
fevo-09-620715 March 10, 2021 Time: 14:6 # 1

ORIGINAL RESEARCH
published: 16 March 2021

doi: 10.3389/fevo.2021.620715

Edited by:
Hiroki Yamanaka,

Ryukoku University, Japan

Reviewed by:
William Sutton,

Tennessee State University,
United States
Luca Carraro,

Swiss Federal Institute of Aquatic
Science and Technology, Switzerland

*Correspondence:
Adam J. Sepulveda

asepulveda@usgs.gov

Specialty section:
This article was submitted to

Conservation and Restoration
Ecology,

a section of the journal
Frontiers in Ecology and Evolution

Received: 23 October 2020
Accepted: 18 February 2021

Published: 16 March 2021

Citation:
Sepulveda AJ, Hoegh A,

Gage JA, Caldwell Eldridge SL,
Birch JM, Stratton C, Hutchins PR
and Barnhart EP (2021) Integrating

Environmental DNA Results With
Diverse Data Sets to Improve

Biosurveillance of River Health.
Front. Ecol. Evol. 9:620715.

doi: 10.3389/fevo.2021.620715

Integrating Environmental DNA
Results With Diverse Data Sets to
Improve Biosurveillance of River
Health
Adam J. Sepulveda1* , Andrew Hoegh2, Joshua A. Gage3, Sara L. Caldwell Eldridge4,
James M. Birch5, Christian Stratton2, Patrick R. Hutchins1 and Elliott P. Barnhart4

1 U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, United States, 2 Department
of Mathematical Sciences, Montana State University, Bozeman, MT, United States, 3 Gage Cartographics, Bozeman, MT,
United States, 4 U.S. Geological Survey, Wyoming-Montana Water Science Center, Helena, MT, United States, 5 Monterey
Bay Aquarium Research Institute, Moss Landing, CA, United States

Autonomous, robotic environmental (e)DNA samplers now make it possible for biological
observations to match the scale and quality of abiotic measurements collected by
automated sensor networks. Merging these automated data streams may allow for
improved insight into biotic responses to environmental change and stressors. Here,
we merged eDNA data collected by robotic samplers installed at three U.S. Geological
Survey (USGS) streamgages with gridded daily weather data, and daily water quality and
quantity data into a cloud-hosted database. The eDNA targets were a rare fish parasite
and a more common salmonid fish. We then used computationally expedient Bayesian
hierarchical occupancy models to evaluate associations between abiotic conditions
and eDNA detections and to simulate how uncertainty in result interpretation changes
with the frequency of autonomous robotic eDNA sample collection. We developed
scripts to automate data merging, cleaning and analysis steps into a chained-step,
workflow. We found that inclusion of abiotic covariates only provided improved insight
for the more common salmonid fish since its DNA was more frequently detected.
Rare fish parasite DNA was infrequently detected, which caused occupancy parameter
estimates and covariate associations to have high uncertainty. Our simulations found
that collecting samples at least once per day resulted in more detections and less
parameter uncertainty than less frequent sampling. Our occupancy and simulation
results together demonstrate the advantages of robotic eDNA samplers and how these
samples can be combined with easy to acquire, publicly available data to foster real-time
biosurveillance and forecasting.

Keywords: climate, detection, molecular, occupancy analysis, river, salmon, streamgage

INTRODUCTION

Timely, up-to-date information concerning harmful invasive species and pathogens is critical for
minimizing negative outcomes to ecosystem and human health (Stohlgren and Schnase, 2006;
Bohan et al., 2017; Cordier et al., 2020). Assimilating this information has been challenging
because the abiotic and biotic processes that drive invasive species and pathogen distributions
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FIGURE 1 | Schematic of the data science workflow applied to our two eDNA case studies.

and abundances from benign to harmful levels often occur
at different spatiotemporal scales (Collins et al., 2006; Gallien
et al., 2010; Uden et al., 2015). These challenges make
measurement, integration, and rapid analysis difficult (Michener
and Jones, 2012). For example, marine harmful algal bloom
alert bulletins and early warning systems require integrating
information about phytoplankton, toxin concentrations within
shellfish, water temperature and wind speeds, and ocean or
lake circulation forecasts (e.g., Glibert et al., 2018). Automated
sensor networks, such as the U.S. Geological Survey’s (USGS)
streamgage network and National Oceanic and Atmospheric
Administration’s (NOAA) weather station network, have made
it much easier to track changing abiotic conditions with both
high and broad spatiotemporal resolution (Sepulveda et al., 2015;
Al-Chokhachy et al., 2017; Kovach et al., 2019), but automated,
collection of comparable biological data remains a challenge
(Sugai, 2020).

