
ORIGINAL RESEARCH
published: 26 July 2021

doi: 10.3389/fevo.2021.614374

Frontiers in Ecology and Evolution | www.frontiersin.org 1 July 2021 | Volume 9 | Article 614374

Edited by:

Dapeng Wang,

University of Oxford, United Kingdom

Reviewed by:

Xiaofan Zhou,

South China Agricultural University,

China

Rayan Chikhi,

Centre National de la Recherche

Scientifique (CNRS), France

*Correspondence:

Yukihiko Toquenaga

toque@biol.tsukuba.ac.jp

†Present address:

Takuya Gagne,

Alphadrive Co., Ltd., Tokyo, Japan

Specialty section:

This article was submitted to

Phylogenetics, Phylogenomics, and

Systematics,

a section of the journal

Frontiers in Ecology and Evolution

Received: 06 October 2020

Accepted: 01 July 2021

Published: 26 July 2021

Citation:

Toquenaga Y and Gagné T (2021) The

Evidential Statistics of Genetic

Assembly: Bootstrapping a Reference

Sequence.

Front. Ecol. Evol. 9:614374.

doi: 10.3389/fevo.2021.614374

The Evidential Statistics of Genetic
Assembly: Bootstrapping a
Reference Sequence
Yukihiko Toquenaga 1* and Takuya Gagné 2†

1 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan, 2Graduate School of Biological

Sciences, University Tsukuba, Tsukuba, Japan

The reference sequences play an essential role in genome assembly, like type specimens

in taxonomy. Those references are also samples obtained at some time and location

with a specific method. How can we evaluate or discriminate uncertainties of the

reference itself and assembly methods? Here we bootstrapped 50 random read data

sets from a small circular genome of a Escherichia coli bacteriophage, phiX174, and

tried to reconstruct the reference with 14 free assembly programs. Nine out of 14

assembly programs were capable of circular genome reconstruction. Unicycler correctly

reconstructed the reference for 44 out of 50 data sets, but each reconstructed contig of

the failed six data sets hadminor defects. The other assembly software could reconstruct

the reference with minor defects. The defect regions differed among the assembly

programs, and the defect locations were far from randomly distributed in the reference

genome. All contigs of Trinity included one, but Minia had two perfect copies other than

an imperfect reference copy. The centroid of contigs for assembly programs except

Unicycler differed from the reference with 75bases at most. Nonmetric multidimensional

scaling (NMDS) plots of the centroids indicated that even the reference sequence was

located slightly off from the estimated location of the true reference. We propose that

the combination of bootstrapping a reference, making consensus contigs as centroids

in an edit distance, and NMDS plotting will provide an evidential statistic way of genetic

assembly for non-fragmented base sequences.

Keywords: NGS, PhiX174, consensus sequences, bootstrapping, nonmetric multidimensional scaling

1. INTRODUCTION

Assume that you got multiple non-fragmented base sequences assembled from data generated
with next-generation sequencing (NGS) or more advanced methods. We further assume that
we do not have available reference sequences for the material. QUAST (http://bioinf.spbau.ru/
quast) and similar tools would recommend choosing longer sequences as plausible ones. But the
length of the sequence itself does not guarantee how the sequences resemble or correspond to
the correct sequence. Here we propose an evidential statistical method for inferring true sequence
by bootstrapping and Nonmetric Multidimensional Scaling (NMDS) plotting with the assembled
non-fragmented sequences.
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1.1. Background
In evidential statistics, we never seek the true model for a specific
data set. Instead, we choose models supported by the given
data set (Edwards, 1992; Royall, 1997). The information-theoretic
approach also neglects to chase the true model for increasing the
prediction ability of selected models (Burnham and Anderson,
1998; Konishi and Kitagawa, 2004; Akaike et al., 2007). Even in
Bayesian statistics, the true model is believed to be included in
their models with parameter distributions. But the true model for
a specific data set still plays an essential role in biology using base
sequence data.

DNA or RNA sequencing is rather conservative. It relies on
reference sequences often obtained with decades-old sequence
techniques (e.g., Sung, 2017). Assume that you get short segments
of sequences (called “reads”) with NGS methods. Then you have
to align them correctly for constructing the whole sequence.
Reads are inherently erroneous, and you will have to use several
approaches to reconstruct the entire sequence. The reconstructed
sequences could be divergent. But those that resemble the
reference are promising candidates. Here the reference sequences
play the role of type specimens in taxonomical identification
(Ballouz et al., 2019).

