful planning and management (Oldfield et al., 2013).
In addition, recent empirical studies highlight that spatial and
temporal scales heavily influence the extent of environmental and
social impacts of urban trees. Some of the purported benefits of
urban forests require that trees are planted on large spatial scales
beyond municipal boundaries, and maintained over the long
term, to ensure effectiveness (Salmond et al., 2016). However,
trees may provide other ecosystem services even when planting is
constrained by the relatively limited spaces in dense cities. In this
perspective, we refer to mitigation as strategies that aim to reduce
climate change and pollution, and adaptation as strategies that
aim to modify cities to help residents cope with climate change
and pollution (Laukkonen et al., 2009). Many environmental
benefits attributed to urban trees fall into one of these two
categories. In addition, we discuss the evidence pertaining to both
positive and negative impacts of trees on human health in the
context of the extent of urban tree planting.

URBAN TREES ARE MORE EFFECTIVE
FOR ADAPTATION THAN MITIGATION
STRATEGIES

Early studies of urban tree ecosystem services emphasized rates
of carbon (C) sequestration and air pollution reduction (Nowak
and Crane, 2000; McPherson et al., 2005; Ray, 2005). Tools
such as iTree1 translated the relatively scant data on urban tree
processes available at the time—primarily estimates of biomass
and dry deposition rates—into easily understood, municipal-
scale metrics, such as tons of pollution absorbed (Tallis et al.,
2011), energy savings (McPherson, 1993), C sequestered (Nowak,
1993), and total monetary value (McPherson, 1992; Nowak et al.,
2002). However, since these tools were originally developed,
additional empirical studies of the influence of trees on pollution
concentrations have reported negligible or inconsistent impacts
(Setälä et al., 2013; Han et al., 2020), or even increases in
the residence time of particulate and NO2 concentrations in

1https://www.itreetools.org/

the atmosphere in the presence of tree canopies (Tong et al.,
2015; Viippola et al., 2018). When atmospheric mixing is low,
pollutants may be concentrated under tree canopies (Salmond
et al., 2013), and when atmospheric mixing is high, studies
have shown no discernable effect of the presence of trees on
urban pollutant concentrations (Figure 1). In addition, trees
may exacerbate rates of asthma due to the release of allergens
and this is seldom accounted for in assessments of the impacts
on trees on public health (Lovasi et al., 2013). In recent
comprehensive reviews, Eisenman et al. (2019) and Xing and
Brimblecombe (2020) both concluded that as a result of the
many influences of trees on atmospheric composition besides
dry deposition rates, current empirical evidence does not support
the assumption that trees significantly and consistently reduce
pollution concentrations.

Similarly, for C sequestration, tree inventories coupled with
allometric equations have been commonly used to estimate CO2
stored in urban trees in units of mass (Nowak and Crane, 2002;
Nowak et al., 2013). However, to assess the potential of trees
to enable climate mitigation, a systems-level approach is needed
to compare C sequestration in urban forests to local fossil fuel
emissions (Hutyra et al., 2014). Most studies of urban forest C
sequestration attempt to estimate either tree biomass (McHale
et al., 2007; Hutyra et al., 2011; Strohbach and Haase, 2012;
Timilsina et al., 2014) or the rate of change in biomass over
time (Net Primary Production, NPP) (Bialecki et al., 2018; Sonti
et al., 2019; Trlica et al., 2020). Soil C dynamics should also
be assessed as part of urban C balance, as soil C may either
contribute to sequestration if organic matter is accumulating, or
release C to the atmosphere if heterotrophic respiration reduces
organic matter concentrations (Pouyat et al., 2002, 2006; Decina
et al., 2016). But in either case, the spatial extent of urban trees
and soils is quite limited relative to the magnitude of fossil fuel
emissions. Cities are highly heterotrophic and expend orders of
magnitude more C than they fix in photosynthesis (Collins et al.,
2000). In most modern cities, fossil fuel combustion exceeds NPP
per unit land area by at least an order of magnitude (Pataki et al.,
2011). Hence, urban tree growth typically offsets municipal C
emissions by only 0–3% annually (Pataki et al., 2009; Escobedo
et al., 2010; Liu and Li, 2012; Baró et al., 2015; Velasco et al.,
2016; Lindén et al., 2020), even before accounting for the energy
needed to produce, transport, irrigate, prune, and fertilize urban
trees (Roy et al., 2012).

