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Sexual reproduction is nearly ubiquitous in the vertebrate world, yet its evolution and
maintenance remain a conundrum due to the cost of males. Conversely, asexually
reproducing species should enjoy a twofold population increase and thus replace sexual
species all else being equal, but the prevalence of asexual species is rare. However,
stable coexistence between asexuals and sexuals does occur and can shed light on
the mechanisms asexuals may use in order to persist in this sex-dominated world.
The asexual Amazon molly (Poecilia formosa) is required to live in sympatry with one
of its sexual sperm hosts –sailfin molly (Poecilia latipinna) and Atlantic molly (Poecilia
mexicana)—and are ecological equivalents to their host species in nearly every way
except for reproductive method. Here, we compare the visual lateralization between
Amazon mollies and sailfin mollies from San Marcos, Texas. Neither Amazon mollies
nor sailfin mollies exhibited a significant eye bias. Additionally, Amazon mollies exhibited
similar levels of variation in visual lateralization compared to the sailfin molly. Further
investigation into the source of this variation –clonal lineages or plasticity—is needed to
better understand the coexistence of this asexual-sexual system.
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INTRODUCTION

Sexual reproduction is practiced by 99.9% of species—either exclusively or at one point in
their life—despite the 2-fold cost of sex (Avise, 2008). Historical arguments suggest that this
cost is more than offset by the benefit to sex that accrues from greater genetic variance
(Williams, 1975; Maynard Smith, 1978; Maynard Smith and Szathmary, 1999). Recent studies
further highlight the importance of breaking apart genetic associations during recombination;
separating deleterious alleles from beneficial alleles, as well as spreading beneficial alleles across
a wide genomic background increases the efficiency of selection and adaptation to a capricious
environment (Barton and Charlesworth, 1998; Otto, 2009; Sharp and Otto, 2016; McDonald
et al., 2016). Indeed, empirical studies now document the long-term, evolutionary benefit held
by sexually reproducing populations compared to asexually reproducing populations (Poon
and Chao, 2004; Cooper, 2007; Becks et al., 2012; Gray and Goddard, 2012; McDonald et al.,
2016). Despite this, some asexual species persist (Bi and Bogart, 2010; Fradin et al., 2017;
Warren et al., 2018), even to the point of being named “ancient” (Heethoff et al., 2009; Schön
et al., 2009). Of particular interest are the forms of asexual reproduction—gynogenesis and
hybridogenesis—that require the asexual and sexual species to coexist along much of their
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range (reviewed in Avise, 2008; gynogenetic: Poecilia formosa,
Menidia clarkhubbsi, Phoxinus eos-neogaeus,Cobitis elongatoides-
taenia, Fundulus heeroclitus; hybridogenetic: Poeciliopsis
monacha-lucida, Rana esculenta). The aforementioned studies
investigated asexuals and sexuals in isolation, however, further
investigations are needed into how asexual species can persist
alongside sexual species in light of the benefits of sex.

Coexisting asexual and sexual species often mediate direct
competition through niche partitioning, in which asexuals
occupy a narrow portion of the habitat or resource range of
their host species (MacArthur and Pianka, 1966; Vrijenhoek,
1978; Fussey and Sutton, 1981; Schenck and Vrijenhoek, 1986;
Case, 1990; Rist et al., 1997; Martins et al., 1998; Negovetic
et al., 2001). However, not all coexisting species exhibit niche
separations, so their coexistence proposes even more of a
dilemma. One such species complex is the Amazon and sailfin
molly system. The Amazon molly (Poecilia formosa) is an asexual
fish originating from a single hybridization event between an
Atlantic molly female (P. mexicana) and sailfin molly male
(P. latipinna) over 100,000 years ago in Tampico, Mexico
(Schartl et al., 1995b; Stöck et al., 2010; Warren et al., 2018
but see Alberici da Barbiano et al., 2013). Amazon mollies
reproduce via gynogenesis –females usually require the sperm
of a closely related species to trigger embryogenesis, but the
paternal genome is usually excluded (Schlupp, 2005; occasional
paternal introgression discussed in Schartl et al., 1995a). This
type of reproduction requires that they occupy the range
of one of their host species, thus placing them in direct
competition. Indeed, the Amazon molly now covers a broad
range of habitats from Rio Tuxpan, Mexico to the Nueces
River, Texas USA –as well as introduced locations in central
Texas, always sympatric with one of its sexual hosts (Schlupp
et al., 2002). Previous investigations into this asexual-sexual
system found few significant differences among morphological
traits, physiological traits, and ecological traits (Table 1). Their
continued coexistence with their sexual host may rely on genetic
and phenotypic variation. This variation may occur at the
population level, with genetic variation partitioned amongst
different clonal lineages (Lampert et al., 2006; Stöck et al.,
2010; Alberici da Barbiano et al., 2013; Warren et al., 2018).
Phenotypic variation can also result from behavioral plasticity.
Cognitive behaviors are often the most plastic phenotype (Bell
et al., 2009). Plasticity in asexual species may provide them with
a broad range of responses to environmental change and thus
assist in persistence.

