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Local drivers are human activities or processes that occur in specific locations, and
cause physical or ecological change at the local or regional scale. Here, we consider
marine and land-derived pollution, non-indigenous species, tourism and other human
visits, exploitation of marine resources, recovery of marine mammals, and coastal
change as a result of ice loss, in terms of their historic and current extent, and their
interactions with the Southern Ocean environment. We summarise projected increases
or decreases in the influence of local drivers, and projected changes to their geographic
range, concluding that the influence of non-indigenous species, fishing, and the recovery
of marine mammals are predicted to increase in the future across the Southern
Ocean. Local drivers can be managed regionally, and we identify existing governance
frameworks as part of the Antarctic Treaty System and other instruments which may be
employed to mitigate or limit their impacts on Southern Ocean ecosystems.

Keywords: Southern Ocean, climate change, fishing, pollution, non-indigenous species, tourism, Antarctic Treaty
System, CCAMLR

INTRODUCTION

The environment and ecosystems of the Southern Ocean are influenced by phenomena such as
atmospheric and oceanic circulation acting at a global scale, as well as by human activities or
processes that cause physical or ecological change in specific locations. These influences, or drivers
of ecosystem change, may act in distinct ways in different regions, operate at different spatial scales
and rates of change, and often interact with each other (Millennium Ecosystem Assessment, 2005).
In the context of the Marine Ecosystem Assessment of the Southern Ocean (MEASO), local drivers
are defined as those that influence ecosystems at a particular location or series of locations within
the Southern Ocean, that can often be managed regionally. In contrast, global drivers have an
influence over the whole of the Southern Ocean, and need to be managed through global initiatives
(Morley et al., 2020).

The local drivers considered here are: pollution (both marine and land-derived), non-
indigenous species (NIS), tourism and other human visits, recovery of previously exploited marine
mammals, fishing, and coastal change as a result of ice loss and iceberg scour (Figure 1). This
paper focuses on the ten Antarctic and sub-Antarctic MEASO areas which broadly cover (but
do not align precisely with) the area managed by the Commission for the Conservation of
Antarctic Marine Living Resources (CCAMLR) (Figure 2). These sectors encompass the coastlines
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of the Antarctic continent and its outlying islands and the
sub-Antarctic islands, where the majority of scientific research
stations and tourist landing sites are located (Figure 3). The areas
most visited by humans tend to be the best studied, where the
trends and impacts are best known.

Even in one of the least impacted oceans on Earth (Halpern
et al., 2008), local drivers have at times been greater than can
be sustained by the environment, and whilst drivers such as the
presence of non-indigenous species and iceberg scour may be
projected to increase in particular locations, others, such as the
exploitation of marine mammals, and land-derived pollution,
have passed their historic peak and have either ceased altogether
or are declining (Duarte et al., 2020). The specific effects of local
drivers on Southern Ocean species and ecosystems are dealt with
in other papers published in this research topic (e.g., Bestley et al.,
2020; Brasier et al., 2021; Caccavo et al., in press; Johnston et al.,
in review; McCormack et al., in review). Cavanagh et al. (2021)
also considers the risk of climate change acting together with
local human activities, and future impacts on the capacity of the
ecosystem to deliver services such as fisheries.

The nature and scale of local drivers have differing
consequences and magnitude at locations around continental
Antarctica and the sub-Antarctic islands. Here, we assess the
status of local drivers in the main regions of human activity of
the Southern Ocean. As far as possible, given that records are
limited prior to the 1980s, we assess the status and trends of
drivers in the past. In doing so, we seek to establish a baseline
of information on historical local drivers for use in ecological
assessments of how Southern Ocean ecosystems have changed
and may be changing in the future.

Monitoring the magnitude of some local drivers (such as
fishing effort), and their impacts in specific locations (e.g.,
point source pollution at some research stations) provides a
medium to high level of certainty on recent trends. However,
the absence of monitoring of local drivers and related biological
and environmental parameters across much of the Southern
Ocean means that levels of certainty about the nature and extent
of impacts and projected trends are generally low for those
remote areas. No single driver acts in isolation and there is a
high level of certainty that cumulative impacts will result from
the interaction of local drivers with global drivers, despite a
lack of understanding of the specific effects and projections of
such interactions.

All human activities in the Southern Ocean, other than
whaling, are regulated under the instruments of the Antarctic
Treaty System (ATS). While this management aims to minimise
impacts to the environment (Hughes et al., 2018), and to
assess the cumulative impacts and interactions of both local
and global drivers and their projected trends, this has not yet
been fully achieved in practice. This is due in part to the
separate consideration of different human activities by different
components of the ATS (Grant et al., 2013), as well as a
lack of integrated consideration of the effects of global drivers
such as temperature, ocean circulation or sea ice extent within
management frameworks (CCAMLR, 2017).

Since the first humans arrived in the region during the late
18th century and began to exploit its living resources, local drivers

have had an impact on Southern Ocean ecosystems. The initially
uncontrolled harvesting of marine mammals (firstly of fur seals,
followed later by elephant seals and whales), as well as penguins
hunted for oil, resulted in sharp declines of local and regional
populations, and the assumed local extinction of some species,
such as Antarctic fur seals at South Georgia (Hoffman et al.,
2011). Harvesting of finfish was first undertaken in the Southern
Ocean in the 1960s, contributing to the collapse of fish stocks
that have yet to recover (e.g., notothenioids in the Scotia Sea
region, Kock et al., 2007). This was followed by the start of krill
fishing in the 1970s, and fishing remained unregulated until the
establishment of CCAMLR in 1982, but even then controls on
fisheries took some years to develop (Constable et al., 2000). The
near extirpation of many large cetaceans over a sustained period
during the peak of whaling activities during the first half of the
20th century may have further consequences as these species
continue to recover (Roman et al., 2014). Whilst CCAMLR’s
current management measures aim to uphold the precautionary
approach of ensuring that activities should have a low risk of
causing long-term adverse effects, fishing activities still have the
potential to drive change in populations of harvested species,
as well as those of associated and dependent species, such as
the decline of albatross populations as a result of incidental
mortality in the toothfish fishery (Michael et al., 2017; Pardo et al.,
2017; Bestley et al., 2020). Local drivers, including the activities
of single fishing vessels, can therefore contribute to regional,
long-term change.

With no Indigenous population on the Antarctic continent, or
on most sub-Antarctic islands (with the exception of Polynesians
thought to have visited and occupied some of the New Zealand
sub-Antarctic islands as early as the 12th century), human
activities on land have only had an impact since the first visits of
sealers and explorers in the early 19th century. It was not until the
second half of the 20th century that the footprint of land-based
human activity began to expand, with scientific research and
subsequently tourism both increasing in recent decades, in terms
of numbers and geographical scope, as well as a diversification
of activities (Pertierra et al., 2017; Brooks S.T. et al., 2019). The
numbers of people visiting the Antarctic continent and sub-
Antarctic islands remain very low, with the vast majority of the
coastline and the interior rarely or never visited. Nevertheless,
localised human activities on land have the potential to change or
disrupt marine species and ecosystems at a local or even regional
scale, especially where multiple drivers interact to generate
cumulative impacts, where they are exacerbated by the effects of
global drivers such as warming temperatures, or where they are
the result of accidents or unforeseen events.

Here, we discuss specific local drivers in terms of their known
current spatial and temporal extent, and their interactions with
the Southern Ocean environment. We also reflect on how these
local drivers may be positively or negatively affected by others,
including global drivers. We summarise projected increases
or decreases in the influence of local drivers, and projected
changes to their geographic range, based on evidence from the
scientific literature. Where appropriate, the level of confidence
in a conclusion is given according to the approach of the IPCC
(Mastrandrea et al., 2011). When not supported by a reference
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FIGURE 1 | Summary of local drivers of change influencing Southern Ocean ecosystems.

cited in the text, we judged confidence from the levels of
agreement we observe in the scientific literature and the amount
of evidence presented to support the conclusion, including
consideration of any contrary evidence. The levels of confidence
are not to be used as the inverse of confidence for alternative
hypotheses, as those alternatives may not be addressed in the
literature. Finally, we identify existing governance frameworks
as part of the ATS and other instruments that have specific
relevance to local drivers, and which may be employed to
mitigate or limit their impacts on Southern Ocean ecosystems
(Lee and Chown, 2007).