But it is well known that different assembly programs return
different assembly results for a given read data (e.g., Salzberg
et al., 2012). Researchers use reference sequences or check
annotation of known genes for correcting resultant sequences
(Sung, 2017; Sohn and Nam, 2018). High variation in sequence
results among assembly programs is mainly caused by applying
only heuristic approaches, such as the base-by-base approach,
de Bruijn graph, and String graph (Sung, 2017; Sohn and Nam,
2018). Random searching is the core for those approaches, but
somehow some assembly programs return the same contig data
(both contents and order of sequences) for a given read data set.
Others return different contigs for a given data in multiple trials.

For example, the insect mitochondrial genome is a compact
circular molecule typically 15–18 kb in size (Cameron,
2014). Recently two genome sequences of mitochondria of
Acanthoselides obtectus were proposed: one with 16,130 bp
(Yao et al., 2017) but the other with 26,613 bp (Sayadi et al.,
2017). The latter sequence includes repetitive spacer sequences
(Figure 1). Usually, repetitive or duplicated sequences are targets
to collapse by assemblers. But the researchers published the
longer mitochondria claim that they used a new and reliable
long-read technique, and hence, the repetitive sequences are real
(Sayadi et al., 2017). From now on, we will have to deal with the
two references for mtDNA of A. obtectus.

What will happen if the reference sequence is not reliable
or not exist at all? How can we choose promising ones among
divergent reconstructed sequences? Conventionally, researchers
believe that the reference sequences are correct. But the
references are also samples obtained at some time and location
with a specific method. How can we measure the reliability of
a reference sequence? Conversely, can we measure the reliance
of an assembly method by assembling random reads generated
with the reference sequence itself? The random read generation
is what we call the bootstrapping of the reference sequence.
We propose that bootstrapping can evaluate and characterize

FIGURE 1 | Two schematic mtDNA of Acanthoscelides obtectus with different

lengths. There are short (1) and long (2) long intergenic spacers (LIGS1 and

LIGS2) in the longer one. Other than the spacers, two mtDNAs are identical.

FIGURE 2 | A schematic genome structure and gene sizes of phiX174. There

are 11 genes, and black regions are intergenic spacers. The arrow indicates

the origin. Note that there is a 4-base overlap between genes A and C.

assembly programs by using distance measurements that play
essential roles in the evidential statistics (Lindsay, 2004).

1.2. Preliminary Analysis With the phiX174
Reference
We tried to reconstruct the genome sequence of a very simple life,
phiX174, an Escherichia coli bacteriophage. (Figure 2). Several
read data sets for phiX174 are available on the internet (e.g.,
https://github.com/gigascience/galaxy-bgisoap/tree/master/
test-data/phiX174). In our preliminary examination with one
of the sample read data, 13 free and frequently used assembly
programs (all programs in Table 1 except Unicycler) fairly well
reconstructed the reference sequence; defect proportion was
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TABLE 1 | List of assembly programs and their characteristics.

Name Version v-status rseed Method Circular No. of copy

A5miseq 20160825 v Doc S,HB Yes 1

ABySS 2.1.0 v Time HB No –

Fermi 1.1 v None S Yes 1

IDBA 1.1.3 v Self HB Yes 1

Megahit 1.1.3 v Fixed HB Yes 1

Minia 2.0.7 c Time HB Yes 3

Mira 4.9.6 v* Time BB Yes 1

Platanus 2.2.2 c None HB Yes 1

Ray 2.3.1 v Time HB No –

SOAPdenovo 2.04.r240 c cmout HB No –

SPAdes 3.14.0 c Fixed HB Yes 1

Trinity 2.11.0 v* Fixed BB,HB Yes 2

Velvet 1.1 c* Time EB Yes 1

Unicycler 0.4.9b – – HB Yes 1

Columns are respectively names of programs, variable statuses of resultant contigs

whether they return constant(c)/variable(v) contigs for the same read data set, random

seed settings, methods of contig assembly, circular capability, no. of copies of reference,

and the proportion of defects region of contigs assembled from 50 randomly generated

read data. Random seed statuses are: doc, documented in the manual; time, time as

seed; none, nothing specified; self, self-made random generator; cmout, random seed

setting commented out; fixed, fixed random seed used. Methods are EB, Eulerian de Bruijn

graph; HB, Hamiltonian de Bruijn graph; BB, base by base; S, string graph. *Indicates that

SRR7700817 was used for checking contig output variability.

<5%. But none of them returned the perfect sequence of the
reference. Most defects were concentrated at the origin (locus =
0) of the circular phiX174 genome.