In this study we focus on cognitive behaviors –which is lacking
in previous comparisons—to determine if average performance
or variation in performance could shed light on the coexistence
of the asexual Amazon molly with its sexual host. We used a
well-studied cognitive task—visual lateralization (Clayton, 1993;
McGrew and Marchant, 1999; Pascual et al., 2004; Rogers et al.,
2004; Vallortigara and Rogers, 2005; Rogers and Vallortigara,
2008). Visual lateralization is known to vary based on the
stimulus (Bisazza et al., 1997a,b, 1998, 1999; De Santi et al., 2001;
Sovrano et al., 2001; Fuss et al., 2019), environmental pressures
such as predation (Brown et al., 2004; Ferrari et al., 2015),
and density dependent selection (Ghirlanda and Vallortigara,

2004; Nakajima et al., 2004). Visual lateralization is present
in many poeciliid species in response to some but not all
stimuli, including the two species used in this study: Girardinus
falcatus, Gambusia holbrooki, G. nicaraguensis, Brachyrhaphis
roseni (Bisazza et al., 1997b), Poecilia latipinna, P. formosa,
P. mexicana, P. reticulata (Fuss et al., 2019). Additionally,
eye bias is heritable for one poeciliid species (Bisazza et al.,
2000). We chose to examine lateralization using a mirror
image scrutiny test (Sovrano et al., 1999; De Santi et al.,
2001). The mirror image scrutiny test assesses the preference
for left- or right-eye use when examining a reflection. Here
we compare eye use between the asexual Amazon molly and
sexual sailfin molly.

MATERIALS AND METHODS

Sampling was approved by Texas State University (permit
04-523-691) and all animal procedures were approved by
the University of Texas Institutional Animal Care and Use
Committees (AUP-2018-00089).

Specimen
We collected sailfin and Amazon mollies from San Marcos, Texas
(29.89,−97.93) in August 2018 and 2019 and brought them back
to the lab at the University of Texas in Austin. We separated
species into 37-liter tanks with approximately eight individuals
to a tank; male sailfin mollies were included in this total and
the ratio of males to females was balanced for both species.
Each tank contained gravel and air filtration and set to a 14:10
light dark schedule. All fish were fed twice daily ad libitum with
commercial fish flakes (Tetramin, Germany). We injected unique
elastomer tags into fish at least 72 h prior to experimentation, to
track identity throughout experimentation. We tested 25 female
sailfin mollies and 27 Amazon mollies in June–August 2019 (2018
collection specimen, both species) and June 2020 (2019 collection
specimen, both species). Prior to experiments, we removed fish
from communal tanks and placed them individually in 3-L
isolation tanks for 24 h.

Apparatus
The experiment consisted of two identical tanks (length × width
× height: 41 × 21 × 26 cm) to control for any tank effect.
Tanks contained 20 cm high Acrylic mirrors on the two longer
walls and white corrugated plastic board completely covering
the two shorter walls. Black corrugated poster board covered the
exterior of the long walls to prevent visuals of the room. Blue
filter (Marineland magnum bonded pad filter media) covered
the bottom of the tank and each tank was filled with 15 cm of
treated water, aerated prior to trial. A camera (Microsoft lifecam
cinema, 720p HD) attached to the center of an aquarium light
(NICREW deluxe LED aquarium light, full spectrum 18-Watt,
1,200 LM, 7,500 K) was positioned above each tank using a desk
clamp mount; the clamp mount was visible from the tank so we
positioned it on the right for one tank and on the left for the
other tank to account for any side bias. An isolation zone created

Frontiers in Ecology and Evolution | www.frontiersin.org 2 February 2021 | Volume 9 | Article 605943

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-605943 February 5, 2021 Time: 16:59 # 3

Connelly and Ryan Phenotypic Variation in Asexual Fish

TABLE 1 | Summary table of all traits previously compared between the Amazon molly and its sexual host.