LOCAL DRIVERS

Marine-Derived Pollution
The Southern Ocean has relatively few direct sources of human-
derived marine waste, so the input of pollutants is primarily
from local shipping, fisheries, research station resupply activities
or transported from further afield (Slip and Burton, 1991;
Walker et al., 1997; Barnes et al., 2010; Waller et al., 2017;
Ryan et al., 2019). Despite its remote location and distance
from human habitation, the impact of marine debris on

Southern Ocean wildlife has been reported since the 1970s.
This includes entanglement of marine mammals (Payne, 1979;
Bonner and McCann, 1982; Arnould and Croxall, 1995; Waluda
and Staniland, 2013), and the ingestion and entanglement of
debris by seabirds (Van Franeker and Bell, 1988; Huin and
Croxall, 1996; Nel and Nel, 1999; Ryan et al., 2016; Phillips
and Waluda, 2020). Beached marine debris has been reported
from various oceanic shores in the Southern Ocean (Gregory
et al., 1984; Ryan, 1987; Slip and Burton, 1991; Torres and
Jorquera, 1995; Gregory and Ryan, 1997; Walker et al., 1997;
Convey et al., 2002; Barnes and Fraser, 2003; Monteiro et al.,
2018; Waluda et al., 2020). Floating debris such as fishing
buoys and packaging bands have also been observed as far
south as 73◦S, in the Bellingshausen Sea (Barnes et al., 2010).
In addition to this “macro-debris” (i.e., items >5 mm), recent
work has suggested that microplastics (items <5 mm; Thompson
et al., 2004), from both primary sources and the breakdown of
larger items, are an emerging area of concern in the Southern
Ocean. To date, microplastics have been found in pelagic waters
(Isobe et al., 2017; Lacerda et al., 2019; Suaria et al., 2020),
shallow marine sediments (Waller et al., 2017; Reed et al., 2018),
benthic invertebrates (Sfriso et al., 2020), pelagic invertebrates
(Jones-Williams et al., 2020), seals (Eriksson and Burton, 2003),
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FIGURE 2 | Areas for assessing status and trends of local drivers in the Marine Ecosystem Assessment for the Southern Ocean (black lines). Sectors are divided
meridionally: corresponding names of sectors are outside the circle. Zones extend from the coast to the Southern Antarctic Circumpolar Front (Antarctic), to the
Subantarctic Front (Subantarctic) and to the Subtropical Front (Northern). Seas are marked in the Antarctic Zone as (1) Davis, (2) Cooperation, (3) Cosmonaut, (4)
Riiser-Larsen, (5) Haakon VII, (6) Lazarev, (7) Weddell, (8) Scotia, (9) Bellingshausen, (10) Amundsen, (11) Ross, (12) Dumont D’Urville. Islands in the CCAMLR area
include Heard (HI), Isle Kerguelen (IK), Crozet (CI), Prince Edward-Marion (PEM), Bouvet (BI), South Sandwich (SS), South Georgia (SG), South Orkney (SO), Ob and
Lena Banks (OLB), and South Shetlands (not initialled but found on the north-western side of Antarctic Peninsula). Grey lines indicate the CCAMLR reporting areas
(Subareas and Divisions).

and penguins (Bessa et al., 2019; Le Guen et al., 2020). While
current concentrations of microplastics may be negligible on
the Southern Ocean scale, they can be high at local scales if
concentrated at point sources (Waller et al., 2017). The seafloor
is often a final resting place for marine debris and microplastics,
even in the Southern Ocean (Cunningham et al., 2020), although
the impact on benthic species or foodwebs remains largely
unknown (Horton and Barnes, 2020; Brasier et al., 2021).

The risk from point sources of pollution is highest on the
northwest Antarctic Peninsula as this area has the highest human
footfall including 35 coastal research stations (46% of the total
number of research stations across the Antarctic continent)
(COMNAP, 2017), and all of the top twenty most visited
Antarctic tourist sites, which accounted for 68% of all landings
in the 2017/18 season (IAATO, 2018) (see Figure 3).

Although they occur rarely, oil spills can have a greater
significance in Antarctica then elsewhere in the world (Clarke and
Harris, 2003), with substantial impacts on sediment meiofauna
(Stark et al., 2017), littoral species (Kennicutt, 1990) and seabirds
(Reid, 1995). The largest reported spills have been due to the
sinking of vessels, including the ARA Bahia Paraiso (1989,
600,000 L diesel released near the US Palmer Station, Antarctic
Peninsula), MV Nella Dan (1987, 270,000 L light marine diesel
released near Macquarie Island, sub-Antarctic) and MV Explorer
(2007, 185,000 L diesel released near King George Island,
South Shetland Islands), which resulted in impacts including
the mortality of marine and intertidal invertebrates, oiling of
penguins, and reproductive failures and declines observed in local
bird populations (Eppley and Rubega, 1990; Kennicutt, 1990;
Kennicutt et al., 1991; Smith and Simpson, 1995; Chile, 2008).
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FIGURE 3 | Regions of highest land-based human activity (scientific research stations and tourist visits). Maximum occupancy of coastal Antarctic research stations
(www.comnap.aq) and mean annual visitor numbers (2003/4-2014/15 seasons – IAATO) for Antarctica and the 2014/2015 season for South Georgia (www.gov.gs).

Most microplastics and other pollutants are global in origin
and transported into the Southern Ocean through atmospheric
and oceanic teleconnections. The transport of plastics, heavy
metals and other pollutants in the Southern Ocean via the
atmosphere, cryosphere and ocean currents is further considered
in Morley et al. (2020). The impacts of persistent organic
pollutants (POPs) originating from outside the Southern Ocean
on higher predators are also discussed in Bestley et al. (2020).

Land-Derived Pollution
Across Antarctica, research stations and land-based scientific
activities can act as local sources of land-derived pollution,
hydrocarbons, POPs, wastewater effluent, and macro- and micro-
plastics (Munari et al., 2017; Reed et al., 2018; Absher et al.,
2019), with impacts observed predominantly at a local scale
(Tin et al., 2009). Operation of ships, aircraft, research stations
and field camps in Antarctica relies upon the combustion of
hydrocarbons as a fuel source. Currently 58% of coastal research
stations use a combination of fossil fuels and renewable energy.
Logistical support for these stations also represents a potential
pollutant load with ∼555 ship visits and 547 flights annually
(data from COMNAP, 2017). Potential negative environmental
consequences of spills are made all the more serious due to the
typical lack of capacity within national Antarctic programmes to
mount effective clean-up operations in the event of an incident.

Under the Protocol on Environmental Protection to the
Antarctic Treaty (agreed 1991, entered into force 19981), the
disposal of most wastes within the Antarctic Treaty area (the
area south of latitude 60◦S) is prohibited. This includes the
discharge of oil, noxious liquid substances and garbage from
ships, but disposal of food waste and sewage is permitted within
12 nautical miles of the coast. National Antarctic programmes
are encouraged to remove sewage and domestic liquid waste
generated at research stations; however, due to the logistical
difficulties of removing sewage waste from Antarctica, coastal
research stations may dispose of sewage into the near-shore
environment, provided there is capacity for initial dilution and
rapid dispersal. No treatment of the sewage waste is required
under the Protocol, except for maceration in cases where the
number of personnel on station exceeds c. 30 individuals.
Sewage can contain non-native microorganisms, pathogens,
genetic fragments and a wide range of pollutants including
heavy metals, hydrocarbons, detergents, microplastics and flame-
retardant chemicals (for reviews see: Tin et al., 2009; Waller et al.,
2017; Stark et al., 2019). Viable sewage-associated bacteria have
been detected in high concentrations around outfalls and up
to 2 km away, along with above-background concentrations of
heavy metals, persistent organic pollutants (Hale et al., 2008; Wild
et al., 2015; Stark et al., 2016), and other organic contaminants

1https://www.ats.aq/e/protocol.html
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(Emnet et al., 2015), hydrocarbons, nutrients and faecal sterols
in marine sediments (Lenihan and Oliver, 1995; Hughes, 2004;
Hughes and Nobbs, 2004; Hughes and Thompson, 2004; Leeming
et al., 2015; Stark et al., 2016).

The impacts of long-term sewage release to near-shore
environments is not well understood, but sewage release from
research stations has caused local changes in benthic biodiversity
and abundance and may have implications for wildlife health
(Conlan et al., 2004; Stark et al., 2016). In light of developments
in sewage treatment technologies, the minimum standards set out
in the Protocol may no longer be considered acceptable by some
Parties, and increasing numbers of sewage treatment plants are
being installed, particularly at larger Antarctic research stations
(Hughes, 2003; Gröndahl et al., 2008; Brasier et al., 2021).

Other sources of Antarctic marine pollution from research
stations may include macroplastics that are blown into the
ocean, due to poor waste management, or historical waste that
was discarded prior to the entry into force of the Protocol
(Crockett and White, 2003). Historic waste dumps located on
ice sheets or ice shelves may also emerge at the ice front to be
released into the marine environment, for example, the buried
and abandoned Halley III Research Station calved off the Brunt
Ice Shelf into the Weddell Sea in 1993 (Aronson et al., 2011).
Following deployment, scientific instrumentation may also be
inadvertently or knowingly lost to the marine environment.
Examples include meteorological radiosondes and balloons,
expendable bathythermographs (XBTs), seabed experimental
apparatus damaged by iceberg collisions, lost Argo floats or
autonomous underwater vehicles and unrecoverable weights to
which scientific devices are attached.

With a more comprehensive understanding and
implementation of the Protocol, including improving waste
management practices, levels of environmental pollution may
decline, particularly as alternative technologies for power
generation are employed (e.g., the Belgian Princess Elisabeth
Station2). Nevertheless, as more research stations continue
to be established in previously little impacted locations
(e.g., the Turkish station on Horseshoe Island, Antarctica
Peninsula, and new Chinese Station on Inexpressible Island,
Ross Sea Region) and the human footprint across the continent
expands, minimising environmental impacts becomes ever more
important if SO marine environments are to remain close to
pristine (Brooks S.T. et al., 2019). Locations with concentrations
of research station infrastructure may be particularly vulnerable
to marine pollution, particularly where aging infrastructure has
led to chronic or catastrophic fuel spills that have affected the
marine environment (Wilkness, 1990; Peter et al., 2008).

Tourism and Visitation
Antarctic tourism began in the 1950s and today is one of the
three most significant human activities undertaken in the region,
alongside scientific research and commercial fishing. In general,
the impacts caused by national governmental operators in their
delivery of science and other strategic priorities through the
construction of research stations and other infrastructure may

2http://www.antarcticstation.org/station/renewable_energies

be locally greater than the impacts caused by Antarctic tourism
(Tin et al., 2009). However, the growth of the tourism industry,
and increasing diversity of activities it provides, will contribute
to increasing human footprint in Antarctica, with a resulting
loss of wilderness and increase in local human impact (Eijgelaar
et al., 2010; Liggett et al., 2011; Pertierra et al., 2017). Since its
establishment in 1991 the majority of Antarctic tour operators are
members of the industry body IAATO (International Association
of Antarctica Tour Operators), which coordinates tourism
shipping activities and represents the industry at the normally
annual Antarctic Treaty Consultative Meeting.