This is fundamentally a problem of scale. Pollution
and greenhouse gas (GHG) emissions in modern cities are
disproportionately large relative to the extent of urban trees.
Globally, forests are an important contributor to the C cycle
because they occupy about a third of the land surface (FAO
and UNEP, 2020). However, cities occupy less than 1% of
the global land surface (Zhou et al., 2015; Liu et al., 2018),
and within cities tree cover is highly variable but seldom
equivalent to closed canopy forests (Nowak and Greenfield,
2018). Consequently, urban trees are most effective at providing
ecosystem services that operate at local scales, such as parcels or
urban forest/neighborhood patches.

For example, trees may improve human thermal comfort
locally both through evaporatively cooling and humidifying
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FIGURE 1 | In Lahti, Finland, researchers found that atmospheric particle deposition (the mass of particles deposited on the sampler) was significantly lower at
urban sites with trees than in open areas. However, this difference did not result in significant differences in atmospheric PM 2.5 or PM 10 concentrations (particulate
matter <2.5 and <10 µm in diameter) at any of their measurement sites, as shown above. This distinction is important because while many studies have inferred
that trees will improve human health based on the influence of trees on particle deposition, it is atmospheric concentrations that actually impact human health
directly. Error bars show SD; data from Setälä et al. (2013).

urban air, and through shading, i.e., the interception of radiation
by large canopies (Shashua-Bar et al., 2011; Chen and Ng,
2012; Rupp et al., 2015; Middel et al., 2016; Wang et al., 2018;
Zhao et al., 2018). Wang et al. (2018) utilized the Weather
Research and Forecasting Model (WRF) and found that all urban
trees in the contiguous United States lower air temperature
by about 3◦C across urban areas compared to scenarios in
which cities contained no trees at all. This is likely an upper
limit on municipal-scale cooling effects, as this study evaluated
the impact of all existing urban trees. Salmond et al. (2016)
pointed out that most studies of urban forest-climate interactions
are regional scale modeling that use WRF or other simulation
tools, and there is generally less information about cooling
effects from empirical measurement at local scales. Nevertheless,
cooling has been found in empirical studies as a function
of canopy cover. Jung et al. (2021) showed that the capacity
of urban trees to mitigate land surface temperatures is non-
linear and depends on the specific land cover type and level of
development. Santamouris et al. (2017) found that across a wide
range of studies, the median reduction in local air temperature
by cooling interventions involving urban trees was as high as
1.5◦C when including modeling scenarios that largely eliminated
built cover, and 0.6◦C across more realistic urban conditions.
By intensively sampling urban air temperature across land cover

gradients, Ziter et al. (2019) estimated urban cooling of up 2◦C
at spatial scales of 60–90 m in radius at very high canopy
cover close to 100%.