We obtained similar results when we reconstructed random
reads generated from the reference with a random read simulator,
ART (art-illumina Q version) ver. 2.5.8 (Huang et al., 2011).
None of the assembly software perfectly reconstructed the
reference. Increasing the coverage did not change the results.
Again defects were concentrated at the locus zero of the reference.
But those results might be caused by an artifact; the random
reads were generated, assuming that the reference genome was
linear. Both edges inevitably had minimal coverage that caused
concentrated defects at the head or tail of the sequence. We
should prepare reads generated from the reference assumed to
be circular. We also want to exclude all errors specific to NGS
methods while generating random read data.

1.3. Flow of This Article
We first show how to obtain hypothetical read data sets for
bootstrapping the phiX174 reference sequence in the following
sections. Next, we introduce and characterize 14 free assembly
programs. Then we explain how to analyze resultant contig
sequences. We also introduce the way of constructing consensus
sequences from the resulting contigs. The consensus sequences
were then plotted in an edit distance space with an NMDS
method. For the best-performing assembly program, we tried
to reconstruct mtDNAs of A. obtectus in Yao et al. (2017)
and Sayadi et al. (2017). Results are reported according to the
same order. We discuss the possibility of estimating the true

reference sequence from the NMDS plots of the consensus and
the reference sequences based on the evidential statistics.

2. MATERIALS AND METHODS

2.1. Read Simulators
We surveyed 24 sequence simulators (Alosaimi et al., 2020)
and found that only two of them capable of generating reads
for circular references. One of them adopts GUI, so we have
to use the other one, GemSIM ver. 1.6 (McElroy et al., 2012).
But GemSIM cannot specify random seeds. Moreover, GemSIM
cannot stop errors specific to sequencers. We had to generate
hypothetical random reads without any INDEL and sequence-
specific errors. So we made an Illumina read simulator free
from any kinds of errors by ourselves with Ruby’s programming
language (ringreads.rb, ref.rb, and doRingreads.rb).

The simulator accepts a FASTA file of a circular reference
DNA sequence. A random read generation started from a
location randomly selected within the reference. Then the read
was extended to the prespecified read length. Next, a new starting
point was located apart from the endpoint of the read with the
extent of an insertion length. Then the “paired” read with the
same length was generated, but this new read was transformed to
its reverse complement. In this way, paired-end reads separated
with the given insertion length were generated. This procedure
was repeated for the circular genome until the minimal coverage
for each locus exceeded the pre-specified coverage value. The
Ruby scripts are available at: https://tivoli.ska.life.tsukuba.ac.jp/~
toque/to9ue/ringreads.

2.2. Assembly Programs
We collected 14 free assembly programs (see Table 1).
All programs were installed from source codes or binary
distributions. We used Mac OS X 10. 14.6 on a Mac mini (2018)
and iMac (Retina 5K, 27-inch, 2020) as our computational
environment. We obtained source codes of all software
irrespective of the ways of installation. We focused on program
performance only at the contig construction level because
our target genome of phiX174 was short enough, and each
reconstructed sequence was almost always a single contig. We
did not have to apply any polishing processes, either. Other
than specifying lengths of reads and insertion, we used default
parameter settings for each assembly program. For Unicycler, we
applied normal model, https://github.com/rrwick/Unicycler.

For all programs except Unicycler, we checked whether each
program returned the same contig for the same read data set
for multiple trials. For this purpose, we used reads of Homo
sapience chromosome 3 (30CJCAAXX_4_[12].fq.gz) available
at: http://sjackman.ca/abyss-activity. Please consult the link for
parameter settings for k-mers and insertion lengths. Mira, Velvet,
and Trinity could not handle the chromosome 3 reads, so we
used a smaller data set of Human Mitochondrial DNA from
Postmortem Brain and Blood (SRR7700817 in SRX4559088) for
those three programs.

An assembly program was judged as constant only if both
the order and the content of contigs were the same in multiple
assembly trials. The program was judged as variable otherwise,
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FIGURE 3 | Frequency distributions of the number of random reads for 200

and 500 insertion lengths.

or it was judged as variable even if only the order of the
same contig sets was different. We also checked random seed
settings specified in the source codes of the assembly programs.
Methods for contig reconstruction were examined for each
assembly program based on the description in Sohn and Nam
(2018), Sung (2017), software manuals, and publications on the
software (Chevreux et al., 1999; Boisvert et al., 2010; Grabherr
et al., 2011; Kajitani et al., 2014; Coli et al., 2015; Li et al.,
2015). Only 11 out of 14 assembly programs could handle
reads generated from the circular reference (Table 1). So we
applied randomly generated read data only for those 11 assembly
programs. Please consult doASSEMBLER_NAME.rb at: https://
tivoli.ska.life.tsukuba.ac.jp/~toque/to9ue/ringreads that provide
parameters for assembly programs. For Unicycler, we performed
assembly with and without polishing with the pilon algorithm
using “–no_pilon” option.