Environmental (e)DNA sample collection and subsequent
analyses have revolutionized biosurveillance because
inferences can be made about species occurrences sight-
unseen (e.g., Cristescu and Hebert, 2018). More recently,
autonomous robotic eDNA samplers have made it possible
to make biological observations match the scale and
quality of in situ physical and chemical measurements
(Yamahara et al., 2019; Sepulveda et al., 2020). Autonomous
robots placed within the environment can conduct high
frequency (sub-daily) sampling, regardless of location,

weather, or the availability of human resources. Satellite
communication ports allow results to be uploaded to end-
users. Hence, biological data collection at relevant scales is no
longer the bottleneck.

One current challenge is rapidly integrating the high
frequency data streams produced by autonomous robotic eDNA
samplers with the high frequency data streams produced
by automated sensor networks tracking abiotic conditions.
This integration should enable timely, up-to-date information
about biological hazards. Each data stream has nuances (e.g.,
unique attribute fields); however, the structure of eDNA
data streams presents additional complications. This molecular
method provides indirect inference about species presence,
so occurrence probability must be modeled (Stratton et al.,
2020). For eDNA analyses, multiple samples are collected
at a location and multiple replicates from each sample are
analyzed for the presence of the target organism DNA.
Samples taken at the location occupied by a species may
not necessarily contain DNA of that target species, just like
replicates may lack target DNA even if the DNA is present
in the sample (Darling, 2019; Sepulveda et al., 2020). Thus,
each sample and replicate may detect the organism’s DNA, if
present, with some probability. Occupancy models provide a
useful framework for the analysis of eDNA results (Stratton
et al., 2020), in that these models account for the multiple
nested levels of sampling that characterize eDNA surveys.
Occupancy models also provide a useful framework for linking
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FIGURE 2 | Map of ESP water sampling locations. The red box in the inset map shows the location of the Upper Yellowstone River and Upper Snake River in the
United States. The larger map shows the sample site locations (filled red circles) on each river relative to Yellowstone National Park and Grand Teton National Park
(outlined in green).

data streams describing abiotic conditions to those describing
biological data, such as target taxa DNA (Pilliod et al., 2019;
Sepulveda et al., 2019).

Here, we present the constituent parts of a cloud-based,
data science pipeline for using Bayesian hierarchical occupancy
models to analyze relationships between the high frequency data
streams produced by autonomous robotic eDNA samplers and
the high frequency data streams produced by automated sensor
networks tracking abiotic conditions (Figure 1). To demonstrate
the general applicability of this workflow, we applied it to a
dataset typical of an eDNA early detection program, where target
taxa DNA was rarely detected, and to a dataset typical of an eDNA
monitoring program, where target taxa DNA detections were
more common. To evaluate the added value of high frequency,
autonomous samples, we also evaluated how uncertainty in
result interpretation changes with the frequency of autonomous
robotic eDNA sample collection for each dataset. Our workflow is
intended to serve as a prototype for how high-throughput eDNA
data can be combined with easy to acquire, publicly available data
to foster real-time biosurveillance and forecasting.

MATERIALS AND METHODS

eDNA Datasets
We applied the data science workflow to two datasets described
in Sepulveda et al. (2020). In the first dataset used as an example
of eDNA early detection programs, autonomous robotic eDNA
samplers collected samples at two USGS streamgage sites in the
Yellowstone River of Montana (United States): USGS 06191500
Yellowstone River at Corwin Springs MT and USGS 06192500
Yellowstone River near Livingston MT, described below as
Corwin Springs and Carters Bridge, respectively (Figure 2).
Robotic eDNA samplers were programmed to collect 1-L samples
every 12 h, from July 24 to August 26, 2018, and every 3 h from
August 27 to September 7, 2018. Samples were analyzed for DNA
of the fish pathogen, Tetracapsuloides bryosalmonae, the causative
agent of salmonid fish Proliferative Kidney Disease (PKD), which
has resulted in large salmonid mortality events in this region
and also in Europe (Hutchins et al., in press). Detections of
T. bryosalmonae DNA were rare, as only 5 of 256 samples were
scored as positive (Sepulveda et al., 2020).
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In the second dataset used as an example of eDNA monitoring
programs for more common species, an autonomous robotic
eDNA sampler collected water samples at one USGS streamgage
on the Snake River of Idaho (United States): USGS 13032500
Snake River near Irwin ID (Figure 2). This streamgage is 1.5 km
downstream of Palisades Reservoir (WY/ID). The robotic eDNA
sampler was programmed to collect 2-L samples every 12 h from
July 17 to September 09 and then every 4 h from September 10 to
October 01, 2019. Samples were analyzed for Oncorhynchus nerka
(kokanee salmon) DNA; O. nerka occur upstream in Palisades
Reservoir. Thirty-five of 128 samples were scored as positive for
O. nerka DNA (Sepulveda et al., 2020).

