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Environmental DNA (eDNA) analysis can detect aquatic organisms, including rare
and endangered species, in a variety of habitats. Degradation can influence eDNA
persistence, impacting eDNA-based species distribution and occurrence results.
Previous studies have investigated degradation rates and associated contributing
factors. It is important to integrate data from across these studies to better understand
and synthesize eDNA degradation in various environments. We complied the eDNA
degradation rates and related factors, especially water temperature and amplicon
lengths of the measured DNA from 28 studies, and subjected the data to a meta-
analysis. In agreement with previous studies, our results suggest that water temperature
and amplicon length are significantly related to the eDNA degradation rate. From
the 95% quantile model simulation, we predicted the maximum eDNA degradation
rate in various combinations of water temperature and amplicon length. Predicting
eDNA degradation could be important for evaluating species distribution and inducing
innovation (e.g., sampling, extraction, and analysis) of eDNA methods, especially for rare
and endangered species with small population size.

Keywords: environmental DNA, polymerase chain reaction, degradation rate, quantile model, meta-analysis

INTRODUCTION

Environmental DNA (eDNA) methods are innovative methods developed for monitoring
macroorganisms, especially aquatic species (Ficetola et al., 2008; Minamoto et al., 2012; Taberlet
et al., 2012; Takahara et al., 2012; Ushio et al., 2018; Kakuda et al., 2019; Tsuji et al., 2019). The eDNA
method is used to investigate species distribution. It is less invasive to organisms, and is especially
useful for rare and endangered species, which generally have low tolerance to sampling disturbance
and may be difficult to detect. Consequently, eDNA methods have been used to detect rare and
endangered species in various taxa, such as fish, salamander, and aquatic insects (Fukumoto et al.,
2015; Sigsgaard et al., 2015; Pfleger et al., 2016; Doi et al., 2017; Sakata et al., 2017).

Environmental DNA, which is compromised of DNA fragments released by organisms
into environments such as water or soil, is thought to be derived from mixtures of feces
(Martellini et al., 2005), skin cells (Ficetola et al., 2008), mucus (Merkes et al., 2014), and secretions
(Bylemans et al., 2018) of organisms. Previous studies have suggested that eDNA is mainly derived
from fractions of cells or cellular organs (i.e., mitochondria and nuclei), but it can also be derived
from fragmented DNA (degraded DNA) in the water (Turner et al., 2014; Minamoto et al., 2016).
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Many points regarding the general behavior of eDNA in
water (reviewed in Barnes and Turner, 2016) are still unclear,
especially the state (fragment length) and degradation of eDNA
(Turner et al., 2015; reviewed in Barnes and Turner, 2016).
Understanding eDNA states and degradation is essential for
the effective sampling and storage of eDNA, and may provide
pertinent information to better interpret the results of species
distribution and abundance and biomass estimations. This may
be especially problematic for rare and endangered species, which
are thought to have small populations and small amounts
(or concentrations) of DNA (Fukumoto et al., 2015; Sigsgaard
et al., 2015; Pfleger et al., 2016; Doi et al., 2017; Sakata et al.,
2017). Both factors can influence eDNA persistence, potentially
inducing false negatives which impact accuracy in occurrence and
distribution data.

Many experiments have been conducted to reveal the detailed
states and degradation rates of eDNA under various conditions
(Thomsen et al., 2012; Barnes et al., 2014; Maruyama et al.,
2014; Tsuji et al., 2017; Jo et al., 2019). In most cases, the eDNA
degradation curves declined exponentially and quickly, often in
less than a week (Thomsen et al., 2012; Barnes et al., 2014).
Earlier meta-analyses for eDNA degradation (Collins et al., 2018)
found that water conditions, such as salinity (Collins et al.,
2018), water temperature (Tsuji et al., 2017; Jo et al., 2019),
and pH (Barnes et al., 2014; Tsuji et al., 2017), influenced the
eDNA degradation rate. In addition, the characteristics of DNA
itself, such as its measured amplicon length, affected the eDNA
degradation rate (Bylemans et al., 2018; Jo et al., 2019). From
the data so far (temperature and amplification length), it seems
possible to predict the approximate degradation rate and estimate
the state of eDNA. Therefore, we conducted a novel meta-analysis
to model the effects of water conditions and DNA amplicon
length on the eDNA degradation rate using data generated in
previous eDNA degradation studies. The previous meta-analysis
(Collins et al., 2018) used the half-life of the degradation curve
as an index of degradation. Although half-life has the advantage
of being more intuitively meaningful, we instead used here
the degradation rate constants “k” because our model uses the
degradation rate, not half-life.