2.3. Bootstrapping Reads From the
Reference
We generate 50 random sets of reads from the phiX174 reference
(accession no. NC_001422), in each of which the data structure
was the same as paired-end data of an available read data
set (https://github.com/gigascience/galaxy-bgisoap/tree/master/
test-data/phiX174); read length = 90, insert length = [200, 500],
and the minimum coverage = 20. For each random read data,
we tried to assemble contigs with the 11 assembly programs.
We aligned the resultant contigs to the reference sequence and
examined unique sequences among the 50 contigs for each
assembly program. The number of reads for insertion length of
200 ranged from 3,216 to 3,812. Those for insertion length of 500
ranged from 3,132 to 3,964 (Figure 3).

LEDx,y(i,j) =















max(i, j) if min(i, j) = 0,

min







LEDx,y(i− 1, j)+ 1 (deletion)
LEDx,y(i, j− 1)+ 1 (insertion)
LEDx,y(i− 1, j− 1)+ 1(xi 6=yj) (substitution)

otherwise.
(1)

2.4. Analyzing Contig Sequences
If a resultant contig is different from the reference and a little
longer, we would have two possibilities (Figure 4). One is that

FIGURE 4 | Two hypothetical patterns of defect locations. One is

concentrated at a location, but defect locations are scattered in the other.

defective parts are scattered within the contig. The other is that
defects are concentrated at a specific region, as in the preliminary
experimental results in which we treated the reference as a linear
genome. If we apply BLAST search (https://blast.ncbi.nlm.nih.
gov/Blast.cgi) for the known 11 genes of the phiX174, we would
not be able to reconstruct several genes in the former case. On
the contrary, we could not reconstruct only a couple of genes in
the latter case. We performed BLAST searches for the 11 genes
for the resultant contigs generated with the 11 assembly software
to distinguish the two scenarios. We used the rBLAST library
(https://github.com/mhahsler/rBLAST) for it.

The BLAST search of genes, which adopts the Smith-
Waterman algorithm, can not correctly determine whether a
given contig succeeded in reconstructing the reference because
it arbitrarily inserts gaps or deletion for sequence comparison.
What we want to do is precisely compare a contig and the
reference without any insertion and deletions. To do so, we used
the diffobj library of R (https://cran.r-project.org/web/packages/
diffobj/index.html). Functions of the diffobj work just like the
diff command of UNIX. We can pinpoint the defective parts
among the contig with this functionality. But we should apply the
diff operation to two sequences that start at the same origin.

Resultant contigs started from 5” to 3” arbitrarily. So we
first have to align all contigs to the direction of the phiX174
reference. Then we have to find the true origin corresponding
to the locus zero of the reference because assembly programs
returned linear contigs starting from arbitrary origins. To do so,
we have to use some distance measurements for comparing two
sequences. We applied the Levenshtein edit distance [LEDx,y(i,j)]
defined by three operations: deletion, insertion, and substitution
(Equation 1).

where 1(xi 6=yj) is the indicator function equals to zero when xi =
yj and unity otherwise. LEDx,y(i, j) is the distance between the
first i characters of x and the first j characters of y. Normalized
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Levenshtein edit distance can be obtained by dividing the raw edit
distance with max[length(x), length(y)]. We used the stringsim

function provided by the stringdist library (https://cran.r-
project.org/web/packages/stringdist/index.html) for R ver. 3.6.3.
(R Core Team, 2018).

To find the true locus zero in a contig, we chose a tentative
origin randomly within a linear contig. We decided on another
random starting point if the similarity between the contig and
the phiX174 reference was higher than a pre-specified threshold.
Otherwise, we chose the next origin by bit-wise walking to
the right or left direction. We chose the direction so that the
similarity between the contig and the reference increased. We
stopped the process and defined the location as the locus zero if
we attained the maximum similarity to the reference. We applied
diffobj functions against the reference and the contig starting
from the locus zero.

2.4.1. Consensus Sequence
Consensus sequences that we want to reconstruct differ from
those obtained with conventional bioinformatics software, such
as DECIPHER for R (Wright, 2016). Conventional applications
insert gaps for reconstructing consensus sequences after the
alignment of sequences of the same length. But our consensus
sequences should have no gaps. As a result, the size of our
consensus sequences was indefinite before the reconstruction.