The Monterey Bay Aquarium Research Institute’s (MBARI)
robotic instrument, the Environmental Sample Processor (ESP),
was used to collect eDNA samples in both datasets. The ESP
is a robotic device that can be programmed to automate water
sample filtration and preservation of the captured material
or homogenize it for immediate analyses in situ. Various
iterations of the instrument have been realized over the past
25 years; eDNA samples in both datasets were collected using
the “second-generation” (2G) ESP and its archival capabilities to
filter water samples and preserve the collected material for later
analysis in the laboratory (Scholin et al., 2017).

Details of the ESPs’ operation and eDNA analysis methods
used to generate the two data sets are summarized here as they
were described in Scholin et al. (2017 and references therein)
and Sepulveda et al. (2020). The ESP operated autonomously,
needing only power, communications and fluid connections
through a waterproof pressure housing. At the initiation of
sampling, a small container (a “puck”) loaded with 1.2-µm
cellulose nitrate filter material was placed within a clamp. Valves
opened to the outside, allowing a syringe to sequentially pull
water through the puck. Once the target volume was filtered,
or the filter was loaded with biomass (i.e., “clogged”), filtering
stopped, and excess water was cleared. Five mL’s of RNAlater
preservative was then added to the puck, soaking the filter
for 10 min before excess was evacuated and the puck was
returned to storage. To reduce carry-over contamination, the
sampling pump, tubing and external sampling module were
flushed with river water for 10 min prior to every sample
collection. The sampling port of the ESP itself was cleaned with
10% bleach and a 10% Tween-20 solution between samples.
Two negative controls (1 L of molecular grade water) were
run through each ESP prior to and at the conclusion of each
deployment to assess for contamination. Metadata associated
with each sample were communicated via telemetry after
each sampling point.

At the end of each ESP deployment, pucks were removed, and
filters were aseptically recovered into 2.0-mL screw cap centrifuge
tubes, and then shipped frozen to the USGS Upper Midwest
Environmental Science Center (La Crosse, WI, United States) for
DNA extraction and quantitative PCR analyses. All samples were
analyzed in four replicate 25-µL reactions and tested for PCR
inhibition. Samples were scored as positive when one or more
PCR replicates amplified for the target DNA. Field, extraction
and PCR negative controls were analyzed as regular samples; no
negative controls amplified.

TABLE 1 | Physical data available at daily time steps that were collated on a
cloud-hosted database and then integrated with raw eDNA data in multi-scale
occupancy models.

Data stream Variable Metric Yellowstone Snake

PRISM Precipitation Total + +

Air temperature Minimum,
Maximum, Mean

+ +

Vapor pressure
deficit

Minimum,
Maximum

+ +

Dew point
temperature

Mean + +

National Water
Quality Portal

pH Mean, Maximum,
Minimum, St.
Deviation, Count

– –

Dissolved
calcium

Mean, Maximum,
Minimum, St.
Deviation, Count

– –

Water
temperature

Mean, Maximum,
Minimum, St.
Deviation, Count

+ –

USGS National
Water Information
System

Water
temperature

Mean, Maximum,
Minimum

+ +

Discharge Mean, Maximum,
Minimum

+ +

Abiotic Data Streams
We collated spatially and temporally explicit data from three data
streams: (1) 800-m gridded climate data served from Oregon
State University’s PRISM, (2) water quality data served from
the National Water Quality Portal, and (3) water quantity and
quality data served from the USGS water services portal. Data
attributes are described in Table 1 and python scripts are available
in the Supplementary Material. Spatial components of these
data were delineated by the location of the eDNA sampling at
USGS streamgage sites. Temporal components were reduced to
daily time steps.