While the Antarctic tourist industry is driven by global
demand, tourist activities influence sites at a local scale. The
majority (>95%) of tourism activity occurs in the Antarctic
Peninsula region, but visitors also travel in smaller numbers to the
Ross Sea, and sites along the coast of East Antarctica (Figure 3).
Most tourists visit Antarctica on cruise vessels that call at a
number of coastal sites for brief shore-based activities, after which
they return to the vessel. Around 50 yachts travel to the Antarctic
each year, which can be commercial operations as well as private
exploration (United Kingdom, Argentina, Chile in conjunction
with the International Association of Antarctica Tour Operators,
2018). In recent years the tourist season has been extended to
more than 150 days (November to April) due to the use of ice-
strengthened passenger vessels, with an associated steep rise in
tourist numbers. The 2018–2019 season recorded an increase of
8% from the previous year, with a total of 56,186 tourists visiting.
Numbers increased again by 32% to 74,401 for the 2019/2020
season (IAATO, 2019), although this was curtailed in early 2020
due to the effects of COVID-19. The 2020/2021 season saw a near
cessation of Antarctic tourism due to the pandemic, and it is not
known how long it will take for the cruise industry to recover
(Hughes and Convey, 2020).

Tourism has occurred at c. 250 locations in Antarctica, with
the great majority concentrated at a small number of sites located
on the northern Antarctic Peninsula and offshore islands (e.g.,
Neko Harbour, Goudier Island, Half Moon Island and Cuverville
Island). Bender et al. (2016) reported that in the 2013/2014
season, just 15 of the Antarctic Peninsula sites made up 68% of
all passenger landings. The level of human impact at these sites
will depend upon their resilience, however, few sites have been
assessed and monitored in this regard (see Tejedo et al., 2012,
2020; Russell et al., 2013).

Impacts caused by increasing visitation and the potential
establishment of permanent infrastructure (noting that these are
not exclusive to tourism) could include: a loss of wilderness
and aesthetic values (Summerson and Tin, 2018), increased risk
of the introduction of non-indigenous species (Chown et al.,
2012), increased risk of pollution events at both small (e.g.,
dropping of litter) and large scale [e.g., fuel spill from a ship
(Aronson et al., 2011)], disturbance of wildlife by humans (Burger
and Gochfeld, 2007; Tejedo et al., 2016; Dunn et al., 2019) or
aircraft (Hughes et al., 2008), increased atmospheric emissions
from vessels, aircrafts and land vehicles (Amelung and Lamers,
2007; Eijgelaar et al., 2010) and increasing cumulative impacts at
ice-free locations where scientific, logistic and tourism activities
coincide (e.g., Deception Island) (Pertierra et al., 2014).
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Predicted climate change impacts such as increases in the area
of ice-free ground (Lee et al., 2017), reductions in sea ice extent,
and shifts in the distribution ranges of wildlife, are likely to affect
the tourism industry by potentially changing access to established
visitor sites, facilitating access to new locations and affecting the
wildlife present at established landing sites.

An increasingly diverse range of activities are available
to tourists including overnight camping, mountain climbing,
visits to penguin colonies (including emperor penguins),
whale watching, trips on small boats, swimming, SCUBA and
submersible diving, underwater Remotely Operated Vehicles
(ROVs), Remotely Piloted Autonomous Systems (RPAS), stand-
up paddle boarding, photography, helicopter flights, kayaking,
skiing/snowboarding, research station visits, as well as more
extreme activities such as marathon running, long distance
treks (e.g., by ski or using kites), paragliding, heli-skiing and
base jumping. Many of these activities may have direct impacts
upon marine species, either through disturbance of a range
of biological groups [e.g., from the disturbance of benthic
sediment population by the now prohibited practice of digging
geothermally-heated bathing pits at the shoreline on Deception
Island, to disturbance resulting from visitation of penguin
colonies (Dunn et al., 2019)], generation of underwater noise
(ROVs, large and small boat operations) and potential dispersal
of non-native species [i.e., through repeated use of equipment at a
series of locations without adequate cleaning during intervening
periods (McCarthy et al., 2019)]. As ship traffic has continued
to increase, the risk of ship strikes of whales has also increased,
with nine whale strikes reported by IAATO to the International
Whaling Commission (IWC) since 2001. Recognising this,
IAATO has introduced new procedures for operations in the
vicinity of whales, including limiting vessel speed to 10 knots at
two marine sites to the west of the Antarctic Peninsula (IAATO,
2019).

Non-indigenous Species (NIS)
Antarctica and the outlying islands within the Polar Front
typically have the highest proportion of native species of any
global localities. For example of the >1,200 species recorded from
the South Orkney archipelago, only two (0.2%) are considered
to be non-indigenous (Barnes et al., 2009) and some southern
polar islands such as McDonald and Bouvetoya may even have
none (Frenot et al., 2005). It is now clear that the Polar Front
has more porosity than once thought (Barnes et al., 2006),
yet still presents a considerable obstacle isolating the Southern
Ocean from much species transport from elsewhere (Clarke
et al., 2005). However, ships, aircraft and even plastic now cross
the Southern Ocean, potentially carrying non-indigenous species
(Lewis et al., 2003; Morley et al., 2020), although the risk is
geographically uneven given the distribution of stations and
tourist sites (Figure 3), and more risk is borne by the more
visited Scotia Arc and northern Antarctic Peninsula. Only a small
proportion of species which travel such a journey, survive and
remain viable, and an even smaller proportion are able to recruit
and establish. Environmental conditions are most similar to
cool temperate continental shelves around the western Antarctic
Peninsula and Scotia Arc, which may increase the risk in these

areas. Furthermore, regional warming and sea ice losses have
been highest within those areas, and this risk distribution is
borne out by establishments of non-indigenous species recorded
to date (Frenot et al., 2005; Barnes et al., 2006; Avila et al., 2020;
Cárdenas et al., 2020; Hughes et al., 2020). With more research
stations, of which several maintain year-round SCUBA activities,
this region is also better monitored than elsewhere, although still
far from adequate.

Over the last few decades there have been reports of single life
stages of several marine species reported from various locations
around the Scotia Sea and northern Antarctic Peninsula (for
a recent overview see McCarthy et al., 2019). Considerable
scientific and public discussion has occurred over the potential
changing distributions of native fauna (most obviously stone
crabs – Lithodidae) and the possible vulnerability of life on
Antarctica’s sea beds (Thatje and Fuentes, 2003; Griffiths et al.,
2013). A single Mytilid mussel was found at Grytviken, South
Georgia (Ralph et al., 1976), and Mytilids have also been
reported from King George Island (Cárdenas et al., 2020), but
establishment was not recorded in either case. However, new
records of macro algae within the caldera at Deception Island
may represent new discoveries of indigenous or non-indigenous
species, detected due to increased sampling effort (Clayton et al.,
1997). An invasive and potentially ecologically harmful bryozoan
(Membranipora membranacea) has also been discovered on
non-native kelp rafts at Deception Island (Avila et al., 2020).
These kelp rafts, usually Durvillaea antarctica or Macrocystis
pyrifera, have been demonstrated to be able to cross the Polar
Front with evidence from genomics and oceanographic models
(Fraser et al., 2018). Recently the polychaete worm Chaetopterus
variopedatus has established and started spreading in the shallows
at South Georgia (see Hughes et al., 2020). Once established,
marine invasions have proved virtually impossible to reverse.
There has been considerable concern that non-indigenous species
establishments around Antarctica might prove to be particularly
devastating because of the long Southern Ocean semi-isolation
from biota elsewhere, but also due to the intensity of climate
change there (Brasier et al., 2021).

Exploitation of Marine Species
The long history of human exploitation of marine species in the
Southern Ocean developed in a progressive sequence of seals
and penguins, whales, finfish, then krill. In terms of methods
of exploitation, it went from capturing and killing individual
marine mammals, to the use of industrial demersal and pelagic
trawls and more recently to the use of demersal longlines to
capture toothfish. Illegal, unreported and unregulated (IUU)
fishing began in the mid-1990s using longlines but evolved to
use indiscriminate gill netting from 2008. Detailed reporting of
species caught, along with the geolocation of catches, only began
in the 1990s. Most biomass was extracted from the Southern
Ocean prior to this time. Here we present the time series of
exploitation as best we can from available records to date. These
time series indicate the pressures that local exploitation may have
had on the species involved, but also the relative difference in
food web effects in different MEASO areas. We also report on
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FIGURE 4 | Total catch (tonnes) of Southern Ocean cetacean species (right legend) in four different periods of whaling. Data from IWC Catch Records. Y-axis is on a
log10 scale.

FIGURE 5 | Total accumulated catch (million tonnes) of Southern Ocean cetaceans in each sector (right legend) from each zone of MEASO areas as shown in
Figure 2. Data from IWC Catch Records.

‘incidental mortality’ which is the unintentional capture or death
of species not targeted by the fishery.