Therefore, localized cooling with dense tree planting offers
the potential for microclimate adaptation through highly targeted
design interventions that focus on parks, bus stops, pathways,
school yards, community centers and other pedestrian urban
gathering spaces that significantly impact thermal comfort. In
addition, the reduction of stormwater runoff from impervious
surfaces may also facilitate climate change adaptation. Canopy
interception, i.e., rainfall that is intercepted by the tree canopy
and evaporates from the leaves, may constitute a significant
fraction of water inputs from low intensity, short duration rainfall
events, depending on tree species (Xiao et al., 1998; Xiao and
McPherson, 2002; Asadian and Weiler, 2009; Nytch et al., 2019).
Urban greenspaces typified by pervious, non-sealed soils can also
absorb and store considerable amounts of rainwater in the soil.
For example, urban catchments in two Finnish cities with 30–
40% of permeable soils (parks and other green infrastructure)
stored more than 1,000 m3 of rain water per ha per year, measured
as the difference between the amount of water entering the
catchment and discharge. The result was a substantial reduction
in urban runoff volume and considerable improvement of the
quality of runoff water (Valtanen et al., 2014a,b). In these cities,
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about 70–80% of rainfall occurs in low intensity (<10 mm)
events, which are the conditions under which adding pervious
areas of soil to cities is impactful for stormwater mitigation.
Consequently, urban forests and other greenspaces with trees
and permeable soils can help ameliorate the modified urban
microclimate and hydrological cycle and mitigate heat and
flooding locally.

THE SPATIOTEMPORAL DYNAMICS OF
URBAN FORESTS

Cities are limited in their extent globally. Space allocated to
urban trees is also constrained. Urban spatial configurations that
have been designed for dense human populations, movement,
and social interactions leave limited options for accommodating
biophysical processes like water uptake and evapotranspiration,
nutrient uptake, wet and dry deposition, gas exchange, and C
sequestration at the scale required to offset urban pollution.
Hence cities are difficult to retrofit to accommodate greening
strategies even as we discover their specific value. For example,
it would be quite difficult, if not impossible, to reduce stormwater
runoff by 50% using green infrastructure in a city that is 90%
impervious, particularly if we can only allocate 1–2% of the land
surface to greening strategies.

The spatial scale and distribution of urban greenspace reflects
a range of socioeconomic dynamics and historical planning
decisions made by city governments (Grove et al., 2014; Locke
et al., 2020). Recent studies investigating the socioeconomic
determinants of urban vegetation have predominantly shown
a correlation between wealth and both vegetation cover and
diversity, although this relationship is far from universal and may
depend on other factors (Kendal et al., 2012; Szantoi et al., 2012;
Schwarz et al., 2015; Watkins et al., 2017; Kuras et al., 2020).
Trees may also present liabilities like tree falls, root damage to
infrastructure, pollen allergies, and maintenance concerns. These
disservices will necessarily constrain the location of trees in the
built environment (Pataki, 2021). Temporal dynamics, including
tree demographics, host-pathogen interactions, extinctions, and
other population and evolutionary processes also influence the
extent to which tree planting efforts influence urban conditions.
A multitude of both anthropogenic and biophysical factors
influence tree planting rates, removal, and mortality at the
landscape scape, and some cities and neighborhoods are on
trajectories of decreasing tree density and canopy cover (Roman
et al., 2014; Ossola and Hopton, 2018; Hilbert et al., 2019).
Low species diversity, poor site conditions, and planting palettes
that are no longer suited to changing climatic conditions
and pathogens present additional vulnerabilities for urban tree
populations (Laćan and McBride, 2008; Berland and Elliott,
2014; Ordóñez and Duinker, 2014). There is increasing evidence
of urban-driven evolutionary change in urban forest dynamics
that interacts with ecosystem function over the long term
(Johnson and Munshi-South, 2017). For example, evolutionary
changes in traits that influence C cycling such as plant root
traits, stomatal conductance, leaf nutrient stoichiometry, and soil
microbial C cycling traits, have been shown to have significant

implications for C sequestration (Monroe et al., 2018). While
evolutionary processes may operate at long time scales for
long-lived organisms such as trees, they have been shown to
be very rapid for the microbial communities that influence
plant fitness (Lau and Lennon, 2012). Both demographic and
evolutionary processes are highly complex in urban forests that
contain varying proportions of planted and naturally dispersed
and regenerated trees (Nowak, 2012). Therefore, urban greening
strategies must account for both spatial and temporal dynamics of
planted urban trees and urban forest patches in defining planting
strategies and management targets.