We processed and corrected the downloaded datasets. Sites
with multiple observations for each day were aggregated,
resulting in one average value for each site for each day.
Additionally, some sites used different units of measurement
such as temperature in Fahrenheit and Celsius so we
standardized units across all sites and dates. In some cases,
we removed white spaces from data entries to create usable
numeric values. Additional columns not used in analyses
were dropped from the datasets before importing data into
the database.

Occupancy Analyses
We used Bayesian multi-scale occupancy models in the msocc
package (Stratton et al., 2020; R version 3.5.2) to estimate the
detection probability of T. bryosalmonae and O. nerka DNA, to
gain insight about covariates associated with eDNA detection
probability, and to estimate the effort needed for confident and
high-probability detection of target eDNA. These models allow
for the analysis of occupancy with three levels of hierarchical
sampling, while also accounting for false negatives in detection.
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TABLE 2 | Watanabe-Akaike information criterion (WAIC) scores of the
Yellowstone and Snake river candidate models.

River Model WAIC

ψ θ p t t-1

Yellowstone Site Date 1085 1115

Site Site + Date 1102 1097

Site Water temperature 1129 1134

Site Dew point temperature mean 1131 1140

Site Sample volume 1135 –

Site Air temperature maximum 1138 1146

Site Air temp mean 1141 1148

Site Air temperature minimum 1142 1144

Site Discharge 1154 1148

Site Precipitation 1168 11111

Site 1179 –

Site Site 1318 –

1366 –

Snake Sample volume 1433 –

Discharge 1435 1443

Date 1436 1440

Dew point temperature mean 1436 1446

Air temperature mean 1442 1446

Air temperature minimum 1442 1448

Precipitation 1446 1454

1448 –

Air temperature maximum 1458 1455

WAIC scores are show for models that included model covariates with (t-1) and
without (t) a 1-day lag.

Models were used to estimate (1)ψ , the probability of occurrence
of target eDNA at each of three streamgage sites; (2) θ the
conditional probability of occurrence of target eDNA in each
sample given that target eDNA was present at that site; and (3)
p, the conditional probability of detection of target eDNA in each
qPCR replicate of an eDNA sample given that target eDNA was
present in the sample.

We used python scripts (described in the Supplementary
Material) to merge our eDNA datasets with the abiotic data
streams and to format and download the input data frames
(detection data, site-level data with covariates, sample-level data
with covariates, and replication-level data) required by the msocc

package. Site-level covariates were streamgage site and date.
Sample-level covariates were streamgage site, date, time, eDNA
sample volume and the climate, water quality and quantity data
listed in Table 1. We also added a 1-day lag to the variables
listed in Table 1 to assess if eDNA detections were associated
with the prior day’s conditions. We modeled p as constant since
DNA extraction methods and laboratory analyses were the same
for all samples.

We tested simple models that fit ψ and/or θ by each
individual covariate or by combinations of covariates that were
not correlated (R < 0.7, p > 0.5). We used the Watanabe-Akaike
Information criterion (WAIC) to compare support for models
fitted with and without covariates; models with lower WAIC
values are favored (Gelman et al., 2014). We then computed
estimates of the derived parametersψ and θ for the most favored
model. These estimates and their standard errors were computed
using a Markov chain containing 10,000 iterations (excluding the
first 1000 warm-up iterations).

Finally, we ran post-hoc power analyses to evaluate how
sample size (i.e., the number of water samples and the number
of PCR replicates) influenced the precision of θ estimates (msocc
package, msocc_sim() as described in Stratton et al., 2020). We
used the estimates of ψ , θ , and p from the most supported
models of each dataset to simulate detection data. For these
simulations, we varied the number of samples collected at each
sampling event and the PCR replicates analyzed per sample.
We then replicated this process 100 times and assessed whether
the 95% credibility intervals for each parameter captured the
value that generated the data. We also recorded the width
of the credibility intervals. The sample sizes at which the
proportion of the 95% credibility intervals that contained the
original parameters stabilize and the average width of the
credibility intervals stabilize provide insight about the point
of diminishing returns, beyond which increasing sample size
provides little benefit.

Simulations
We ran three types of simulations to assess how robotic
eDNA sampling strategies can result in more detections of rare
organisms and more precise estimates. In simulation 1 and
2, we explored whether high-frequency sampling can better
detect target taxa DNA than lower-frequency sampling when

TABLE 3 | Posterior mean estimates (±95% CI) of ψ , θ , and p from the candidate models with the lowest WAIC scores.