To construct such a consensus sequence of assembly software
from 50 contigs of randomly generated read data, we made
a program equipped with GPU genetic algorithm (GPU-GA)
to search the nearest neighborhood to all 50 contigs within
a Levenshtein edit distance space. For GPU-GA calculation,
we made an R library named gpuga in which We applied
OpenCL (https://www.khronos.org/opencl/) for applying to
GPU hardware including non-NVIDIA products. Note that you
should use R ver. 3.x for running gpuga. The gpuga package
is available at https://tivoli.ska.life.tsukuba.ac.jp/~toque/to9ue/
ringreads.

We first listed up the longest common substrings among
the 50 contigs. We used those common substrings for masking
from INDEL operations during GA calculations. Next, we copied
each of the 50 contigs 20 times for constructing the initial
population of 1,000 bit-strings, each of which represents its
specific contig sequence. We let evolve the bit string population
for 100 generations with setting 0.0001 and 0.002 respectively
for mutation and crossing over rates per bit. The fitness value
is the sum of edit distance from the initial 50 contigs. After
100 generations, we applied bit-shift to the evolved bit-string
population and then tried another ten generations of evolution
to avoid being trapped in local optima.

After obtaining the consensus sequences of assembly
programs, we reconstructed NMDS plots of sequences for
examining relative locations against the reference. According to
Ponciano and Taper (2019), we can obtain reliable estimates of
the generating (true) model by plotting candidate models in a
distance space with NMDS methods. A critical difference from
Ponciano and Taper (2019) is that we do not have parametric
generating functions for reconstructing contigs from the
reference, and we cannot apply estimating methods for neg-cross

and neg-selfentropies. But if we can assume that h2 = 0 in
Equation 9 (Ponciano and Taper, 2019), we can estimate the
true reference location as the origin (0,0) in the reconstructed
NMDS spaces.

Multiple NMDS plots may be derived from the same data.
In our preliminary examination, a general NMDS method
applicable for sequence data (nmds, Taguchi and Oono, 2005)
could not converge to a common spatial configuration. Dr.
Mark L. Taper kindly recommended using mds function
in smacof library (https://cran.r-project.org/web/packages/
smacof/vignettes/smacof.pdf) for NMDS plottings, based on his
experience in Ponciano and Taper (2019), compared to other
NMDS functions available in R. Different NMDS functions adopt
different stress functions being minimized. We checked that 2D
NMDS plots created with metaMDS function in vegan library
(https://www.rdocumentation.org/packages/vegan/versions/2.
4-2/topics/metaMDS), isoMDS (https://www.rdocumentation.
org/packages/MASS/versions/7.3-51.6/topics/isoMDS), and
sammon (https://www.rdocumentation.org/packages/MASS/
versions/7.3-51.6/topics/sammon) in MASS library were
rotationally symmetric with that created with the mds function
of smacof library.

2.5. Reconstructing mtDNA of A. obtectus
We created random reads from the sequence data of mtDNA
of A. obtectus for both references respectively proposed in Yao
et al. (2017) (accession no. KX825864) and Sayadi et al. (2017)
(accession no. MF925724). We adopted the same lengths of reads
(90) and insertion (200 or 500) and the coverage (20) as for the
phiX174. Then we applied for the best assembly program in the
phiX174 trial for reconstructing the mtDNA of A. obtectus. We
analyzed the resultant contigs in a similar way as those for the
phiX174 data sets. But themtDNA sequences are more than three
times longer than that of phiX174, which hindered analyzing
methods, such as using R diffobj libraries.

3. RESULTS

3.1. Assembly Performance
Most contigs generated with assembly software were longer
than the reference sequence. After the BLAST searches, most
contigs had a pattern with defects concentrated on a small
region. In other words, each contig contained an almost perfect
copy of the reference. Analyses with diffobj searches confirmed
this result, and the proportion of discrepancy equals to the
following equation.

1−
Lr

Lc

where Lr and Lc are lengths of the reference and a
contig, respectively.

Contigs generated by assembly methods consist of two groups
based on the size: monomer and polymer ones (Figure 5).
Monomer contigs are those with <6,200 bases. Polymer contigs
include those with two- or threefold lengths of the reference.
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FIGURE 5 | Schematic linear representation of resultant contigs assuming that

defect concentrated at the end of gene A. A monomer contig consisted of

nearly a whole part of the reference (black) and a region mixing the rest of the

reference and defects (gray). Trinity contigs included another complete

reference. Minia contigs contained two perfect copies of the reference.

In the following, we explain the state of contigs for each
assembly method.