Trait Species compared Results Source

Fecundity Amazon molly, sailfin molly, Atlantic molly Equivalent fecundities among all species. Schlupp et al., 2010

Juvenile survival Amazon molly, sailfin molly Equivalent survival rates. Hubbs and Schlupp,
2008

Salinity tolerance Amazon molly Equivalent salinity tolerance to those seen in
sailfin mollies.

Schlupp et al., 2002

Thermal tolerance Amazon molly vs. sailfin molly Amazon mollies had higher minimum critical
temperatures*.

Fischer and Schlupp,
2009

Morphology (dentition) Amazon molly vs. sailfin molly vs. Atlantic molly Number of upper and lower teeth differs
significantly between all species*.

Lewis et al., 1999

Morphology (visual sensitivity) Amazon molly vs. sailfin molly vs. Atlantic molly Amazon mollies are heterozygous at all opsin
loci, with an expanded sensitivity compared to
either parental species*.

Sandkam et al., 2013

Parasite load Amazon molly vs. Atlantic molly Equivalent parasite loads between species. Gösser et al., 2019

Amazon molly vs. sailfin molly Equivalent parasite loads between species. Tobler et al., 2005

Foraging efficiency Amazon molly vs. sailfin molly Equivalent foraging efficiencies; Sailfin mollies
with lower body condition in intraspecific
treatments*.

Alberici da Barbiano
et al., 2014

Amazon molly vs. sailfin molly Equivalent foraging rates in summer treatments;
Amazon mollies with higher foraging rates in
winter treatments*.

Fischer and Schlupp,
2010

Amazon molly vs. sailfin molly Equivalent foraging efficiencies in conspecific
treatments; Amazon mollies with lower foraging
efficiency in heterospecific treatments*.

Alberici Da Barbiano
et al., 2010

Amazon molly vs. sailfin molly vs. Atlantic molly Equivalent foraging efficiencies. Scharnweber et al.,
2011b

Foraging preferences Amazon molly vs. sailfin molly vs. Atlantic molly Equivalent dietary resource use. Scharnweber et al.,
2011

Food stress Amazon molly vs. sailfin molly Neonate survival unaffected by variable
temperatures; Amazon mollies with lower
neonate survival under high food stress*.

Tobler and Schlupp,
2010

Boldness Amazon molly vs. sailfin molly Equivalent performances in exploration of a
new environment, latency to feed in a new
environment, and recovery time after a
simulated predation event.

Scharnweber et al.,
2011a

Significant differences between species denoted by an asterisk (*).

from gray PVC (diameter 10 cm) affixed with a plastic lid was
used for each trial.

Procedure
This procedure follows De Santi et al. (2001). Each fish was
randomly assigned an experimental tank order. We removed the
fish from isolation using a small fish net and placed into a beaker
with approximately 300 mL of water. We then gently poured the
fish into the isolation zone positioned in the center of the tank
for a 5 min acclimation period. Recording (Debut video capture,
NCH software) started at the end of acclimation after removing
the isolation zone and lasted for a 10 min period. A second trial
immediately followed in the other tank. We measured standard
length prior to returning the fish to the isolation tank. We
subsequently drained, cleaned, and refilled both testing tanks
with treated water in preparation for the next test subject.

Videos were scored using BORIS (version 7.6). The scoring
code consisted of a left ocular use, right ocular use, or no direct
ocular use. See Figure 1 for how ocular use was determined. The
video was transformed into a series of frames occurring every

0.1 s. Scoring began at the 10 s mark and continued every 2 s until
the 10 min mark. We saved the results for each individual tank as
well as combined both tank results for total ocular use (referred
to as “combined” in subsequent analyses).

Analyses were performed in R studio 1.1.456. We calculated
each fish’s laterality index score for tank A, tank B, and
combined video results following Bisazza et al. (1997b): (left-
eye use—right-eye use)/(left-eye use + right-eye use) ∗ 100;
positive values would indicate a preference for left-eye use and
negative values would indicate preference for right-eye use. We
performed a paired t-test test to determine if the laterality index
score differed significantly between tanks, thus detecting any
tank effects. A two-tailed one-sample t-test determined within
species eye bias with the null assumption of a zero index score.
Additionally, we calculated Pearson’s correlation coefficients to
determine the repeatability of eye use across trials in both
species. We used a t-test to determine differences in mean eye
bias between the species as well as a t-test examining overall
laterality; overall laterality is based on the absolute value of the
index scores to indicate the degree to which each species is
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FIGURE 1 | Qualifications for calculating laterality index based on ocular use with closest mirror. LE is left eye use, and RE is right eye use. The gray fish in the middle
indicates no specific eye use.