River Model ψ θ p

Yellowstone ψ (Site) θ (Date) p(.) Carter’s Bridge 0.83 (0.37–1.00) Minimum 0.02 (0.01–0.04) 0.32 (0.14–0.53)

Corwin Springs 0.87 (0.40–1.00) Maximum 0.04 (0.01–0.08)

Snake ψ (.) θ (Date) p(.) 0.67 (0.22–0.98) Minimum 0.25 (0.14–0.39) 0.39 (0.31–0.47)

Maximum 0.41 (0.28–0.55)

ψ (.) θ(Discharge) p(.) 0.67 (0.23–0.97) Minimum 0.25 (0.13–0.40) 0.39 (0.31–0.47)

Maximum 0.46 (0.28–0.67)

ψ (.) θ (Sample volume) p(.) 0.66 (0.22–0.97) Minimum 0.18 (0.08–0.33) 0.39 (0.30–0.47)

Maximum 0.58 (0.35–0.80)

Minimum and maximum estimates of θ are displayed to show the range of values associated with Date, Discharge or Sample volume covariates.
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TABLE 4 | Estimates of the regression coefficients from the top models.

River Parameter Covariate Mean 95% CI

Yellowstone ψ Site 1.128 −2.927 – 5.461

θ Date −0.018 −0.038 – 0.002

Snake θ Date 0.012 −0.002 – 0.026

Discharge −1.345e−4
−3.178e−4 – 4.065e−5

Sample
volume

−1.479e−3
−2.815 – −2.255e−4

controlling for the total number of samples. High-frequency
sampling consisted of daily samples for 8 weeks; whereas
lower-frequency sampling consisted of a batch of seven samples
on a single day once per week for 8 weeks. We modeled two
ways to think about collecting a batch of seven samples on
a single day. The first approach treats the batch of samples
as subsamples; in other words, the organism is present, or
not, and each subsample has a probability of detecting the
organism, given that it is present. The second approach treats
the seven samples as independent samples, where for each
sample the organism is present or not, and the sample can
be detected with a given probability of the organism being
present. In practice, either scenario is plausible, but it likely
depends on the underlying ecological processes and how samples
are collected. If the sampling process involves collecting a
set of water samples at an individual location and time

point, then the first approach, subsampling, may be relevant.
However, if samples could be spread out over the day, and
potentially space, then using independent samples may be
reasonable. Data were simulated from an occupancy model
framework where,

Zi ∼ Bernoulli(ψ i),

Y itj ∼ Binomial(nj, ziρit), ρit =
exp(χµB)

1+ exp(χµB)
,

where Zi is the latent occupancy at site i,ψ i is the probability that
the species is present at site i, Y itj is the observed occupancy at site
i, time t, and for the jth replicate, and ρit is the probability that the
species will be detected at site i and time t, given presence.

Each simulated data set was summarized by whether or not a
rare species was detected at least once.

In simulation 1, we used a fixed occupancy probability (ψ)
and fixed detection probability (ρ) and explored the impact
of different levels of ψ = {0.05, 0.10, 0.15}, ρ = {0.05, 0.10,
0.15}, and the total number of samples on a high-frequency vs.
lower-frequency sampling approach. Simulation 2 was related
to simulation 1 but allowed the detection probability (ρ) to
vary for subsamples collected on the same day. For these
subsamples, ρ varied stochastically on a day-to-day basis.
Formally, Xµβ = β0 was simulated from a biased random walk
such that ρ had a median value of either {0.05, 0.10, 0.15}.
Code to recreate the simulations and figures is available in the

FIGURE 3 | Posterior mean estimates of θ relative to Julian date for O. nerka DNA in the Snake River, 2019. The purple band indicates the width of the 95%
confidence intervals. No sampling occurred in early August because of ESP mechanical difficulties.
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FIGURE 4 | Probability of detection as a function of rho, psi, and number of weeks; rho does not vary by time. The high-frequency approach collects samples daily
and the weekly approach takes seven samples once a week. Weekly samples are modeled as non-independent subsamples.

Supplementary Material. The detection probability was the same
for all independent samples within a day. We compared the
total frequency of the sampling regimes, either daily samples
for a certain number of weeks or seven samples collected for a
certain number of weeks, that result in at least one detection in
simulations 1 and 2.