Marine Mammals
Exploitation of seals began in the eighteenth century with
harvesting mostly occurring in the early 19th century when seal
populations were decimated across many of the subantarctic
islands. Reconstruction of the catch of seals has been difficult,
requiring the interpretation of log books from vessels exploiting
seals on subantarctic islands and from trade figures (Foley and
Lynch, 2020). For many areas such as in the Indian Ocean sector,
few records exist but the reported timeline is similar with the
greater part of sealing finishing by the mid-19th century (King,
1959). A reconstruction of the Antarctic fur seal population at
South Georgia has estimated annual takes of Antarctic fur seals
of up to 150,000 animals on that island alone (Foley and Lynch,

2020). Similar takes are reported for seals and sea lions south of
Australia and New Zealand (Ling, 1999).

Pelagic whaling caused the near extirpation of large whale
species prior to the moratorium on commercial whaling in 1986
(Rocha et al., 2014). Reconstruction of whale catches has come
from log books and records from shore stations and factory
vessels during this time. Records are available from the Secretariat
of the IWC. The available data on the numbers of different species
caught were aggregated into four main periods of whaling – prior
to the Second World War (WW2), a period of active whaling
from 1945 to 1970, a period where depletions of the larger whales
were obvious in the catch records from 1970 to 1986, and the
period since the moratorium came into effect (Figure 4).

The potential impacts on the ecosystem of such removals in
the different MEASO areas is shown by multiplying the catch
in numbers by an approximate average mass of an adult male
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FIGURE 6 | Time series of catches (tonnes) of all Southern Ocean cetaceans
in each sector (central right legend) from each zone (labelled panels) of
MEASO areas as shown in Figure 2. Data from IWC Catch Records.

whale of each species. We note that these species migrate to lower
latitudes of the Southern Hemisphere in winter and many were
also hunted there, so these estimates represent a minimum value
in terms of biomass removed. Even though this is approximate,
the results presented in Figure 5 show that most biomass was
removed from the Antarctic Zone followed by the Subantarctic
Zone and most direct removals of whales occurred in the Atlantic
and Central Indian Sectors.

The time series of biomass removals is shown in Figure 6. The
earliest whaling in the 20th century resulted in similar removals
from the subantarctic zone in the Atlantic Sector, around South
Georgia, and around the Antarctic Peninsula in the East Pacific
Sector, as land stations were established in these locations for
processing. After that and prior to WW2, the use of factory
ships enabled more offshore hunting, with onboard processing
eliminating the need to use land stations. Substantial biomass was

removed from Antarctic Zone in the Atlantic Sector (Weddell
Sea) and from the East Antarctic area of the Central Indian
Sector. After WW2, catches were more widespread, including
the Ross Sea in the West Pacific Sector in the 1950s and 1960s.
By 1970, Southern Ocean areas were considered fished out, and
the main fishery had moved north. Hence biomass taken from
the Antarctic Zone was negligible compared to steady catches of
mostly sei and fin whales in the Subantarctic and Northern Zones
of the Central Indian and West Pacific Sectors.

Finfish and Krill
The dominant fisheries in the Southern Ocean began with
groundfish fishing by predominantly the Soviet Union over the
1970s and 1980s (Figures 7, 8). During this time, Notothenia
rossii was fished close to extinction throughout the island
shelf areas in the Antarctic and Subantarctic Zones of the
Southern Ocean (Kock, 1992). Other groundfish species also
became depleted throughout the Subantarctic Zone prior to the
coming into force of CCAMLR in 1982 (Kock et al., 2007) and
ended by 1990. Two bentho-pelagic species from this period
remain targeted in the Southern Ocean. The mackerel icefish,
Champsocephalus gunnari, is targeted in the Subantarctic Zone
at South Georgia (Atlantic Sector) and Heard Island (Central
Indian Sector) using trawls. Toothfish, Dissostichus species,
are targeted throughout the Southern Ocean using longlines,
although the catch for Dissostichus eleginoides (Patagonian
toothfish) in the Subantarctic Zone far outweighs the catch of
Dissostichus mawsoni (Antarctic toothfish) in the Antarctic Zone.
Fishing for Antarctic krill (Euphausia superba) began in the
1970s and increased substantially in the 1980s, only to decline
again in the 1990s following the collapse of the Soviet Union.
Catches of krill are increasing again but are not yet at the levels
of the 1980s. Other fisheries that have been explored include
squid, mesopelagic fish (mainly myctophids), Antarctic silverfish
(Pleuragramma antarctica) and lithodid crabs.

The spatial distributions and time series of catches of
target species within each MEASO area were assessed using
catch records from the CCAMLR Statistical Bulletin (hereafter
referred to as the Bulletin, CCAMLR, 2019) (see outcomes in
Figures 9, 10). Rules for distributing catch from CCAMLR’s
large-scale reporting areas (Subareas and Divisions) into MEASO
areas were developed based on the reports of the Scientific
Committee and fishery reports published on the CCAMLR
website3 as well as Kock (1992). Each record in the Bulletin
has the reporting area, flag state, year, target species and, in
most cases, fishing method. Geographic locations and depth
ranges were available in the descriptions of different methods
and locations where target species were caught. For CCAMLR
reporting areas that overlapped with MEASO areas, catches were
partitioned by the proportions of seabed area in the different
MEASO areas relative to these locations.

Fisheries for Patagonian toothfish are well established, with
integrated assessments using estimated parameters for their stock
dynamics along with estimates of abundance are available for
the fishery at South Georgia in the Atlantic Sector and Heard

3www.ccamlr.org
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FIGURE 7 | Total catch (tonnes, all taxa) in each major fishery (legend) in the CCAMLR Area in each decade from the 1960s to the present. Data from the CCAMLR
Statistical Bulletin 2019.

FIGURE 8 | Total accumulated catches (tonnes) of four major groups of target species in each sector (legend) from each zone for MEASO areas as shown in
Figure 2. Groundfish are primarily Notothenia rossii, Gobionotothen gibberifrons, Patagonotothen guntheri, and Lepidonotothen squamifrons. Toothfish are
Dissotichus eleginoides and D. mawsoni. Icefish are primarily Champsocephalus gunnari in the Subantarctic and Chaenodraco wilsoni in the Antarctic. Antarctic krill
are Euphausia superba. Mesopelagics consist of myctophids (primarily Electrona carlsbergi) and silverfish (Pleuragramma antarctica). Data from the CCAMLR
Statistical Bulletin 2019.

Island in the Central Indian Sector on the Kerguelen Plateau.
These fisheries have regular stock assessments and biannual
setting of catch limits, based on the use of the CCAMLR

decision rule (Constable et al., 2000; Hillary et al., 2006; Candy
and Constable, 2008). Also on the Kerguelen Plateau is the
largest toothfish fishery around Isles Kerguelen. The Antarctic
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FIGURE 9 | Accumulated catch for groundfish, icefish, toothfish and Antarctic krill from 1970 to 2018 plotted against ocean depth (legend at bottom left of Antarctic
krill panel) as catch density (tonnes per square kilometre) on a log10 scale (bottom left legend). Species are those listed in Figure 8. Source data: CCAMLR Statistical
Bulletin 2019. Grey lines show a graticule, and black lines show the boundaries of the 15 MEASO areas in Figure 2.

toothfish fisheries around continental Antarctica are classified
as exploratory fisheries with the need to have active research
programmes to support the development of the fishery. The
most advanced of these is the fishery in the Ross Sea, which
began in 1998 and also has an integrated assessment (Mormede
et al., 2014). The other Antarctic toothfish fisheries remain in
early research phases, despite being present for over a decade.
Combined, these fisheries are considered to be sustainable
(Croxall and Nicol, 2004; Constable, 2011), although the effects
of climate change will need to be considered in their management
(Nicol et al., 2007; Larsen et al., 2014; Abrams et al., 2016;
Constable et al., 2016c, 2017; Trebilco et al., 2020; Cavanagh et al.,
2021).

A threat to the sustainability of the toothfish fisheries was
the rise of illegal, unreported and unregulated (IUU) fishing
by longliners in the 1990s (Österblom et al., 2015). The catch
from IUU fishing was estimated by CCAMLR according to catch

rates of the legal fishery, the number of observed IUU longlining
vessels and the expected time fishing. Concerted effort amongst
CCAMLR Members to combat IUU fishing led to a substantial
decline in the IUU fleet and in estimated total illegal catch by 2008
(Figure 7). IUU fishing still occurs at a low level but mainly using
gillnets. The loss of fish to gill nets is difficult to measure, because
observations of vessels cannot be readily translated to the amount
of fishing effort and catch rates are difficult to assess. As a result,
estimates of IUU catch have not been made since 2008.

A further threat to the toothfish fishery is the depredation of
toothfish from longlines (Söffker et al., 2015; Tixier et al., 2016).
This can impact the viability of the fishery but also affect the
mortality of fish from the fishery; estimates of depredation are
needed in order to correctly estimate how many fish have been
removed from the stock.

The fishery for Antarctic krill was undertaken in the Atlantic,
Central Indian and East Pacific Sectors in its first decade.
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FIGURE 10 | Time Series of catches for target species in each sector (legend in centre top row) for each zone (rows) of MEASO areas (as shown in Figure 2).
Groundfish and toothfish can be separated at 1991, with groundfish trawling occurring prior to that time and toothfish fisheries (primarily longlining) continuing after
that time. Species are those listed in Figure 8.