URBAN FORESTS AND HUMAN HEALTH
AT THE SCALE OF URBAN TREE
PLANTING

Maintaining urban tree populations at small spatial scales appears
to significantly influence human health. Recent reviews have
utilized the World Health Organization’s definition of health to
evaluate the effects of either trees specifically, or greenspace more
generally, on physical, mental, and social well-being (Nesbitt
et al., 2017; van den Bosch and Ode Sang, 2017; Kondo et al., 2018;
Wolf et al., 2020). Several aspects of physical health have been
shown to be correlated with aspects of urban "greenery," such as
mortality, longevity, and heart rates, and weight changes (Nesbitt
et al., 2017; Kondo et al., 2018). There are also numerous studies
relating aspects of mental health to the prevalence of vegetation
(Bratman et al., 2012; Nesbitt et al., 2017; Houlden et al.,
2018). Notably, some studies distinguish the effects of trees, or
species of trees, from other vegetation and some do not (Nesbitt
et al., 2017). As a result, the precise mechanisms linking trees,
biodiversity, and the different components of health: physical,
mental, and social, remain uncertain (Lee and Maheswaran, 2010;
Aerts et al., 2018). However, mechanistic responses of human
health to actual and perceived biodiversity have been generally
categorized as those that cause or reduce harm, and restore or
build capacity for physical and mental health (Marselle et al.,
2021). Research has shown that the amount of greenspace, as well
as the distance urban dwellers have to travel to that greenspace,
can influence the benefits of trees on public health (Annerstedt
van den Bosch et al., 2016), but few studies have attempted to
understand the type and amount of exposure to trees that confers
health benefits (Shanahan et al., 2015; Jiang et al., 2016; Zhang
et al., 2017). Finally, the relationship between the prevalence and
types of urban trees and social health remains largely unexplored
(Dinnie et al., 2013; Nesbitt et al., 2017; Jennings and Bamkole,
2019), but may be impactful at small spatial scales and through
particular configurations, such as community gardens and the
associated place attachment (Petrovic et al., 2019).

The health effects of trees may be a critically important aspect
of urban forest benefits, even in dense cities with relatively
limited space to support urban forests. This is because it is very
possible that exposure to small plantings, parks, and views of
urban forests may be effective in improving human health. That
is, unlike pollution mitigation, small-scale plantings may have
large impacts on health. Though some urban residents avoid
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large wooded areas due to safety concerns (Klein and Felson,
2021), many make varied use of small greenspaces (Peschardt
et al., 2012). Indeed, some urban residents are highly deprived
of virtually any access to nature, such that even modest additions
have been shown to have measurable positive effects (Nadkarni
et al., 2017). These social and public health functions of small
greenspaces have been further highlighted by the COVID-19
pandemic, which in many cities restricted recreation to small
local parks (Kleinschroth and Kowarik, 2020). Similar to the
call for "dose-response" relationships between exposure to nature
and human health (Jiang et al., 2016), there is a great need
for additional quantitative and qualitative studies of the health
impacts of urban tree plantings at different spatial and temporal
scales, applicable to the realistic conditions and constraints of
adding and maintaining trees in dense cities.

DISCUSSION

Going forward, a central question across many disciplines and
stakeholders is: “What types of urban spaces promote social,
economic, and environmental sustainability and prosperity?”