In simulation 3, we randomly selected eDNA samples from
each of the Yellowstone and Snake River datasets using the
following temporal frequencies: 1 or 2 samples per day; 1,
2, or 3 samples per week; and 1 sample per month. The
total number of samples differed for each time step. We
replicated the random selection 100 times per time step.
For each random selection, we used the msocc package to
estimate θ using the null model without covariates: ψ(.),
θ(.), and p(.). We compared the distributions of the 95%
credibility interval widths of the θ estimates for each temporal
frequency scheme.

RESULTS

Rare Species Detection Sites
Target DNA was detected in three of 128 ESP samples at Corwin
Springs and in two of 128 ESP samples at Carters Bridge.
Sampling date was significantly correlated with river discharge
(R = 0.90, p < 0.05). Mean air temperature was significantly
correlated with minimum and maximum air temperatures
(R = 0.9, p< 0.05). Models lacking time lags were more supported
than those with lags.

The most supported model was ψ(Site), θ(Date), p(.)
(Table 2). Posterior mean estimates of ψ were higher for Corwin
Springs (0.87) than for Carter’s Bridge (0.83), though confidence
intervals had large overlap (Table 3). Raw estimates of the site
coefficient were positive, but confidence intervals overlapped zero
(Table 4). Posterior mean estimates of θ were near zero (0.02 –
0.04), but were highest on Aug 16 and lowest on Aug 08 (Table 3).
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FIGURE 5 | Probability of detection as a function of rho, psi, and number of weeks; rho does not vary by time. The high-frequency approach collects samples daily
and the weekly approach takes seven samples once a week. Weekly samples are modeled as independent samples.

There was no discernable temporal pattern in θ . Raw estimates
of the date coefficient were negative, but confidence intervals
overlapped zero (Table 4).

Power analyses indicated seven PCR replicates are required to
reduce uncertainty in θ ; the width of 95% credibility intervals
for θ decreased from 0.59 at four PCR replicates to 0.05 at
seven PCR replicates.

Common Species Detection Site
Target DNA was detected in 35 of 128 ESP samples. Sample
date was significantly correlated with river discharge (R = −0.8,
P < 0.05) and sample volume (R = −0.8, P < 0.05); river
discharge and sample volume declined with sample date. River
discharge and sample volume were also significantly correlated
(R = 0.8, P < 0.05); smaller volumes of water were sampled when
discharge was lower later in the study. Models with time lags were
less supported than those without.

The most supported models included water sample volume,
river discharge, or date as covariates of θ . These covariates were

correlated with one another and could not be combined into a
single model. Posterior mean estimates of θ increased, as water
sample volume decreased, river discharge decreased, and date
increased (Figure 3). Posterior mean estimates of θ ranged from
0.18 (0.08 – 0.33) to 0.58 (0.35 – 0.81) when sample volumes were
0.6 L. Raw estimates of the date coefficient were positive, while
raw estimates of the discharge and sample volume coefficients
were negative (Table 4). Only confidence intervals for the sample
volume coefficient did not overlap zero (Table 4). Power analyses
using parameters from the top three models indicated that more
PCR replicates did not result in θ estimate precision gains.

Simulations
For Simulation 1, when the batch of weekly samples were
considered as subsamples, high frequency sampling (i.e., daily
samples) had a larger proportion of sampling schemes that
resulted in at least one positive detection than lower frequency
sampling (i.e., weekly samples) (Figure 4). The probability of at
least one detection for daily samples was still 1− (1− ψρ)7n, but
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FIGURE 6 | Probability of detection as a function of rho, psi, and number of weeks; rho varies stochastically on a day-to-day basis. The high-frequency approach
collects samples daily and the weekly approach takes seven samples once a week. Weekly samples are modeled as non-independent subsamples.

the probability of at least one detection for weekly samples is 1−[
1− ψ

[
1− (1− ρ)7

]]n. When the batch of weekly samples was
considered independent, there were no discernable differences
between the detection outcomes of higher vs. lower frequency
sampling (Figure 5). For both daily samples and weekly batches
of samples, the probability of no detection for a single sample
is 1− ψρ; hence, the probability of at least one detection is
1− (1− ψρ)7n, where n is the number of weeks of sampling.

For simulation 2, when detection probability changed with
time, the higher frequency sampling approach had a higher
detection rate than the lower frequency approach regardless of
if the batch of weekly samples were modeled as subsamples or
independent (Figures 6, 7).