Since then, the fishery has concentrated on the west Antarctic
Peninsula (South Shetland Islands and, more recently, Bransfield
Strait) in the Antarctic Zone of the East Pacific Sector, and
the South Orkney Islands in the Antarctic Zone and South
Georgia in the Subantarctic Zone of the Atlantic Sector. After
a decline in the krill fishery in 1991, the catch around South
Georgia has remained relatively constant, while catches have
steadily increased around the South Orkneys (Nicol and Foster,
2016). With increasing open water conditions extending the
fishing season into winter, the Bransfield Strait has become
a very important location for the fishery (Kawaguchi et al.,
2009; Nicol and Foster, 2016). While the krill catch limits
are considered sustainable for the krill population as a whole
(Constable, 2011), there remains great potential for localised
effects of krill harvesting on krill predators (Constable, 2002;
Constable et al., 2017), even at the current levels of harvest
(Watters et al., 2013, 2020) and particularly under scenarios
of climate change (Klein et al., 2018). Recent developments
to distribute catch inversely to localised risks to predators has
advanced the regulatory approach for krill and could be used

to help manage for climate change impacts on the ecosystem
(Constable et al., 2016b).

Scope for new fisheries in the Southern Ocean remains
primarily in relation to mesopelagic fish and Antarctic silverfish,
both of which are important prey species in pelagic and coastal
waters, respectively (Koubbi et al., 2017; McCarthy et al., 2019;
Saunders et al., 2019).

Incidental Mortality From Fisheries
Incidental mortality from fisheries includes the unintentional
catch or entanglement of other fish, seabirds and seals. It can also
arise from impacts of fishing gears without capture, such as might
occur through the impacts of bottom fishing gears on benthos.

CCAMLR has successfully developed measures to reduce
seabird mortality in fishing to only an occasional event. Croxall
(2008) describes the measures and strategies put in place from
the early 1990s to eliminate systemic incidental mortality from
CCAMLR fisheries. Soon after the start of longlining for toothfish
began in the late 1980s (Figure 11), concern for the capture
of seabirds in this fishery led to the development of methods
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FIGURE 11 | Incidental mortality of seabirds estimated for trawl and longline
fisheries (legal fleet; solid lines) and for illegal, unreported and unregulated
fishing fisheries (IUU fleet; dashed lines) for each sector of the Southern
Ocean (see Figure 2). Few birds are caught in the Antarctic Zone. Most are
caught near to subantarctic islands. Data obtained from reports of the
Scientific Committee of CCAMLR from 1994 to the present. Size of circle
reflects the uncertainty in the estimates. Small circles reflect greater
uncertainty – in IUU estimates these were labelled by SC-CAMLR as medians.
Time-series of IUU estimates end in 2008; IUU fishing was low and vessels
used gill nets and catches could not be estimated.

to deter seabirds from attacking baits during deployment and
for deterring birds from approaching the gear during hauling.
These methods included weighting longlines as well as deploying
streamer lines. Strategies included having requirements for
scientific observers on fishing vessels to monitor bird interactions
with fishing gear and by restricting fishing from seabird foraging
areas during the bird breeding season. IUU longline fishing
vessels were likely to have had a great impact on seabirds
during the height of IUU fishing over the decade from 1997
to 2007 (Figure 11). While seabird mortality in CCAMLR
fisheries remains low, incidental mortality of Southern Ocean
seabirds in longline fisheries outside of the CCAMLR Area
remains a great risk to the conservation of some of these species
(Clay et al., 2019).

The potential for bottom fisheries, notably trawling, to
have significant long-lasting effects on benthic habitats and
communities came to the attention of CCAMLR in 2006 (SC-
CAMLR, 2006) and measures were taken in 2007 to conserve
vulnerable marine ecosystems (VMEs). While CCAMLR
established a Conservation Measure to prohibit bottom trawling
in high seas areas in CCAMLR it also established measures to
protect VMEs from demersal longlining with provisions to move
on from areas where high biomass (defined as two buckets) of
habitat-forming taxa were observed as bycatch in an individual
longline shot (CCAMLR, 2007, 2008). Figure 12 shows the
overall fishing effort as effort density for bottom trawling (hours)
and longlining (hooks) given the available effort data from the
CCAMLR Statistical Bulletin CCAMLR (2019).

Scaling the effort to the level of disturbance of the seafloor,
also known as the fishing footprint, is best done using haul data,

including the location of each haul and, in the case of trawls, the
swept area of the net (width of the opening of the net combined
with the distance towed) and, for longlines, the swept area of
the line, which is the amount of sideways movement of the line
during its deployment, fishing and retrieval. These data are not
available in the Bulletin. In the absence of those data, we examine
the effort density per km2 and use information from Welsford
et al. (2014) on the characteristics of trawl and longline hauls to
consider the proportion of seabed that might have been affected.
We note that the densities in Figure 12 may be lower than
as experienced in local areas because of the method of evenly
distributing the effort throughout depth range of a fishery in an
area. In addition, localised concentrations may also reduce the
effects because of repeated disturbance of the same area.

Effort densities in both trawl and longline fisheries were
highest in the Subantarctic Zone in both the Atlantic and Central
Indian Sectors. Trawling also had high effort densities in the
Antarctic Zone of the East Pacific and Atlantic sectors, from
trawling prior to CCAMLR around the Antarctic Peninsula and
the islands of the Scotia Sea. Longline effort in the Antarctic
Zone has been greatest in the West Pacific Sector associated
with the Ross Sea fishery. The only bottom trawl fishery now in
operation is at Heard Island. This has been assessed to be localised
and not significantly impacting the benthic environment, part
of which is due to the presence of the nearby marine protected
area (Constable and Welsford, 2011; Welsford et al., 2014; Brooks
C.M. et al., 2019).

The greatest accumulated recorded effort for trawling has
been a density of 3.1 h per km2. (log10 = 0.491) (noting the
absence of records for the very large catches). For longlining,
the greatest accumulated density has been 11,000 hooks per km2

(log10 = 4.04). Using the mean estimates of swept areas for trawl
gear (20 m) and longlines (6.2 m) from Welsford et al. (2014) and
assuming trawling was undertaken at a conservative speed of 2
knots, this equates to the proportion of seabed area affected as
23% and 6.8%, respectively.

A shortcoming of the current analysis is the lack of availability
of geolocated haul data. Nevertheless, our analyses indicate that
the magnitude of impact is unlikely to be trivial at a local
scale, if the fisheries are concentrating in sensitive benthic areas.
Welsford et al. (2014) provide methods for using geolocated
haul data, along with camera deployments on fishing gear, for
assessing the direct impacts of fisheries on benthic habitats.

At present, CCAMLR has a process for registering VME
locations and providing interim protection to areas identified as
possible VMEs, known as risk areas, during longline operations
(CCAMLR VME registry4). At present (accessed October 25,
2020), it has 53 locations registered as VMEs across the
west Antarctic Peninsula, South Orkneys, Ross Sea and East
Antarctica. For risk areas identified during fishing, seventy seven
areas have been identified in the Ross Sea and one in East
Antarctica. There is yet to be a follow-up evaluation of the nature
and extent of those sensitive areas, which may be larger than the
circumscribed locations.

4https://www.ccamlr.org/en/document/data/ccamlr-vme-registry
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FIGURE 12 | Bottom fishing effort in MEASO areas for trawl and longline fisheries. Top row (A,B) shows effort density per km2 – hours and hooks, respectively, on a
log10 scale. Background is ocean depth (bottom left legend on each map). Black lines show boundaries of MEASO areas as depicted in Figure 2. Middle row (C,D)
shows effort over time (split year) in each MEASO area according to the legend at right where labels indicate the sectors (first two letters) and zones (last letter) for
each area. Sectors are Atlantic (AO), Central Indian (CI), East Indian (EI), West Pacific (WP), and East Pacific (EA). Zones are Antarctic (A), Subantarctic (S), and
Northern (N). Bottom row (E,F) shows the time series of catches in each area – colour and line types according to the middle row legend. Catches are the total catch
of targeted species in bottom fisheries (groundfish, icefish, and toothfish). Circle size indicates the proportion of the catch that had effort data associated with it.

Recovery of Marine Mammals
Exploitation and recovery of marine mammals has been
widespread (Rocha et al., 2014). Here we focus on marine
mammal recovery in the MEASO areas that have experienced
most human impact; broader trends are reviewed by Bestley et al.
(2020).

Following protection from exploitation, many marine
mammal species are now recovering, with surveys showing
growth, for example, in populations of humpback (Branch, 2011;
Ward et al., 2011; Noad et al., 2019), southern right (Cooke et al.,
2001; Carroll et al., 2013) and Antarctic blue whales (Branch
et al., 2004), all of which seasonally feed in Southern Ocean
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waters. As these whales, and some seal species such as fur and
crabeater seals, are krill consumers; at a local scale increases in
marine mammal abundance may be anticipated to influence
krill swarms (Cox et al., 2009; Ducklow et al., 2013), and also
influence oceanic nutrient enrichment and mixing (Lavery et al.,
2014; Roman et al., 2014).

Krill swarms of different sizes and densities are differentially
predated by different whale species (Cox et al., 2009; Santora
et al., 2010, 2014; Friedlaender et al., 2014; Miller et al.,
2019) due to their varying sizes, morphology and energetic
requirements. Reductions in local krill abundance could reduce
food available to more area-restricted central place foragers such
as breeding penguins and seals. For example, a spatial study of
multiple krill predators, using canyon waters near Livingstone
Island, suggested an overlap between humpback whales and
penguins which would support this idea (Santora and Reiss,
2011). Any reductions may be compounded by local krill fishing,
particularly in the Antarctic Peninsula region where this activity
is concentrated (Kawaguchi and Nicol, 2020) and partially
coincident with the peak period when whales visit (Weinstein
et al., 2017). However, prey competition is not necessarily the
obvious outcome of whale presence, as whales are less spatially
restricted than the central place foragers, may have differing krill
swarm preferences (Friedlaender et al., 2009, 2016) and may
even modify krill swarm behaviour (e.g., Cox et al., 2009). For
example, it is most energetically efficient for whales to target the
densest prey patches (Acevedo-Gutierrez et al., 2002; Goldbogen
et al., 2011; Friedlaender et al., 2015), while smaller krill predators
may be less restricted in their preference. The impact of whale
foraging on krill swarm behaviour is also hard to predict; whale
predation may, for example, change krill swarming behaviour
in ways that make them more accessible to other predators, for
example by dispersing high density krill swarms, or by bringing
krill closer to the surface.