Using this approach, we aimed to evaluate the effects of water
conditions (i.e., ecosystem, source, temperature, and pH), and
target DNA region on eDNA degradation in previously published
data. Also, we tested the relationship between DNA amplicon
length and eDNA degradation because degradation may differ
with amplicon length. Specifically, we conducted a simulation to
predict the maximum degradation rate using quantile regression
modeling with temperature and DNA amplicon length.

MATERIALS AND METHODS

Search Strategy
A Google Scholar search on September 9, 2020, using the search
terms “eDNA” OR “environmental DNA” AND “degradation” OR
“decay” OR “decomposition,” returned 11,300 hits. The initial
filtering of the articles was based on their title; any articles that
obviously had no relevance to eDNA degradation were discarded.
After title screening, 1,000 articles remained. After abstract

screening, 42 articles remained. We manually inspected these
remaining articles and selected papers describing the degradation
rate of eDNA using experiments or field settings (Supplementary
Table 1). Upon completion of the screening process, we obtained
relevant eDNA data from 28 articles (Table 1 and Supplementary
Table 1) for the meta-analysis.

Data Extraction
From the selected publications, we assembled a list of factors
for eDNA degradation (Supplementary Table 1). We collected
the following factors and categories: “Ecosystem” was divided
into marine and freshwater. “Source” was categorized into water
sources (Freshwater: river, lake, well water, pond, tap water,
and deionized water; Marine: marine and artificial seawater).
“Temperature” and “pH” refer to the water temperature and pH
of the water sample for each experiment, respectively. “Region”
and “Amplicon length” refer to the amplified DNA region used
for quantitative PCR (qPCR) and the number of amplified-
DNA bases targeted by the qPCR reaction (bp). “Region” was
divided into mtDNA (COI, CytB, 16s, 18s, D-loop, NADH, ND2,
ND4), nuDNA (ITS), and RNA. “DNA type” was divided into
spike (i.e., the DNA contained in the environment water) and
organism. “Experiment type” was divided into “in tank” and “in
field.”

We extracted the simple exponential slope (hereafter referred
to as “degradation rate”) from the article contents and/or plots
according to the simple exponential equation (Motulsky and
Christopoulos, 2003) in each experiment:

C = CoEkt

where C0 is the eDNA concentration at time 0 (i.e., the initial
eDNA concentration), and k is the degradation slope (rate)
constant per hour. We used the standardized degradation rate per
hour. The degradation rate by day was divided by 24 to calculate
the degradation rate per hour.

Statistical Analysis and Simulation
We performed the statistical analysis and graphics using R ver.
4.0.2 (R Core Team, 2020). We tested the differences in the eDNA
degradation rate in measured DNA regions and water resources
using a linear mixed-effect model (LMM) using “lme4” ver. 1.1.23
package with “lmerTest” ver. 3.1.2 package in R. We excluded
data points without temperature information in the statistical
analyses. We set each study as a random effect. Jo et al. (2020)
compared the degradation of mtDNA and nuDNA and found the
difference. However, we could not analyze mtDNA and nuDNA
due to the limited data.

We performed quantile models (QM) for 0.1, 0.5, and
0.95 quantiles for the regression. By performing 0.95 and 0.1
quantiles for the regression, we evaluated the maximum and
minimum degradation rate. The 0.5-quantile used median for
the regression, so almost similar to simple linear regression. We
employed the Bayesian mixed-effect quantile model using the
“lqmm” function of “lqmm” package ver. 1.5.5 in R. In the QM,
we set water temperature and amplicon length as explanatory
effects and each study as the random effect. We performed the
Nelder–Mead algorithm using 10000 MCMC permutations with
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TABLE 1 | The organisms, ecosystem types (Ecosystem), water source (Source), and PCR-amplified DNA regions by quantitative PCR (Region) for all papers analyzed in
this meta-analysis.