For simulation 3, precision of the posterior mean θ estimates
was highest (i.e., lower confidence interval width) when ESP
samples were collected at least once per day in the Yellowstone
River, where there were very few positive detections of the target
(Figure 8). However, many of the precision values associated

with these higher-frequency samples were still extremely low
(i.e., higher confidence interval width), indicating that even high
frequency sampling cannot reduce θ estimate uncertainty when
target taxa are infrequently detected. In the Snake River, where
positive detections of the target were more common, higher
frequency sampling did increase precision (Figure 8). Sampling
three times per week increased precision compared to sampling
less frequently and sampling at least once per day increased
precision compared to sampling three times per week. There were
no gains in precision when sampling once vs. twice per day.

DISCUSSION

We used data from the Yellowstone River, Montana, and
the Snake River, Idaho, to demonstrate how real-time data
collected by autonomous samplers and automated sensors
could be integrated into a data science pipeline to provide
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FIGURE 7 | Probability of detection as a function of rho, psi, and number of weeks; rho varies stochastically on a day-to-day basis. The high-frequency approach
collects samples daily and the weekly approach takes seven samples once a week. Weekly samples are modeled as independent samples.

timely information about aquatic ecosystem health. Furthermore,
through simulations, we showed that data collected from
autonomous samplers that enable high frequency eDNA
sampling improved the accuracy and precision of inferences.
Taken together, our field results and simulations indicate that
rare species can be difficult to detect via eDNA sampling, and
considerably more sampling may be required for detections
and strong inference. Additionally, automation of the eDNA
collection process and analysis of the collected data simplifies the
task of data collection and repeatability of a study. Our study
underscores the promise of new technologies to deliver actionable
information at scales and timeframes relevant to decision makers.

Components of our analytical workflow were eDNA detection
data and publicly available water-quality and climate data that
were collated on a cloud-hosted database and then downloaded
into data frames easily processed by computationally efficient
multi-scale occupancy models (Figure 1). In our case studies,

inclusion of current and lagged water quality and climate
covariates did not enhance understanding of target DNA
detection probabilities. Rather, T. bryosalmonae DNA detection
probabilities on the Yellowstone River were associated with
date of collection, and O. nerka detection probabilities on the
Snake River were associated with date, discharge or water sample
volume (Table 2). These results do not mean that inclusion
of sensor-derived physical data is not useful for other eDNA
targets, it just means that the subset of physical data analyzed
were not applicable for our case studies. Inclusion of additional
or alternate data sets, such as stream temperature data (U.S.
Forest Service NorWeST) or other water quality, biological, and
physical data collected by the USEPA [STOrage and RETrieval
(STORET) Data Warehouse] for example into the analytical
workflow may reveal stronger relations between parameters,
particularly when used to compare detection frequencies across
space rather than time.
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FIGURE 8 | The difference between the 95% and 5% confidence intervals (CI width) of the posterior mean of θ for simulations of Yellowstone River (A) and Snake
River (B) targets when eDNA samples were collected at different daily and weekly frequencies.

Our multi-scale occupancy model results demonstrated that
having more eDNA detections was necessary for detecting
significant relations within our data. Target DNA of the fish
parasite T. bryosalmonae was rarely detected in the Yellowstone
River in 2018; it was likely at low abundance that year relative
to previous years when PKD outbreaks were documented
(Sepulveda et al., 2020; Hutchins et al., in press). When this
target was detected in a sample, it was only detected in
one to two of the four PCR replicates. The large uncertainty
in θ probabilities made strong associations with covariates
prohibitive. Increased sampling rates (≥1 per day) did decrease
confidence interval width but not to a magnitude that would
be useful for confident decision making (Figure 8). This result
is not a surprise nor is it unique to eDNA sampling because
detection is strongly related to abundance and rare species usually
have low abundance (Gaston et al., 2000). Nonetheless, this is a
concerning result because eDNA sampling is championed as a
superior technique for detecting rare species at low abundance,
where amplification of a small subset of samples is normal
(e.g., Strickland and Roberts, 2019). For example, 64 of 2822
samples tested positive for invasive Asian carp DNA (Jerde
et al., 2013) and a later study found Asian carp eDNA sample
detection probabilities as low as 0.04 (Mize et al., 2019). These
low detection rates are the primary reason why eDNA surveys
of rare species require careful consideration of field design
and target species ecology (Mize et al., 2019; Strickland and
Roberts, 2019). In the current study, robotic eDNA samplers
were limited to the location of USGS streamgages, which were
originally located for other specific purposes like recording water

level. Locating robotic eDNA samplers in slow-moving waters
where the T. bryosalmonae bryozoan primary host is more
likely to occur, such as river pools and eddies (Wood, 2010),
may have resulted in more T. bryosalmonae DNA detections.
Using natural history insight of the target species to inform
eDNA sampling location and timing has been recommended
as a means to maximize eDNA detection probabilities of
rare species (Dunker et al., 2016; Goldberg et al., 2016;
Strickland and Roberts, 2019).

