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Globally important services are supported by Southern Ocean ecosystems,
underpinned by the structure, function, and dynamics of complex interconnected and
regionally distinctive food webs. These food webs vary in response to a combination
of physical and chemical processes that alter productivity, species composition and the
relative abundance and dynamics of organisms. Combined with regional and seasonal
variability, climate-induced changes and human activities have and are expected to
continue to drive important structural and functional changes to Southern Ocean food
webs. However, our current understanding of food web structure, function, status,
and trends is patchy in space and time, and methods for systematically assessing
and comparing community-level responses to change within and across regional and
temporal scales are not well developed. Insights gained from food web modelling
studies—ranging from theoretical analyses of ecosystem resilience and adaptation, to
qualitative and quantitative descriptions of the system—can assist in resolving patterns
of energy flow and the ecological mechanisms that drive food web structure, function,
and responses to drivers (such as fishing and climate change). This understanding
is required to inform robust management strategies to conserve Southern Ocean
food webs and the ecosystem services they underpin in the face of change. This
paper synthesises the current state of knowledge regarding Southern Ocean pelagic
food webs, highlighting the distinct regional food web characteristics, including key
drivers of energy flow, dominant species, and network properties that may indicate
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GRAPHICAL ABSTRACT | Graphical summary of multiple aspects of Southern Ocean food web structure and function including alternative energy pathways
through pelagic food webs, climate change and fisheries impacts and the importance of microbial networks and benthic systems.

system resilience. In particular, the insights, gaps, and potential integration of existing
knowledge and Southern Ocean food web models are evaluated as a basis for
developing integrated food web assessments that can be used to test the efficacy
of alternative management and policy options. We discuss key limitations of existing
models for assessing change resulting from various drivers, summarise priorities for
model development and identify that significant progress could be made to support
policy by advancing the development of food web models coupled to projected
biogeochemical models, such as in Earth System models.

Keywords: ecosystem models, food web assessment, marine policy, Antarctic, ecosystem-based management

INTRODUCTION

Southern Ocean marine ecosystems support globally important
values and services such as the sequestration of atmospheric
carbon, commercial fisheries, polar biodiversity, the existence of
iconic wildlife populations, and cultural connections (Grant et al.,
2013; Cavanagh et al., 2021; Murphy et al., 2021; Roberts et al.,
2021). These unique ecosystems and the services they support
are underpinned by the structure, function, and dynamics of

complex interconnected and regionally distinctive food webs
(McCormack et al., 2020; Hill et al., 2021). Food web structure
can be understood in terms of energy transfer and biomass flow
between different components of the ecosystem, either flowing
from primary producers to top predators in the pelagos or
exported to the benthos through the sinking of detritus and dead
organisms as well as through active transport, thereby serving
as an energy source for many benthic organisms (Isla et al.,
2006). These energy pathways connect different trophic levels,
geographic places, as well as the water column and benthic
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environment. The types of pathways also determine how much
energy and biomass ends up in different parts of the system—
both spatially and within the trophic structure—whether that be
in the form of the bodies of iconic wildlife and fished species,
or in the form of carbon that is sequestered in deep waters
through sinking and mineralisation. As such, food web ecology
has considerable relevance to policy makers, as management
decisions have to rely on knowledge of food web structure and
function to predict and mitigate the effects of change (Constable
et al., 2017; Trebilco et al., 2020).

Understanding and predicting the dynamics of Southern
Ocean food webs is challenging, complicated by a myriad
of direct and indirect (networks of) interactions amongst
species, many of which have highly variable spatial and
seasonal dynamics (Murphy et al., 2012). Combined with
this variability are the past, current, and future effects of
climate-induced changes (Morley et al., 2020) and human
activities (Grant et al., 2021) on habitats and biology
in the Southern Ocean (Constable et al., 2014; Turner
et al., 2014). These drivers of change can cause rapid and
significant effects on species, habitats, broader ecosystem
functioning, and resilience. The complex adaptive nature
of oceanic ecosystems further complicates our ability to
determine the range of responses that food webs may exhibit
to perturbations.

Most Southern Ocean species have broad distributions with
trophic interactions varying across seasons, regions, and habitats.
Such variation impacts trajectories of network reorganisation
following disturbances, illustrating the importance of accounting
for spatial heterogeneity (Cordone et al., 2020; also see

Section “ Ecological Network Models” and Box 1 for a
description of ecological networks and network modelling in
a food web context). Whilst it is impossible to empirically
document the spatial variability and scales of all trophic
interactions across the Southern Ocean, significant progress has
been made in recent decades toward characterising Southern
Ocean food webs at a regional scale (see Figure 1 for
locations). Here, we consider that Southern Ocean food webs
include species that wholly reside in the Southern Ocean,
south of the Subtropical Front (Morley et al., 2020), as well
as migratory species that obtain much of their sustenance
within the Southern Ocean, such as whales and flying birds
(Constable, 2005).