3.1.1. Polymer Contigs
Trinity returned all different contigs against 50 random read
data sets, but the size of all of them was 10,795 bases. Each
contig contained a perfect and an imperfect reference sequence
concatenated in a line. Each imperfect reference had an extra
paste margin, and its location was scattered all over among the
11 genes. The distribution was weakly biased to gene H (Chisq=
11.724, df= 6, P = 0.06841, Figure 6).

Minia returned 24 unique contigs with all of which had 16,189
bases. Each contig consisted of two complete and one incomplete
copy of the reference sequence concatenated linearly. The defect
parts were scattered among the incomplete reference but heavily
biased to gene G compared to the reference (Chisq = 33.595, df
= 6, P = 8.055E-06, Table 2, Figure 6).

3.1.2. Monomer Contigs
A5miseq returned 11 unique contigs ranging from 5,461 to 5,465
bases. Fourteen and 36 contigs, respectively, had defects at genes
A and H (Chisq = 56.996, df = 6, P = 1.831e-10, Figure 6). On
the contrary, fermi returned four contigs for each random read
data set. There were 191 unique contigs among them, ranging
from 5,454 to 5,473 bases. Only 33 contigs among them passed
BLAST searches for the reconstruction of 11 genes. But those 33
contigs had defects at small portions within geneD. Other contigs
failed to reconstruct one of the genes of a (A), K, C, and D (not
E) in the BLAST searches. One contig failed gene a (A). Fifty-two
contigs failed gene K. Ninety-one contigs failed gene C. 15 contigs
failed gene D (not E). Because of the high failure rate, we did not
conduct diffobj analyses for Fermi contigs.

IDBA returned only three unique contigs ranging from 5,417
to 5,427 bases. Defects of each contig concentrated at genes
H, A (not a), and E (and D), respectively (Chisq = 166.49, df
= 6, P = 2.2e-16, Figure 6). Megahit also returned only three
unique contigs with the common base length of 5,417. Defects
were heavily concentrated at genes G and H (Chisq = 388.67,
df = 6, P = 2.2e-16, Figure 6). Platanus returned seven unique
contigs ranging from 5,430 to 5,436 bases. Defects were heavily

concentrated at gene G (Chisq = 405.87, df = 6, P = 2.2e-16,
Figure 6). SPAdes returned a single unique contig of 5,441 bases
with a defect at gene H (Chisq = 203.88, df = 6, P = 2.2e-16,
Figure 6).

Unicycler returned eight unique contigs ranging from 5,380 to
5,386. Those with 5,386 bases, which is the size of the reference
genome, completely reconstructed the reference. Others failed to
reconstruct genes F and G (Chisq = 14.691, df = 6, P = 0.0228).
In summary, 44 out of 50 (88%) contigs were the perfect copy
of the reference sequence. Velvet returned 39 unique contigs. All
of them were with 5,416 bases and failed to reconstruct narrow
regions of gene K overlapped with the end regions of genes A, a,
and the beginning of gene C (Chisq = 160.23, df = 6, P = 2.2e-
16). The performance of Unicycler did not change a lot when we
even stopped the polishing process with the pilon algorithm; 39
out of 50 (78%) contigs were still the perfect copy of the reference.

Mira returned 49 unique contigs with 5,803–6,164 bases.
Thirty-four of them completely reconstructed all 11 genes.
Discrepancy regions for the 34 contigs were scattered all around
the reference genome. Among the rest of 15 contigs, two failed
to reconstruct gene A other than the region of gene a. Five could
not reconstruct gene a. Six and two could not reconstruct genes
F and H, respectively. Because of the high rate of failure, we did
not conduct diffobj analyses for Mira contigs.

3.2. Consensus Sequence
We reconstructed consensus sequences for those assembly
methods that returned almost perfect copy or copies of the
reference; we excluded those of Mira and Fermi because those
software returned variable contigs with variable defects. Table 3
shows defect starting locations and similarities against the
reference for those consensus contigs. As expected, the consensus
sequences resemble eachmethods’ majorities, and their similarity
to the reference is more than 0.986. That means the number of
defects or extra bases was about 75 at most. There was no specific
region for defects; incomplete reconstructions occurred at genes
A, C, D, G, and H.

Figure 9 shows the NMDS plot of monomer consensus
contigs with the reference. The mds function of smacof library
returned the same plot for multiple trials. As expected, the
reference (and Unicycler) location was close to the origin (0,0)
in the NMDS plot. Megahit, velvet, and IDBA were moderately
apart from the origin. On the contrary, A5miseq, SPAdes, and
platanus were fairly apart from the origin. Especially, A5miseq
was isolated from the cluster of the other six programs.