Comparison of multi-scale occupancy model results using the
Snake River and Yellowstone River data showed that occupancy
models provide the greatest benefit when sampling designs are
informed by power analyses and are used in eDNA monitoring
programs for established species rather than for rare species.
Target DNA of O. nerka was more frequently detected in samples
and replicates collected from the Snake River, especially in
the fall when O. nerka was more reproductively active in the
upstream reservoir (Figure 3). Collection date was correlated
with river discharge and inversely correlated with sample volume.
Consequently, we could not assume that date, as a surrogate
for reproduction activity, was the primary driver of the eDNA
detections, though this is a parsimonious explanation. Also, the
Snake River streamgage is located directly below a hydropower
dam at the mouth of the reservoir where O. nerka occur, so
there was an increased likelihood for detection at the Snake
River stream gage that was not present at the Yellowstone
streamgage sites.

In addition to integrating real-time environmental data and
abundant eDNA detections, our simulations illustrated that high
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frequency eDNA sampling has a higher probability of detection
and, under certain scenarios, can provide benefits above regular,
low frequency sampling. Collecting one sample every day for
7 days each week for multiple weeks (i.e., high frequency)
usually resulted in more detections than collecting seven samples
one day per week for multiple weeks (i.e., low frequency),
especially as the target became easier to detect and ρ varied
stochastically (Figures 4-7). In particular, simulation 2 allows
ρ to vary stochastically in time using a random walk behavior
so that detection probabilities were similar day-to-day. This
mimics the situation where there might be a short window
when the detection probability is considerably higher than the
remainder of the sampling period. This window is not missed
by sampling daily. However, under other scenarios, where the
detection probability is randomly selected for a given day,
there may not be substantial benefits to the high frequency
sampling when treating samples as independent. Simulations
in which low-frequency samples were modeled as independent
rather than dependent and ρ did not vary stochastically did not
show any differences between low and high-frequency sampling.
High frequency sampling designs (day or night) are more easily
executed by robotic samplers, given that daily travel to field sites
can be cost-prohibitive. But, when a high frequency sampling
design is not feasible, sampling should be spread out over a
temporal extent (hours – days) when ψ and θ probabilities are
not expected to change. Sample sites should also be distributed
to maximize independence, as is done in the sampling of several
eDNA amphibian monitoring programs, where multiple water
samples are taken from different sites around a pond or wetland
(e.g., Rees et al., 2014; Bedwell and Goldberg, 2020). However,
in cases where large numbers of PCR replicates and samples are
required for detection and reliable parameter estimation, such
as in lotic environments, it may be necessary to take multiple
samples from the same site at a similar time (e.g., Erickson et al.,
2019; Sepulveda et al., 2019; Woldt et al., 2019).

Combining autonomously collected molecular data with
environmental data collected by sensor networks into an
expedient data science pipeline is the next step in the evolution
of effective biosurveillance programs. Overall, our study used
data collected from the Snake River and Yellowstone River
as an effective proof-of-concept for using high-throughput
technologies and novel data synthesis and analysis to deliver
actionable information to decision makers. We have established
the initial steps in creating a flexible and customizable
data science pipeline for automating the movement and
transformation of data and the consolidation of data from
multiple sources to be used more strategically. Multiple steps
of this pipeline are still in developmental stages, such as
in situ eDNA analyses (Ussler et al., 2013; Hansen et al.,
2020; Sepulveda et al., 2020), and other steps require further
refinement. The next steps will include improved and more

customizable data collection by the addition of machine learning
to the robot samplers to enable adjustments while in situ, based
on ongoing power analysis simulations and the incorporation
of the pipeline into a decision tree with explicit criteria for
determining when stakeholders should be alerted. Continuation
of this work will lead to the development of a more powerful,
advanced data science pipeline with the potential to link current
physical drivers to future biological responses, thereby enabling
forecasting of environmental health and ultimately enhancing
our understanding of ecological processes and stressors.
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