Organism Ecosystem Source Region References Year Study

Gasterosteus aculeatus Marine Marine CytB Thomsen et al. 2012 1

Platichthys flesus Marine Marine CytB Thomsen et al. 2012 1

Lepomis macrochirus Freshwater Tap CytB Maruyama et al. 2014 2

Cyprinus carpio Freshwater Well CytB Barnes et al. 2014 3

Lithobates catesbeianus Freshwater Tap CytB Strickler et al. 2015 4

Cyprinus carpio Freshwater Well CytB Eichmiller et al. 2016 5

Cyprinus carpio Freshwater Lake CytB Eichmiller et al. 2016 5

Engraulis mordax Marine Marine D-loop Sassoubre et al. 2016 6

Sardinops sagax Marine Marine D-loop Sassoubre et al. 2016 6

Scomber japonicus Marine Marine COI Sassoubre et al. 2016 6

Scomber japonicus Marine Marine COI Andruszkiewicz et al. 2017 7

Zearaja maugeana Marine Marine ND4 Weltz et al. 2017 8

Chrysaora pacifica Marine Marine COI Minamoto et al. 2017 9

Trachurus japonicus Marine Marine CytB Jo et al. 2017 10

Plecoglossus altivelis Freshwater River CytB Tsuji et al. 2017 11

Cyprinus carpio Freshwater River CytB Tsuji et al. 2017 11

Margaritifera margaritifera Freshwater River NADH Sansom and Sassoubre 2017 12

Carcinus maenas Marine Marine COI Collins et al. 2018 13

Lipophrys pholis Marine Marine COI Collins et al. 2018 13

Hypophthalmichthys nobilis Freshwater Deionized D-loop Lance et al. 2017 14

Chionodraco rastrospinosus Marine Marine ND2 Cowart et al. 2018 15

Carassius auratus Freshwater Tap ITS Bylemans et al. 2018 16

Neogobius melanostomus Freshwater Lake COI Nevers et al. 2018 17

Cyprinus carpio Freshwater River CytB Nukazawa et al. 2018 18

Grandidierella japonica Marine Artificial seawater COI Wei et al. 2018 19

Trachurus japonicus Marine Marine CytB Jo et al. 2019 20

Daphnia magna Freshwater Tap COI Moushomi et al. 2019 21

Daphnia magna Freshwater Tap 18S Moushomi et al. 2019 21

cyanobacterial Freshwater Lake 16S Zulkefli et al. 2019 22

Schistosoma mansoni Freshwater Tap COI Sengupta et al. 2019 23

Trachurus japonicus Marine Marine CytB Jo et al. 2020 24

Trachurus japonicus Marine Marine ITS Jo et al. 2020 24

Styela clava Marine Marine COI Wood et al. 2020 25

Spirographis spallanzani Marine Marine COI Wood et al. 2020 25

Styela clava Marine Marine RNA Wood et al. 2020 25

Spirographis spallanzani Marine Marine RNA Wood et al. 2020 25

Anguilla japonica Freshwater Tap D-loop Kasai et al. 2020 26

Rhinella marina Freshwater Tap 16S Villacorta-Rath et al. 2020 27

Trachurus japonicus Marine Marine CytB Saito and Doi 2020 28

Cyprinus carpio Freshwater Pond CytB Saito and Doi 2020 28

the Gauss–Hermite quadrature approach. We set the statistical
alpha as 0.05 for parameter evaluation. We did not find a
significant interaction (p > 0.1) between water temperature
and amplicon length, so we used the model excluding the
interaction, i.e., eDNA degradation rate = water temperature +
amplicon length. We evaluated the QM models using the Akaike
information criteria (AIC), in which the best QM is identified by
having the lowest AIC.

We simulated the combined effects of water temperature
and amplicon length, using the obtained 0.95-quantile QM. We
generated 100,000 random values for the combination of water
temperature (ranging in published values from −1 to 35 ◦C;
see the results) and amplicon length used for the experiments
(ranging in published values from 70 to 719) using “runif”
function in R, which generates a random number from the

Mersenne-Twister method. We used 100,000 random values
to predict the eDNA degradation rate from the 0.95-quantile
QM (see results).

RESULTS

Degradation Rate Experiments From
Literature
The number of obtained time points for the eDNA degradation
data ranged from 3 to 25 (mean: 8.3, median: 8.0, Supplementary
Table 1). Details of the sites are listed as water sources (Table 1).
In total there were 21 marine sites, 1 artificial marine site, and
19 freshwater sites. Within the freshwater sites, there were 9
experiments that used tap or deionized water, 4 river sites, 3 lake
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FIGURE 1 | The eDNA degradation rate (simple exponential slope) with (A) DNA region and (B) water source. The degradation rate without temperature data in the
experiment were excluded in the plot. The dots indicate the individual eDNA degradation rate in each experiment in different ecosystems. The boxes and bars in the
box plot indicate median ± inter-quartiles and ± 1.5 × inter-quartiles, respectively.

sites, 2 well water sites, and 1 pond site. The temperature for
the experiments ranged from −1 to 35 ◦C (mean: 19, median:
20, Supplementary Table 1). The amplicon length used for the
experiments ranged from 70 to 719 bp (mean: 150, median:
131, Supplementary Table 1), and the DNA fragment regions
used were mainly Cyt B or COI regions in mtDNA (Table 1).
Degradation experiments of nuDNA and RNA were very few data
compared to mtDNA.