3.3. mtDNA of A. obtectus
Unicycler, the best performer in the assembly programs, returned
a unique contig for each random data set. It reconstructed the
same sequence with accession no. KX825864 in 38 out of 50
(76%) data sets. Unicycler returned the sequence with the same
length (16,130) with the reference. For the six data sets of the
rest, the sequence length was 16,129. For the two of the rest,
the sequence length was 16,127. For the last data set, the length
was 16,126.

But Unicycler returned a longer and multiple much shorter
(a 10th of the longer one at most) contigs for random data
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FIGURE 6 | Circular histograms of defect locations on the reference for the nine assembly software.

sets created from the reference of MF925724. The length of
the long contig ranged from 16,576 to 17,284 (Figure 7), which
was enough longer than that of the reference of KX825864. The
number of short contigs ranged from one to eight (mode = 5,
Figure 8). Results were similar even we applied mode = bold to
obtain the minimum number of contigs.

4. DISCUSSION

Reconstructed contigs contained only a slightly incomplete
reference genome of phiX174. Assembly programs were good at
assembling the length of 5.4 ks bases but merely failed to glue
the final contigs’ edges. For making a ring from the resultant
linear contig, software inserted extra bases (the left panel of
Figure 4). Interestingly, there is not much freedom for the gluing
positions for the software that reconstructed monomer contigs.
Contrarily, defect locations were scattered among the genome for
those generating polymer contigs (Figure 4). But the occurrences

of the defective regions were not proportional to the size of genes
(Table 2).

Unicycler almost correctly reconstructed the reference. It is
not so surprising because this assembly software is specially
developed for a circular genome. Interestingly, its backend
software, SPAdes, could not achieve similar performance. It is
also interesting that SPAdes returned a unique answer for all data
set, but Unicycler returned variable solutions. I am not sure the
monomorphic behavior of SPAdes is caused by the fact that its
random seed is fixed to 42, an enigmatic number (e.g., Adams,
1980), for random seeds at several places in its source codes.
SPAdes, IDBA, megahit A5miseq, velvet, and Platanus returned
quite a similar sequence to the reference. Defective locations were
highly concentrated: genes H, A, and G for the programs. Velvet
specifically had defects at gene C. These defect specificity does
not seem to be related to assembly methods nor random seed
specification (Table 1).

Minia and Trinity returned polymer contigs. Interestingly,
the two programs’ contigs included two and one complete copy
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TABLE 2 | Distribution of defects among the seven gene regions. For reference,

gene sizes are indicated.

Method A C D J F G H χ
2 P

phiX174 1,539 261 459 117 1,284 528 987 – –

Minia 6 1 0 3 2 9 3 33.595 8.055E-06

Trinity 12 1 8 0 8 4 16 11.724 0.06841

A5miseq 36 0 0 0 0 0 14 56.996 1.831e-10

IDBA 3 0 1 0 0 0 46 166.49 2.2e-16

Megahit 0 0 0 0 0 49 1 388.67 2.2e-16

Platanus 0 0 0 0 0 50 0 405.87 2.2e-16

Spades 0 0 0 0 0 0 50 203.88 2.2e-16

Unicycler 0 0 0 0 3 3 0 14.691 0.0228

Velvet 30 20 0 0 0 0 0 160.23 2.2e-16

A Chisquare and a P-value are results of Chisquare analysis of the distribution of genes

that include defects compared with gene sizes of the reference.

TABLE 3 | The starting location of defects and similarity to the reference for each

consensus sequence.

Method Loci Similarity Gene

A5miseq 4,142 0.986447 A

Fermi – – –

IDBA 3,715 0.994277 H

Megahit 2,461 0.994277 G

Minia 13,217 0.998085 G

(2,445)

Mira – – –

Platanus 2,437 0.991349 G

Spades 3,851 0.989892 H

Trinity 527 0.997869 D

Unicycler – 1.0 –

Velvet 137 0.994461 C

Note that the length of each consensus sequence equals 5,386/similarity.

of the reference with an incomplete one. Those copies were
concatenated linearly. The enlargement of the contigs occurred
by a quite different mechanism from what happened in the
mitochondrial genome of A. obtectus (Sayadi et al., 2017; Yao
et al., 2017); no regions like the repetitive spacer sequences
were detected in contigs for Minia and Trinity (Figure 5). The
mtDNA structure rather resembles that of monomer contigs,
but the defects of the latter were much shorter than LIGSs in
the mtDNAs.