A second, widely discussed, possible impact of whale recovery
concerns their role within the ecosystem as a biological pump,
moving nutrients from deep waters to surface waters as they dive
to forage, and enhancing surface water nitrogen and iron (and
therefore primary productivity) in “pulses,” through defecation
in surface water (Lavery et al., 2014; Ratnarajah et al., 2014;
Roman et al., 2014). Consequently, whales may initiate a positive
feedback loop, where the productive places that they go to feed are
then further enhanced in terms of primary productivity, because
of their presence (Roman et al., 2014). This may be particularly
pronounced in enclosed areas such as bays, where current flows
are limited. There are widespread, strong and important biota-
biogeochemistry interactions in Southern Ocean waters, near and
offshore, from megabenthos through to microbes (Cavan et al.,
2019; Henley et al., 2020).

In the western Antarctic Peninsula, high densities of
humpback whales seasonally feed on krill in the Gerlache Strait
and bays of the Peninsula (Nowacek et al., 2011; Johnston et al.,
2012). There are no empirical abundance trends available for
this population (which seasonally winters in the Pacific waters
of central and south America). Model-based estimates using
historical catch data suggest the population is close to carrying
capacity (IWC, 2016), but high levels of female pregnancy
detected within this population (63.5% of females, including

mothers with calves, Pallin et al., 2018) suggest that it is still
growing. Less is known about the abundance trajectories of other
regionally important species; Antarctic blue whale numbers are
thought to be increasing further offshore in the Peninsula region
based on sighting surveys (Branch, 2007), but since they range
widely (Branch et al., 2007), population changes may not be
particularly concentrated in local waters. Antarctic minke whales
can be locally abundant, but were not heavily exploited during
the main commercial whaling period, and there is no evidence
that their numbers are increasing locally; if anything, recent
surveys suggest a 60% decline over the decade spanning the
1990s (IWC, 2013).

More than 170,000 whales were killed in South Georgia
waters, indicating the historical importance of whales at a local
scale within this ecosystem (Moore et al., 1999). Anecdotally-
reported humpback sightings have risen rapidly in the last decade
(Jackson et al., 2015, 2020), consistent with recent assessment
that this humpback whale population is now close to recovery
from whaling (Zerbini et al., 2019). Formal assessments are not
available for other species, but southern right whales are regularly
seen (Moore et al., 1999) and there has been steady 6–7% per
annum population growth in the Argentine southern right whale
calving ground seasonally associated with South Georgia (Cooke
et al., 2001). There are also increasing reports of blue whales using
South Georgia shelf waters, suggesting some regional recovery
(Calderan et al., 2020). The impacts of these changes might mean
increased competition for krill with other predators, but these
may be balanced by positive benefits from the impact of whales
on krill swarms, if whale predation makes them more available
to smaller krill predators. Furthermore, as the South Georgia krill
fishery operates only during winter, human impacts are minimal
during the peak period of whale occurrence.

Coastal Change/Ice Loss and Iceberg
Scour
Until recently, climate mediated-marine ice loss in the Southern
Ocean was mostly restricted to West Antarctica, but this is now
also rapidly occurring throughout East Antarctic seas (Turner
and Comiso, 2017). One of the ways in which marine ice is
being lost is increased iceberg calving (from ice shelf collapses
and glacier retreat). Reduced seasonal freezing of the sea surface
in space and time means that such icebergs are less likely to be
locked into one location, so the potential of iceberg movement
is also increasing (see Smale et al., 2008). Increased iceberg
numbers and mobility drives a higher probability and frequency
of collisions with the seabed and massive disruptions to benthic
biodiversity (Gutt, 2001; Barnes and Souster, 2011). Monitoring
of scouring in the productive shallows at Rothera (Barnes, 2017)
and Carlini research stations (Deregibus et al., 2017) has shown
that two thirds of life shallower than 25 m depth may be wiped
out in some years at some locations.

Iceberg scouring decreases markedly with depth, but certain
hotspots are regularly impacted even at several hundred meters
depth. Large icebergs, tracked via earth observation satellites,
have distinct geographic hotspots of grounding, including the
East Amundsen Sea in West Antarctica, and the narrow shelf
of the Davis and Cosmonaut Seas and Cape Norvegia (East
Weddell sea) (see Barnes et al., 2018). Thus, although marine
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ice losses are driven by global processes (warming) and have
many similarly large influences (e.g., heat and gas exchange), the
effect on biodiversity can be quite localised and predictable. Many
local areas of iceberg production are likely to gain considerable
biodiversity and ecosystem services, for example bays emerging
from ice shelf collapses and fjords from glacier retreat (Cavanagh
et al., 2021). In contrast, iceberg collision hotspots, such as in
the Weddell Sea could lose biodiversity, but there seem to be
more blue carbon winners than losers with marine ice loss so
far (Barnes et al., 2018). However, it is harder to assess how well
Southern Ocean biodiversity will be resilient to the breadth and
complexity of stressors, many of which interact, especially on
the seabed where we know least, yet most known species occur
(Brasier et al., 2021; Zwerschke et al., 2021).

Other global drivers, such as strengthening of winds due to
ozone loss, are likely to interact with sea ice changes, for example,
in the generation and maintenance of polynyas, and thus
influencing primary production (see Arrigo et al., 2008). Recent
evidence suggests that moderate sea temperature increases in
Antarctica’s shallows may increase colonisation and growth in
new pioneers (Ashton et al., 2017), thus promoting recovery from
ice scour. However, new habitat emerging from glaciers and ice
shelves, longer periods of food availability (plankton blooms) and
fast growth rates (temperature) are balanced with more ice scour,
freshwater input and sediment loading from retreating glaciers,
with highly localised but substantial negative impacts (Sahade
et al., 2015). The impacts of these many interacting climate-forced
variables are difficult to predict with perhaps ‘boom and bust
cycles’ in many nearshore locations, but at least initially there may
be more winners than losers (Morley et al., 2019).

PROGNOSES AND PRIORITIES FOR THE
FUTURE

In assessing the projected increase or decrease of the influence
of local drivers within MEASO areas (summarised in Table 1),
we identified that the influence on Southern Ocean ecosystems
of non-indigenous species, fishing, and the recovery of marine
mammals are predicted (with medium to high confidence) to
increase in the future across all MEASO areas. Fishing and
the recovery of marine mammals have the potential to cause
ecosystem impacts at the regional or ocean basin scale, as a
result of their influences on foodwebs and nutrient cycling. The
impacts of these drivers particularly on other marine predators
are uncertain given the potential additive effects of fishing,
marine mammal recovery and climate change.

The establishment of marine non-indigenous species could
have similarly extensive, although unpredictable, ecosystem
impacts. While there are currently very few records of non-
indigenous species becoming established in the Southern Ocean,
increased influence of this driver is predicted (high confidence)
in the Antarctic Peninsula region and at sub-Antarctic islands,
because of the elevated risks from increasing ship traffic and
visitation, regional warming and sea ice losses.

The impacts of local, land-derived pollution are currently low,
and this is the only driver identified here which is projected

(low confidence) to decrease in some locations where historical
infrastructure has been removed or is no longer in use. However,
there is potential for some increase in land-derived pollution
(medium confidence) with the further development of research
station infrastructure and human visits to Antarctica and sub-
Antarctic islands, as well as expanded geographic reach following
the exposure of more ice-free ground. With the exception
of severe incidents such as large oil spills, most point-source
pollution influences very small local areas (in comparison to
other types of pollution originating from outside the Southern
Ocean such as the atmospheric or oceanic transport of POPs),
and the most vulnerable habitats are therefore likely to be those in
the vicinity of research stations. Areas such as James Ross Island,
the coast of East Antarctica and the Ross Sea have seen an increase
in station numbers, and while improvements in technology and
management have reduced the risk of pollution, the potential
for inadvertent fuel spills or other unintended consequences
increases with increased national operator activity.

Marine-derived pollution is predicted (medium confidence) to
increase across most MEASO areas except for those with the
lowest levels of ship traffic associated with fishing, research or
tourism. Much of this is attributed to the increasing amounts
of plastics discovered in marine ecosystems (although coverage
of observers and observations has also increased), however, a
large proportion is likely to originate from outside the Southern
Ocean, given the relatively low numbers of vessels and potential
sources (Waller et al., 2017; Horton and Barnes, 2020). The
potential impact of marine-derived pollution will increase with
additional shipping, particularly in areas of concentrated tourism
or scientific research, and where these activities overlap.

Recent trends relating to tourism in the Southern Ocean
indicate a projected increase in numbers and diversity of activities
in the future (high confidence), although this has almost certainly
been slowed in the short to medium term by the global impacts
of the Covid-19 pandemic. Visitors to Antarctica also include
scientific researchers and logistics operators, who may similarly
visit wildlife colonies and undertake other activities with the
potential to cause disturbance. In areas such as the Antarctic
Peninsula where ship traffic is most concentrated, ship strikes and
disturbance impact on recovering marine mammal populations
are anticipated to increase (medium confidence).