Degradation Rate
The observed degradation rate for the previously published
eDNA data ranged from 0.0005 to 0.7010 (mean: 0.1317,
median: 0.0440, Supplementary Table 1). Differences in PCR
regions did not affect the rate of DNA degradation, nor did
differences in water sources (Figures 1A,B). Although the
degradation rates for Tap and Marine water sources appear

much higher than that observed for other sources, there
were no significant differences among water sources, nor
among taxa or PCR regions (LMM, t < 1.859, p > 0.07,
Figure 1 and Supplementary Figure 1, respectively). With
the limited data excluded, such as ND2, ND4 for PCR
region and pond for water source, there were no significant
differences among water sources (LMM, t < 1.965, p > 0.06,
Supplementary Figure 2, respectively), but significant
differences among PCR region (LMM, t =−3.414, p = 0.002538,
Supplementary Figure 2).

Quantile Model for Temperature and
Amplicon Length
The relationship between eDNA degradation rate and water
temperature was significant in 0.95- quantile and showed
that higher water temperatures accelerated eDNA degradation
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FIGURE 2 | The relationship between standardized eDNA degradation rate per hour (simple exponential slope) with (A) water temperature and (B) DNA amplicon
length. The red and green lines show 0.95 and 0.5- quantile mixed-effect quantile models for each factor.

(Figure 2A, p = 0.02004 and 0.5761 for 0.95- and 0.5- quantiles,
respectively). Upon comparing the QM of 0. 1-, 0. 5-, and
0.95- quantiles, the QM with 0.95-quantile was observed to have
the lowest AIC value (0.1-quantile: 41.82, 0.5-quantile: −120.78,
and 0.95-quantile: −161.26), indicating that the best model for
the relationship. Therefore, we simulated these data using the
QM with a 0.95-quantile with a positive slope (slope = 0.020,
Figure 2A). The relationship between eDNA degradation rate
and amplicon length suggests that longer amplicon length
undergo greater eDNA degradation (Figure 2B). For amplicon
length, as for water temperature, the QM with 0.95-quantile
had the lowest AIC value (0.1-quantile: 155.1, 0.5-quantile:
−110.2, and 0.95-quantile:−145.6). Therefore, we simulated and
discussed these data using the QM with a 0.95-quantile with a
positive slope (slope = 0.225). We also showed the categories of
water temperature range (divided into four levels: −1, 0–10, 11–
20, and > 21 ◦C) and amplicon length (divided into three levels:
0–100, 101–200, and > 201 bp) with eDNA degradation rate
(Supplementary Figures 3, 4 respectively) with similar trends of
Figure 2.

eDNA Degradation Simulation
Our QM simulation lead to plotting the eDNA degradation on
a matrix of water temperature and amplicon length (Figure 3),
which showed that the water temperature had a great influence
on the eDNA degradation rate. At lower (e.g., −1 to 5 ◦C) and
higher (e.g., 15 to 35 ◦C) water temperatures, our model predicted
that amplicon length would have a smaller effect on the eDNA
degradation rate, while at moderate (e.g., 5 to 15 ◦C) water
temperatures, our prediction more clearly showed that the longer
amplicon length would have a faster degradation rate. Thus, at

moderate water temperatures, the amplicon length should also
be considered in evaluating eDNA degradation.

DISCUSSION

Our meta-analysis results showed that eDNA degradation was
accelerated in higher water temperatures and in longer amplicon
length. These generally supported the effect of water temperature
on the eDNA degradation rate in previous hypotheses for each
condition and species (e. g., Strickler et al., 2015; Eichmiller
et al., 2016; Lance et al., 2017; Tsuji et al., 2017; Jo et al.,
2019; Kasai et al., 2020). Previous studies have assumed that
water temperature does not directly affect eDNA degradation,
but indirectly affects it through enzymatic hydrolysis by
microbes and extracellular nucleases (reviewed in Barnes and
Turner, 2016). At high temperatures, with increasing activity
of microorganisms and extracellular enzymes, the eDNA in
water would degrade more quickly (reviewed in Barnes and
Turner, 2016). Our meta-analysis results showed that there were
no significant differences between laboratory water (purified or
tap water) and environmental water (seawater or freshwater).
This may indicate the enzymes and bacteria possessed by
experimental organisms affected the eDNA degradation. In
fact, the degradation experiment, which intracellular DNA and
fragmented DNA were added to purified water, showed that
intracellular and fragments DNA were not degraded in the water
for a week (Saito and Doi, 2020).