Unicycler fairly succeeded in reconstructing the mtDNA of
A. obtectus for Yao et al. (2017). The success rates dropped only
12% for the reference with the threefold reference. But the longer
mtDNA of A. obtectus proposed by Sayadi et al. (2017) could
not be reconstructed correctly with Unicycler. Resultant contigs
could not converge to a single contig. Moreover, the longest
contigs were much longer than the reference of Yao et al. (2017).
Including LIGS added different features to the reference genome
even though the LIGS are entirely separated from the known gene
regions. The skewness of Figure 7 to the shorter contigs (the left

FIGURE 7 | The length of longer contigs generated by Unicycler for random

read data generated from MF925724 reference.

FIGURE 8 | The number of short contigs generated by Unicycler for random

read data generated from MF925724 reference.

direction) may indicate a bias for estimating shorter contigs, also
criticized in Sayadi et al. (2017).

Evidential statistics uses the evidence functions (e.g.,
likelihood ratios and consistent information criteria) to quantify
the strength of evidence in the data (Royall, 1997; Lele, 2004). If
each reconstructed contigs plays the role of a model in a statistical
sense, distances among contigs or those from the reference can
be a statistical loss function (Lindsay, 2004). If we take the linear
or circular DNA/RNA sequences as models, the Levenshtein edit
distance can be an appropriate distance measurement among
the models and references. The consensus sequence or the
centroid in the edit distance for contigs generated by assembly
programs is a statistical representation of the specific assembly
methods. The consensus sequence of Unicycler coincided with
the reference for the short mtDNA of A. obtectus (KX825864) as
well as phiX174.

Other than Unicycler, reconstructed contigs created by
the assembly programs showed a variation in distance from
the reference. How can this variation be evaluated? The
behavior of consensus sequences may propose two contrasting
understandings. One is simply the bias of the assembly programs
or incorrectness of the reference itself. This possibility is
convincing from the biased defective locations (Figure 6). The
other interpretation might arise if we take the consensus
sequence as a tentative true model. Figure 9 represents plots for
the reference and consensus contigs in the reconstructed NMDS
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FIGURE 9 | Non-metric multidimensional scaling (NMDS) plot in the edit

distance space of the reference and monomer consensus contigs

reconstructed with the seven assembly programs using the mds function of

smacof library. Note that Unicycler was located at the same place with the

reference (Ref).

space. As we expected, the reference and the consensus contig of
Unicycler have their position close to the origin (0,0).

These results may suggest a way of finding the true reference
sequence when you assembly a novel but none-fragmented
genome. Analyzing withmultiple assembly programs, you should
reconstruct consensus contigs of each assembly program. Then
you plot the consensus contigs in a reliable NMDS plot. If there is
no consensus contig near the origin, create candidate sequences
by taking centroids of those consensus contigs until you obtain
a sequence sufficiently close to the origin. But the reference (and
that of Unicycler) was not located precisely at the origin in the
NMDS plot. Because the reference is another sample from the
true model, the origin indicated by the NMDS methods might
show the true reference locations. Once we accept the consensus
contigs’ variation in the bootstrapping of a reference, we will need
an alternative representation of the references.

Conventionally, a reference sequence has been represented as
a single base string. We should express the uncertainty of the
reference for incorporating the variable parts in the reference, as
we see in our bootstrapping results. Although some researchers
claim a necessity for being aware of the stochastic aspects at
each base locus (e.g., O’Rawe et al., 2015), assembly algorithms
incorporating stochastic locus have never been proposed. A
regular expression using the IUPAC nucleotide code (e.g., Paris
and Després, 2012) might be an alternative way to express the
stochasticity of sequence loci. The flexibility of each locus is
expressed with one of the 15 patterns in the IUPAC code. On
the contrary, the flexibility of length is characterized by rules of
regular expression. The major drawback of using such regular

expressions is the lack of standard measurements of distances
against given sequences or regular expressions. It might be a
little bit rude to apply Levenshtein edit distance against those
regular expressions. Approximate regular expression matching is
proposed at most (Belazzougui and Raffinot, 2013).

We proposed an evidential statistics approach consists of
three steps; bootstrapping a non-fragmented base sequence,
reconstructing consensus sequence from the assembled ones,
and plotting the consensus sequences with NMDS. In this new
approach, we still obey the one-base-for-one-locus rule. Those
consensus sequences are centroids of bootstrapped references
and can be taken as approximations of the regular expression
with the IUPAC nucleotide code. They might be more evidential
for a given read data set than a legacy reference obtained with
hopefully reliable but an old sequence method. The proposed
method relies on a strong assumption in which we have already
got non-fragmented sequences for inferring the true reference.
But once you could obtain non-fragmented sequences, and if
we can improve the analyzing method using R diffobj libraries
more efficiently, our method can be applicable for much longer
genomes than that of phiX174.
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