As cities struggle to address myriad social, economic, and
environmental problems, it is important to identify the specific
social and environmental goals that can be achieved by the
location, density, and extent of tree planting. Hence, the
spatiotemporal dimensions of urban forest dynamics are a critical
research uncertainty. For some ecosystem services, such as C
sequestration, the ecological dynamics of C uptake by trees are
well understood, but the direct impacts on atmospheric CO2
concentrations and climate depend on the spatial extent of
urban trees, their demographic and population dynamics, and
the interactions between productivity, heterotrophic respiration,
and soil C dynamics at large spatial and temporal scales.
Conversely, the reciprocal impacts of the atmosphere, including
urban pollution and heat, on urban forest ecological processes
are also in need of additional empirical measurements (Meineke
et al., 2016). For other ecosystems services, the interactions
between tree and soil processes and the built environment will
determine the net influence of urban forests. For example, the
effects of buildings, street design, and urban morphology on
atmospheric dispersion, and their interactions with tree canopies,
play a significant role in atmospheric pollutant concentrations
(Han et al., 2020). Integrating trees into the built environment

FIGURE 2 | The MillionTrees NYC Initiative uses the model of designed experiments to engage ecologists and designers in the creation of a long term and
large-scale urban green infrastructure research program. Adapted from Felson et al. (2013a,b).
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may also facilitate interventions to increase active transportation
(Tsai et al., 2019; Young et al., 2020). Overall, we conclude that
is difficult to significantly offset urban GHG and atmospheric
pollution with localized tree planting, given the magnitude of
emissions in modern cities. However, trees have localized effects
on climate, thermal comfort, human health, and habitat for other
species that may be impactful at the site scale.

The public health impacts of urban trees have been
particularly difficult to characterize because collaborative,
interdisciplinary approaches are needed to ascertain the
nature of these impacts. Assessing the effects of planting
interventions may require techniques such as virtual and/or
real life walks or progressions through different types and
scales of landscape designs (Berman et al., 2008). Browning
et al. (2020) suggested that a lack of randomized treatments
and experimental controls has hampered our understanding
of the influence of natural landscapes on cognitive and
mental health. There have also been disciplinary gaps
and barriers between urban ecological and forestry studies
and health scientists that continue to limit progress in
linking trees and health (Eisenman et al., 2019). The next
phase of planning and managing tree planting programs
will require collaborative teams of natural scientists, social
scientists, and practitioners from the health sciences including
epidemiologists, ecopsychologists, and clinicians to evaluate the
specific dimensions—including forest composition, biodiversity,
soil health, and spatiotemporal dynamics—that interact
with human health.

The study of socioecological interactions in cities provides
a framework for generating and organizing place- and site-
specific data across the many disciplines involved in planning
and designing urban spaces. Furthermore, the growing field of
ecological design and urban-focused landscape ecology provides
hands-on approaches to planning and managing urban flora
and fauna (Beck, 2013; Felson et al., 2013a, Figure 2). The
COVID-19 pandemic has provided an unparalleled opportunity
to re-configure urban landscapes in ways that integrate trees,
forest patches, and green corridors into the built environment
with evidence-based ecological designs. There may be unique
opportunities to expand tree canopies in abandoned or re-
zoned urban lands if remote work becomes commonplace on a

permanent basis, causing redistributions of commercial and/or
residential land uses (Boyd, 2020; Eltarabily and Elghezanwy,
2020; Ferrini and Gori, 2021). There are previous examples
of "urban shrinkage" that resulted in reconceptualized urban
greenspaces, open space networks, or forest regrowth (Kowarik
and Körner, 2005; Nassauer and Raskin, 2014; Frazier and
Bagchi-Sen, 2015; Haase et al., 2018). Where this is feasible, cost
effective relative to other land use priorities, and implemented
with resources to maintain tree planting over decadal timescales,
extensive urban forests have observable environmental and
social benefits. However, cities have competing demands for
space that include pressing human needs for affordable housing,
renewable energy generation, and food production, among
other uses. Nevertheless, we suggest that even small-scale
and temporary tree planting may have specific benefits. To
maximize these benefits, it is essential to establish collaborative
teams working through the design process to influence the
direction of the built environment (Felson et al., 2013b).
Focusing on comprehensive and phased planning alongside
targeted site design and monitoring for the specific attributes
of trees that contribute to climate adaptation and human
health may be most effective for integrating urban forests into
sustainability strategies.
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