Evidence from previous studies suggested that, in eDNA
samples, long amplicon length are less likely to be detected than
short amplicon (Jo et al., 2017). Our meta-analysis supports these
previous results. A possible explanation is provided by Jo et al.
(2017), in which it was suggested that the DNA degradation rate
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FIGURE 3 | The simulation result for predicting eDNA degradation rate on the matrix of water temperature and amplicon length.

was higher in longer amplicon length (719 bp) than in shorter
amplicon (127 bp). Our simulation by QM indicated that shorter
amplicon lengths were more likely to be detected when eDNA
degradation was less affected by water temperature. When the
eDNA degradation rates were very fast or very slow due to
water temperature (e.g., 15 to 35 ◦C or 0 to 5◦C, respectively),
the amplicon length had a smaller effect on eDNA degradation
than at other water temperature ranges. In higher temperatures,
microbial activity that breaks down DNA is occurring fast on
both large and short DNA fragments, such that both classes of
fragments are not detectable by either a large or small fragment
amplicon assay at a similar rate. Whereas in colder temperatures,
both fragment classes are degraded at lower rates, and thus it is
possible that the longer fragments are able to last longer than
under warmer conditions, thus remaining detectable for longer
(suggesting a slower decay rate).

In our meta-analysis, we evaluated amplicon lengths ranging
from 70 to 719 bp, but there were no experiments in which longer
amplicon were measured. Recently, however, long range PCR was
used to amplify full mitogenomes from eDNA samples (Deiner
et al., 2017a,b). Additional investigation is needed to better
understand retention of such extremely long DNA (>16,000 bps),
and the role of degradation in these cases.

CONCLUSION

In conclusion, our meta-analysis results showed that eDNA
degradation was accelerated in higher water temperatures and

in longer DNA amplicon. We predicted the combined effects of
water temperature and amplicon length on the maximum eDNA
degradation rate. Our meta-analysis and simulation provided
new insights for future eDNA studies. We should note the
limitations: The number of papers used for our meta-analysis
was limited to 28 studies, and the data was limited especially for
other environmental factors, such as UV, pH, and salinity, which
are important factors for eDNA degradation (Barnes et al., 2014;
Lance et al., 2017; Tsuji et al., 2017; Collins et al., 2018; Mächler
et al., 2018). When data such as UV, pH, and salinity are obtained
in addition to water temperature, more complex phenomena can
be evaluated to determine the eDNA degradation rate in water.
A greater understanding and accumulation of eDNA degradation
data would improve future eDNA methods.
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Supplementary Figure 1 | The eDNA degradation rate (simple exponential slope)
with the targeted taxon group. The dots indicate the individual eDNA degradation

rate in each experiment. The boxes and bars in the box plot indicate
median ± inter-quartiles and ± 1.5 × inter-quartiles, respectively.

Supplementary Figure 2 | The eDNA degradation rate (simple exponential slope)
with (A) DNA region and (B) water source. In the plot, the limited data were
excluded; NADH, D-loop, ND2, and ND4 for PCR region and pond, well for water
source. The dots indicate the individual eDNA degradation rate in each experiment
in different ecosystems. The boxes and bars in the box plot indicate
median ± inter-quartiles and ± 1.5 × inter-quartiles, respectively.

Supplementary Figure 3 | The eDNA degradation rate (simple exponential slope)
with temperature category. The temperature categories are divided into four levels:
−1, 0–10, 11–20, and > 21 ◦C. The dots indicate the individual eDNA degradation
rate in each experiment in different ecosystems. The boxes and bars in the box
plot indicate median ± inter-quartiles and ± 1.5 × inter-quartiles, respectively.

Supplementary Figure 4 | The eDNA degradation rate (simple exponential slope)
with amplicon length category. The amplicon length categories are divided into
three levels: 0–100, 101–200, and > 201. The dots indicate the individual eDNA
degradation rate in each experiment in different ecosystems. The boxes and bars
in the box plot indicate median ± inter-quartiles
and ± 1.5 × inter-quartiles, respectively.

Supplementary Table 1 | All data analyzed in this meta-analysis.
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