FIGURE 2 | Boxplots (— , median; � , 25–75th percentile; outliers in dark gray; raw data in light gray) of laterality index scores across tanks for both species. Eye
use did not significantly differ between tank A and B for either Amazon mollies or sailfin mollies (paired t-tests).
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lateralized, regardless of direction. Lastly, we performed a two-
tailed F-test on index scores to determine if variation in eye
preference for sailfin mollies was greater or less than variation
in Amazon mollies.

RESULTS

All raw data can be found in the Supplementary Material.
Normality was confirmed using a Kolmogorov-Smirnov test for
both species (sailfin: D = 0.19, p = 0.28; Amazon: D = 0.23,
p = 0.10). We found no clear difference in eye laterality between
tanks A and B for each species (paired t-test: sailfin: df = 24,
p = 0.61, 95% CI -11.67—7.00; Amazon: df = 26, p = 0.24, 95% CI
-16.24—4.23; Figure 2). Therefore, we used the laterality index
score calculated from combined A and B video results for all
subsequent analyses (excluding Pearson’s correlation).

Ocular preference within species was determined as a
significant deviation from a zero laterality index score. Neither
sailfin mollies nor Amazon mollies showed a significant eye
bias during mirror image scrutiny (one-sample two-tailed t-test:
sailfin: p = 0.33, mean = 2.40, 95% CI −2.62—7.42; Amazon:
p = 0.63, mean = −1.21, 95% CI −6.34—3.92; Figure 3). There
was also no significant correlation between eye use in tank A and

tank B for either species (Pearson’s correlation coefficient: sailfin:
R = 0.05, p = 0.81; Amazon: R = -0.005, p = 0.98). Sailfin mollies
did not clearly differ in mean eye preference when compared to
Amazon mollies (two-tailed t-test: df = 49.99, p = 0.30, 95% CI
−3.39—10.61). Additionally, there was no clear difference in the
degree of lateralization between Amazon and sailfin mollies (two-
sided t-test: df = 49.70, p = 0.81, 95% CI −4.55—5.80). Lastly,
we did not find a significant difference in variation between the
species (F-test: F = 0.88, p = 0.76; Figure 4).

DISCUSSION

Asexual species are often touted as evolutionary dead ends
due to mutation accumulation and the lack of recombination
(Muller, 1964; Maynard Smith, 1978; Lynch et al., 1993; Lynch
and Gabriel, 2006), yet some asexual species persist despite
these costs (Heethoff et al., 2009; Schön et al., 2009; Bi and
Bogart, 2010; Fradin et al., 2017; Warren et al., 2018). The
asexual Amazon molly lives in direct competition with its
sexual counterpart, the sailfin molly and they appear to be
ecological equivalents in morphology, physiology, and ecology
(Table 1). Our investigation into cognitive behavior, specifically
visual lateralization, shows no significant difference in average

FIGURE 3 | Frequency of laterality index scores among Amazon and sailfin mollies. The red dashed line represents the group mean. Variation in laterality index
scores was not clearly different between Amazon and sailfin mollies.
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FIGURE 4 | Boxplots (, median; �, 25–75th percentile; outliers in dark gray; raw data in light gray) of laterality index scores for Amazon and sailfin mollies. Neither
species exhibited a significant eye bias (one-sample t-tests), nor did the species clearly differ in their average laterality index score (two-sample t-tests).

performance or variation between the Amazon molly and sailfin
molly. While our results showing similar average performance are
in line with previous comparative studies between these species,
our variation results highlight a potential mechanism for the
persistence of the asexual Amazon molly.