Changes to coastal areas as a result of ice loss are also
driven by global processes (particularly warming), but have
local influences on biodiversity which can be predicted with
a high level of confidence, particularly in areas experiencing
most rapid warming such as the Antarctic Peninsula and South
Georgia. Increased iceberg scour has a direct effect on seafloor
communities, while marine and terrestrial areas that are exposed
following glacial retreat or ice shelf collapse may provide new
habitat for the establishment or spread of non-indigenous species.

The majority of the local drivers identified in Table 1 are
projected to increase or remain at similar levels of influence
into the future, indicating that management of these drivers,
particularly where they relate to local human activities, is critical.
The interaction of all local drivers with each other or with global
drivers also demonstrates the importance of such management
being developed with integrated consideration of globally-driven
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TABLE 1 | Assessment of the projected increase (+) or decrease (−) of the influence of local drivers within MEASO areas (based on information provided in the previous
sections).

MEASO area
(defined in
Figure 3)

DRIVER

Marine-
derived
pollution

Land-derived
pollution (scientific
research stations
shown in Figure 2)

Non-indigenous
species

Tourism and
visitation
(tourist landing
sites and
scientific
research stations
shown in
Figure 2)

Marine
mammal
recovery

Fishing (CCAMLR
Subareas shown in
Figure 3)

Coastal change

AOA +

• •

±

• •

(coastal research
stations)

+

• • •

(northeast Antarctic
Peninsula, South
Orkney Islands)

±

• •

(northeast Antarctic
Peninsula, South
Orkney Islands)

+

• •

+

• • •

(CCAMLR Subarea
48.2)

+

• • •

(Antarctic
Peninsula, Weddell
Sea coast)

AOS +

• •

−

• •

(South Georgia)

+

• • •

(South Georgia)

±

• •

(South Georgia)

+

• • •

+

• •

(CCAMLR Subarea
48.3)

+

• • •

(South Georgia)

CIA +

• •

±

• •

(coastal research
stations)

+

• •

(coastal research
stations)

±

• •

(coastal research
stations)

+

• •

+

• •

(CCAMLR Subareas
58.4.1 and 58.4.2)

+

• •

CIS +

• •

−

• •

(Crozet, Kerguelen,
Heard Island and
McDonald Island)

+

• • •

(Crozet, Kerguelen,
Heard Island and
McDonald Island)

±

• •

(Crozet, Kerguelen,
Heard Island and
McDonald Island)

+

• • •

+

• •

(CCAMLR Subareas
58.4.3b, 58.4.4a,
58.4.4b,
58.5.1, 58.5.2, 58.6,
58.7)

n/a

EIA +

• •

±

• •

(coastal research
stations)

+

• •

(coastal research
stations – see
Figure 2)

±

• •

(coastal research
stations)

+

• • •

+

• •

(CCAMLR Subarea
58.4.1)

+

• •

EIS ±

• •

−

• •

(Macquarie Island)

+

• •

(Macquarie Island)

±

• •

(Macquarie Island)

+

• • •

±

•

n/a

WPA +

• •

±

• •

(coastal research
stations)

+

• •

+

• •

(Ross Sea coast)

+

• • •

+

• •

+

• •

WPS ±

• •

n/a ? n/a +

• •

+

• •

(CCAMLR Subareas
88.1 and 88.2)

n/a

EPA +

• •

+

• •

(coastal research
stations)

+

• • •

+

• •

(western Antarctic
Peninsula, South
Orkney Islands)

+

• • •

+

• •

(CCAMLR Subareas
48.1 and 88.3)

+

• • •

EPS +

• •

n/a ? n/a +

• • •

+

• •

(CCAMLR Subareas
48.1 and 88.3)

n/a

± indicates no change; ? indicates no information, and n/a indicates that the driver is not relevant in that area. Black dots indicate the level of confidence (low confidence,
medium confidence, high confidence). Local drivers may not have an influence across all of a given area; where this is the case, locations in brackets identify where the
influence is greatest.
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environmental change. Global human population growth will
increase the demand for SO ecosystem services into the future,
particularly provisioning services (fishing), but also tourism and
the scientific or cultural value of marine biodiversity (Rogers
et al., 2020; Cavanagh et al., 2021).

POLICY IMPLICATIONS

Local drivers can be controlled or mitigated, to varying degrees,
by the implementation of conservation measures, regulations and
guidelines under the instruments of the Antarctic Treaty System
and other international governance organisations. In contrast,
the regulation of global drivers such as increasing temperature,
ocean acidification and sea ice change will require global policy
action, such as the implementation of the United Nations
Framework Convention on Climate Change (UNFCCC) Paris
Agreement, and associated efforts to regulate human activities
at national levels. Restrictions on human activities within
the Southern Ocean (e.g., fisheries management, regulation of
tourism, and establishing protected areas) are important in
addressing local and regional drivers, and thus minimising
cumulative impacts on Southern Ocean ecosystems, but will
have little or no effect on the impacts of global drivers,
which may be much more significant. Understanding the
interactions between local drivers, and with global drivers, is
therefore important for the design of effective policy responses.
Management actions taken on individual drivers may affect other
drivers, with potentially unintended consequences, therefore an
ecosystem-based and integrated approach to management is
critical (Millennium Ecosystem Assessment, 2005).

As far as possible, management actions should be informed
by comprehensive and accessible information on the status
and trends of marine biodiversity and human activities, and
particularly the current and projected influence of local drivers.
Box 1 identifies some of the major research gaps and priorities
that would help to enhance the information summarised in
Table 1, and improve the foundations for management decision-
making.

Table 2 identifies regulatory frameworks which have
established conservation and management measures relevant
to specific local drivers. The instruments of the ATS, including
CCAMLR and the Protocol on Environmental Protection, form
a comprehensive framework allowing for the regulation of
fishing, tourism, and impacts associated with human activities
including pollution and the introduction of non-indigenous
species. Maintenance of the ATS is key to ensuring the ongoing
limitation of negative impacts from local drivers on Southern
Ocean ecosystems. However, continuing enhancement of its
conservation and management approaches is also important, as
current tools and frameworks may not be adequate to address
future changes to local drivers, or to effectively consider the
effects of multiple drivers in the context of climate change.

The Protocol provides general principles of environmental
protection applicable to the Antarctic Treaty areas (the
area south of latitude 60◦S), notably through designation of
the continent as a ‘natural reserve, devoted to peace and
science.’ However, the more detailed provisions described in

BOX 1 | Research gaps and priorities.
Projections of future changes in the influence and extent of local drivers in the
Southern Ocean are heavily dependent on an improved understanding of how
global drivers such as climate change will affect Southern Ocean ecosystems.
The interaction between global and local drivers, such as the consequences
of a changing climate for recovering marine mammal populations or for the
potential establishment and spread of non-indigenous species, remains poorly
understood. It is important to differentiate between trends that are the result of
natural environmental variability and those that are anthropogenic or the result
of climate change. Fishing and tourism are both ultimately controlled by global
markets, and uncertainty about future economic constraints and demand for
these services could also make their trajectories difficult to predict.
Geopolitical uncertainty may be a further limitation on projections of future
change, since changes to the Antarctic Treaty System could lead to the
weakening of environmental and fishery regulations, and a corresponding
increase in the negative impacts of human activities.

Key information requirements for identifying and managing risks to the
Southern Ocean environment associated with local drivers include:
• Identification of local sources of pollutants (especially POPs and
microplastics), and mechanisms of transport and accumulation.
• Assessment and monitoring of impacts associated with tourism and other
visits.
• Conditions for establishment and rates of spread of marine
non-indigenous species.
• Krill biomass and distribution in both fished and unfished areas.
• Vulnerability of marine species and habitats to the effects of all human
activities (including local and global drivers).
• Projected responses of krill-dependent predators to fishing and climate
change.
• Status of Southern Ocean cetacean populations and regional projections
of recovery and consumption.
• Changes to the distribution of ice-free coastal areas and associated
marine impacts. While local drivers are concentrated at sites visited by
humans, these are also the sites that are most likely to be monitored, although
comprehensive monitoring of any site has yet to be achieved. Information
from other more remote sites will help to assess the extent to which these
influences impact other areas within the MEASO region (although
teleconnections to these remote locations, especially from populated areas to
the north of the MEASO region, could cause unexpected influences). The
coverage of in situ monitoring can be improved to some extent by remote
observations, for example, satellite remote sensing to monitor coastal change
and marine mammal abundance changes, time-lapse cameras to observe
breeding success in wildlife colonies, and moorings or autonomous vehicles
to obtain oceanographic and acoustic data. The establishment of longer
time-series may be required in order to detect trends, and increasing data
collection may also require increasing capacity for analysis. New mechanisms
to integrate data, for example, using Essential Ocean Variables (EOVs), and to
coordinate efforts and data sharing between existing programmes, such as
through the Southern Ocean Observing System (SOOS), aim to provide
ecosystem information that is accessible to decision-makers (Constable et al.,
2016a; Benson et al., 2018; Newman et al., 2019). Ecosystem modelling may
also facilitate better understanding of ecosystem processes such as
predator-prey interactions and population dynamics, or considerations of how
global and local drivers might affect species and foodwebs (Hill et al., 2006;
Klein et al., 2018). Fishing vessels provide a large amount of information
relevant for fisheries management, through the CCAMLR Scheme of
International Scientific Observation (SISO), as well as direct involvement in the
collection of data such as acoustic surveys and fish tagging. In recent years,
the industry bodies ARK (Association of Responsible Krill harvesting
companies) and COLTO (Coalition of Legal Toothfish Operators) have been
increasingly engaged in discussions within CCAMLR on further developing
fishing industry contributions to data collection. Continued efforts to utilise
fishing vessels as scientific research platforms will be valuable in providing the
data needed to improve fisheries management (Meyer et al., 2020). Efforts to
improve the provision of information relating to local drivers would benefit from
clear guidance on the specific information required by ATS bodies to inform
management decisions.

(Continued)
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BOX 1 | Continued
Improved practical co-operation between different groups involved in
Southern Ocean management, primarily CCAMLR and the CEP, but also
CCAMLR and the IWC, as well as ACAP, would also have significant benefits
in terms of broadening the availability of relevant information, and facilitating
the development of comprehensive and more strategic management
approaches.

the five Annexes to the Protocol that have so far entered
into force, are in most cases now almost 30 years old.
Consequently, in most cases there is scope for revision and/or
provision of additional guidance detailing potentially higher
environmental standards and/or use of new technologies, as
now common within many other regions of the planet.
For example, impacts in the marine environment from
sewage disposal could be reduced through the increased
use of sewage treatment plants, including agreed minimum
effluent quality standards. Policy development could include
improvements in the Environmental Impact Assessment process,
more stringent regulation of vessels to reduce the risk of
introduction of marine species (particularly on vessel hulls),
more comprehensive regulation of tourism activities, and more
strategic planning for the implementation of the protected
areas system including the adequate protection of vulnerable
and/or representative near shore environments, as well as
coastal locations accommodating concentrations of Antarctic
wildlife. Nevertheless, there is a concern that the pace of
change in Antarctic environments and of the level and scope
of human activity in the region is not being matched by
the pace of development of necessary environmental policy
(Hughes et al., 2018).

Effective fisheries management requires an understanding
of current and projected impacts from both local and global
drivers on target species and associated and dependent species.
Consideration of global drivers (climate change, as well as
potential socio-economic drivers in terms of demand for
ecosystem services, see Cavanagh et al., 2021) must be integrated
into management decision-making. As a conservation-focussed
body and an integral part of the ATS, CCAMLR differs
from Regional Fisheries Management Organisations (RFMOs)
in that it is able to address broader objectives of ecosystem
conservation. CCAMLR’s principles of conservation (Article
II of the Convention) include preventing the decrease of
harvested populations below levels that ensure their sustainable
recruitment; maintenance of the ecological relationships between
harvested, dependent and related populations of Antarctic
marine living resources; and prevention of changes in the marine
ecosystem which are not potentially reversible over two or
three decades. Such precautionary approaches should include the
spatial distribution of krill catch limits to prevent local impacts
on predator populations, as part of the risk assessment and
revised krill management strategy currently being developed by
CCAMLR (Watters et al., 2013; Hill et al., 2016). Cooperation
on data sharing, particularly between CCAMLR and the IWC on
ecosystem modelling and consideration of cetacean population
changes and krill consumption levels, would be a valuable
contribution to this work.

TABLE 2 | Regulatory frameworks establishing measures relevant to
specific local drivers.

Local
driver

Regulatory
framework

Existing measures to limit drivers
or mitigate their impacts

Marine-
derived
pollution

Protocol on
Environmental
Protection to the
Antarctic Treaty.
CCAMLR.
International Maritime
Organisation (IMO).

Annex III (Waste disposal and waste
management) and Annex IV
(Prevention of marine pollution).
Conservation Measure 26-01 on
General environmental protection
during fishing (including disposal of
plastics).
MARPOL Annex V on the Prevention of
Pollution by Garbage from Ships.
International Code for Ships Operating
in Polar Waters.

Land-
derived
pollution

Protocol on
Environmental
Protection to the
Antarctic Treaty.

Annex I (Environmental Impact
Assessment) and Annex III (Waste
disposal and waste management).

Tourism
and
visitation

Antarctic Treaty.
Protocol on
Environmental
Protection to the
Antarctic Treaty.

Resolution X (2011) on Guidelines for
Visitors to the Antarctic.
Visitor Site Guidelines (specific
instructions on the conduct of activities
at the most frequently visited Antarctic
sites).
Environmental Protocol Annex V (Area
protection and management) –
designation of Antarctic Specially
Protected Areas (ASPAs) and Antarctic
Specially Managed Areas (ASMAs).

Non-
indigenous
species

Antarctic Treaty.
Protocol on
Environmental
Protection to the
Antarctic Treaty.
CCAMLR.
IMO

Resolution X (2011) on Guidelines for
Visitors to the Antarctic.
Committee on Environmental
Protection Non-Native Species
Manual.
Resolution 28/XXVII on Ballast water
exchange in the Convention Area.
International Code for Ships Operating
in Polar Waters.

Fishing CCAMLR.
Regional Fisheries
Management
Organisations (RFMOs)
adjacent to the
CCAMLR Area.
Agreement on the
Conservation of
Albatrosses and Petrels
(ACAP).

Conservation Measures establishing:
catch limits, open and closed areas,
gear restrictions, reporting
requirements, bycatch limits,
minimisation of incidental mortality,
open and closed seasons, and
protected areas (including MPAs).
Management of fish stocks adjacent to
the CCAMLR Area, mitigation of
bycatch and incidental mortality.
Mitigation of incidental mortality of
seabirds, including outside the
CCAMLR Area.

Recovery of
marine
mammals

CCAMLR.
IWC.

Krill fishery management strategy –
inclusion of cetaceans in the risk
assessment framework to inform
spatial allocation of krill catch.
Population assessments of whale
recovery; formal review and validation
of regional abundance and trend
estimates.

Coastal
change

CCAMLR Conservation Measure 24-04 on
establishing Special Areas for Scientific
Study in newly-exposed marine areas
following ice shelf retreat
or collapse.
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In addition to fishery-specific measures, CCAMLR also
has a mandate to implement marine protected areas (MPAs)
with objectives including the conservation of biodiversity,
establishment of scientific reference areas, protection of areas
vulnerable to the impacts of human activities, and of areas to
maintain resilience to climate change (CCAMLR Conservation
Measure 91-04). While progress toward CCAMLR’s agreed
objective to establish a representative system of MPAs has been
limited to date, the adoption of a suite of additional areas
currently under negotiation would substantially improve the
representation of Southern Ocean biodiversity in protected areas
(Brooks et al., 2020). Antarctic Specially Protected Areas (ASPAs)
can also be implemented in marine areas under the Protocol on
Environmental Protection, and could be nested within MPAs or
established in complementary areas as part of a more strategic
approach to the conservation of marine ecosystems across both
CCAMLR and the CEP. Localised conservation and management
actions such as MPAs, ASPAs or VME designations could also
act as a driver of recovery for marine ecosystems, by reducing or
removing other drivers that have previously resulted in negative
impacts, for example, the recovery of locally impacted benthic
habitats following closure to fishing (considered in Brasier et al.,
2021).

The interaction between CCAMLR and the CEP also has
an important role to play in identifying and progressing
issues of common interest with regard to local drivers. For
activities which affect the marine environment, cross-over
responsibilities are established within the respective conventions,
for example to ensure that all CCAMLR Members acknowledge
the special obligations and responsibilities of the Antarctic
Treaty Consultative Parties for the protection and preservation
of the environment of the Antarctic Treaty area (CCAMLR
Convention, Article V), and to provide for CCAMLR approval
of marine Antarctic Specially Protected Areas (Environmental
Protocol, Annex V). Joint workshops have also agreed customary
practices establishing which body will ‘lead’ on topics such as
non-native marine species (CEP) and marine spatial protection
(CCAMLR) (ATCM, 2009), while cooperation on climate change
and monitoring was the focus of the most recent joint CEP
and CCAMLR Scientific Committee discussions (CCAMLR,
2016). Although not yet implemented to their full potential, the
range of tools available across CCAMLR and the Environmental
Protocol, particularly on spatial protection, should allow for
comprehensive systems of marine protection and management
to be established in the Southern Ocean, tailored to the specific
requirements of different regions and human activities.

Additional global frameworks such as the International
Maritime Organisation (IMO) provide additional measures
that apply to all vessels in the Southern Ocean, particularly
through the International Code for Ships Operating in Polar
Waters. Adjacent RFMOs5 can also implement measures that
may reduce impacts on Southern Ocean species (for example
bycatch mitigation measures to protect highly migratory

5RFMOs adjacent to the CCAMLR Area are: South-East Atlantic Fisheries
Organisation (SEAFO), South Indian Ocean Fisheries Agreement (SIOFA), South
Pacific Regional Fisheries Management Organisation (SPRFMO), Commission for
the Conservation of Southern Bluefin Tuna (CCSBT).

seabirds, and controls on discarding fishing gear). However,
cooperation between CCAMLR and neighbouring RFMOs would
benefit from improved communication, and data-sharing to
address changes in stock structure, by-catch and environmental
and climate change impacts (CCAMLR Performance Review,
CCAMLR, 2017).

Integrated management across the ATS and related
instruments is needed to address the specific impacts of local
drivers in the context of broader environmental conditions,
particularly in relation to climate-related change. Such
management will be most effective where it is informed by
robust scientific information and projections of change, and new
innovations (particularly in modelling and remote observations)
will help to provide this. However, there is also a need for
precautionary measures to ensure that risks are minimised,
especially where data are limited or when confidence in
projections of the nature and extent of the impacts of drivers on
biota is low. Although heavily impacted by historic exploitation
of marine species, the Southern Ocean remains less affected by
current local drivers of change such as pollution and fishing than
much of the rest of the global ocean. The unique governance
frameworks of the Antarctic Treaty System provide the means to
ensure that this status is maintained into the future.
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