Neither species clearly expressed visual lateralization in this
study. Organisms with laterally positioned eyes discriminate
conflicting stimuli through separate but parallel processing
(Rogers, 2000), increasing their ability to distinguish between
two stimuli [food vs. non-food (Vallortigara et al., 1998;
Güntürkün et al., 2000) and food vs. predator (Güntürkün
et al., 2000; Rogers, 2000; Rogers et al., 2004)]. Furthermore,
mixed visual lateralization in schooling fish determine the
fishes’ position within the school and overall school cohesion
(Dadda and Bisazza, 2006; Bibost and Brown, 2013). A number
of studies using poeciliid species found a clear eye bias,
with female poeciliids commonly exhibiting a left-eye bias for
conspecific stimuli and a right-eye bias for predator or male
stimuli (Bisazza et al., 1997a,b, 1998, 1999; De Santi et al.,
2001; Fuss et al., 2019). Therefore, the type of stimulus used,
particularly the social stimulus, can affect lateralization. Fuss
et al. (2019) found a statistically significant left-eye bias for
female sailfin mollies and Amazon mollies when viewing a
female group stimulus, although no such bias when viewing
a single female. While most fish are not thought to recognize

their own reflection (Kohda et al., 2019), the lack of visual
bias and similar variation in both species of our study could
indicate a lack of motivation to perform lateralization for
the mirror reflection meant to represent a single female. The
lack of motivation to a mirror image may be specific to
the species used here, as previous studies using the mirror
image scrutiny setup obtained lateralized responses from other
fish species (Sovrano et al., 1999; De Santi et al., 2001).
Further testing with different stimuli might show the degree
to which the social environment influences visual lateralization
for both species. Predation can also influence the strength and
direction of lateralization: high-predation environments induced
a strong lateralized response to novel and predator stimuli in
the poeciliid Brachyraphis episcopi but no clear lateralization
appeared for B. episcopi from low-predation environments
(Brown et al., 2004). While predatory species are present at
our San Marcos site (personal observation), the degree of
predation and its influences on visual lateralization in this
population are unknown.

Previous comparative studies, including one on visual
lateralization (Fuss et al., 2019), focus on the average performance
between the Amazon molly and sailfin molly. Here we also focus
on the variation in behavior; variation in asexual populations may
indicate a potential mechanism to circumvent the classic costs of
this reproductive style and thus perpetuate their coexistence with
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a sexual species. The Amazon and sailfin mollies of our study
exhibited similar levels of variation in the visual lateralization
task. One way to obtain variation in an asexual population
is through clonal lineages (Schartl et al., 1995b; Stöck et al.,
2010; Alberici da Barbiano et al., 2013; Warren et al., 2018).
Populations of Amazon mollies may contain multiple clonal
lineages (Lampert et al., 2006; Stöck et al., 2010; Gösser et al.,
2019); it is currently unknown how many clonal lineages existed
or developed since the introduction of Amazon mollies to our
study site in the 1950s (Schlupp et al., 2002). However, it is
possible that our sample contains individuals from multiple
clonal lineages thus leading to higher-than-expected levels of
variation. Two invertebrate studies investigating morphological
variation similarly found equal or higher levels of variation
in clonal populations compared to the sexual populations
(Oliver and Herrin, 1976; Atchley, 1977). However, neither study
addressed the effects of multiple clonal lineages on the variation
seen within these wild populations. Studies that account for
clonal type or lineage find that the asexual species contain less
phenotypic variation than the sexual species, and variation within
the asexual species is partitioned among clonal lines (Parker,
1979; Vrijenhoek, 1984; Cullum, 2000; however see Doeringsfeld
et al., 2004 and discussion below). Further investigation into the
clonal lineages potentially present in our sample is underway.

Asexual populations can also achieve variation via plastic
responses to environmental characteristics. Doeringsfeld et al.
(2004) found similar levels of morphological variation in one
clonal lineage (i.e., one genotype) of asexual dace (Phoxinus eos-
neogaeus) as the sexual host species. They attributed this finding
to the plasticity of the asexual genome, thus allowing the asexual
species to cohabit the broad range of their hosts. Indeed, further
work on this asexual complex showing epigenetic variation
associated with pH tolerance rather than genetic variation
emphasizes the role of environmentally induced plasticity in the
maintenance of asexual-sexual systems (Massicotte and Angers,
2012). The similar levels of variation and lack of repeatability
between trials may be the result of plastic responses to the rearing
or testing environment; a previous study with Amazon mollies
highlights the potential of the rearing environment to invoke
plasticity in behavior (Bierbach et al., 2017). It is clear future work
investigating the coexistence of the Amazon molly with its sexual
host must include the variance brought about by clonal lineages
and environmentally induced plasticity.
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