Two parallel activities have been expanding over the last
decade since the programme Integrating Climate and Ecosystem
Dynamics of the Southern Ocean (ICED) first reviewed the
gaps and priorities for understanding Southern Ocean food
webs and what was needed to support decision-makers (Murphy
et al., 2012). The first set of activities relates to building a
greater depth of understanding of food web linkages using
enhanced diet studies involving isotopes, genetics, and other
trophic markers (e.g., McCormack et al., 2019a; 2020). The
second has been the development of models of multispecies
interactions, food webs, and ecosystems, derived from diet and
foraging studies (discussed in section “Current Developments
in Food Web Modelling”). Insights gained from the modelling
studies, ranging from theoretical analyses of ecosystem resilience
and adaptation to qualitative and quantitative descriptions of
food webs, have assisted in resolving patterns of energy flow and
the ecological mechanisms that drive food web structure and

BOX 1 | Network science as a powerful approach to describe the structure and dynamics of food webs.
Network science has become a powerful interdisciplinary approach for describing, quantifying, and analysing the structure and function of ecological communities.
Through application of well-developed mathematical concepts from graph theory (Iñiguez et al., 2020), network science approaches allow for the exploration of
questions across various ecological scales, ranging from individual species to community-level analyses (Poisot et al., 2016). Graph theory, the branch of
mathematics concerned with pairwise relations between objects, has provided a range of measures to quantify and interpret interactions, scaling from pair-wise
interactions between species to complex whole ecosystem approaches (Delmas et al., 2019).
Network science has been applied across various spatial scales in the Southern Ocean from characterisation of the general Antarctic food web (Carscallen and
Romanuk, 2012; de Santana et al., 2013) to more localised studies of the complexity, structure, and function of several coastal and open-ocean ecosystems.
Important insights have been gained into mechanisms for energy flow, the relative importance and traits of individual species and the influence of environmental
variables (e.g., sea-ice) on the structure of local food webs (Jacob et al., 2011; Marina et al., 2018a; Rossi et al., 2019). Evolving state-of-the art techniques are
opening up new possibilities of applying network science to investigate Southern Ocean food webs that go beyond simple measures and correlation analysis. Based
on the concept of causal networks (Runge et al., 2019) and complex adaptive systems (Griffith, 2020; Eyring et al., 2021), they have the potential to help identify the
causal effects on food web structure and functioning from the complex interplay between environmental and human induced changes on food webs.
We consider that there are a range of future applications of network science building on the progress to date. Priority areas of research include: (1) A generic food
model should be developed as a common structural base for further work and as a base for collective knowledge (Murphy et al., 2016). This can initially be a
qualitative or semi-quantitative food web model (see section “Qualitative Modelling and Network Approaches”). (2) Quantifying the interaction strengths or fluxes in
food webs. This is currently considered difficult for the Southern Ocean requiring intensive experimental and observational efforts. A viable solution is to extend the
qualitative model or use a more sophisticated model and use mathematical proxies to calculate interaction effects such as energy fluxes. One approach is to assume
that energy fluxes are driven by a top-down effect (energy demands of top predators). This can also be extended to a general model using allometric rules (Gauzens
et al., 2018). (3) Extending species-based food web models to ones based on body-size architecture and species traits (e.g., Blanchard et al., 2017). For instance,
this has the potential to identify critical interactions and linkages between energy pathways that stabilise food webs (e.g., Blanchard et al., 2011; Brose et al., 2019).
(4) Deciding on a common group of measures to characterise the different regional properties of Southern Ocean food webs and to feed into research and
monitoring plans such as for Marine Protected Areas. Four metrics from graph theory that are applicable are Degree, Betweenness centrality, Google Page Rank,
and Modularity. (5) Uncovering the building blocks of Southern Ocean food webs regionally and across gradients applying the network science concept of motifs and
higher-order connectivity patterns (Benson et al., 2016). These patterns have important consequences to dynamic stability and how food webs may adapt to
perturbations. (6) Extending Southern Ocean food web research to include social- ecological interactions including governance. (7) Integrating more sophisticated
network science analysis with whole ecosystem models. For instance, to identify which species or traits are more important for transferring the complex effects of
multiple stressors (Griffith et al., 2018). (8) Developing a circumpolar and/or regional Dynamic Bayesian Networks as a Decision Support tool to help establish
potential adaptation strategies.
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FIGURE 1 | Boundaries for the Marine Ecosystem Assessment for the Southern Ocean (MEASO) areas including five ocean sectors (Atlantic, Central Indian, East
Indian, West Pacific, and East Pacific) each with three zone divisions. Sectors are divided meridionally. Zones extend from the coast to the Southern Antarctic
Circumpolar Current Front (Antarctic Zone), to the Subantarctic Front (Subantarctic Zone) and to the Subtropical Front (Northern Zone). Islands are marked in white.
Antarctica includes ice shelves. Antarctic Treaty is denoted by the solid white line and the area of the Convention on the Conservation of Antarctic Marine Living
Resources is shown with a dashed line, which approximately follows the Antarctic Polar Front. The 2,000 m isobath is shown in light blue with the approximate
position of the maximum winter sea ice extent shown in dark blue. Numbers refer to locations mentioned throughout the manuscript or with relevance to food web
studies and correspond to those listed in the key.

function at a regional level (Figure 2; previously reviewed in
Murphy et al., 2012).

The interactions of individual species with prey, including
foraging ecology, are examined in detail in other papers
associated with the Marine Ecosystem Assessment for the
Southern Ocean (MEASO, 2020). In this paper, we contribute
to MEASO by evaluating the current state of food web and
ecosystem modelling for supporting assessments of current and
future change in Southern Ocean ecosystems and for informing
decisions relating to the management and conservation of those
ecosystems. We divide this contribution into a further five
sections. Section “ Approach” details the approach we have
taken and its rationale. Section “Characterising Southern Ocean
Food Webs” examines regional variations in the characteristics
of Southern Ocean food webs, including key drivers of energy
flow and the dominant species giving rise to different energy

pathways, regional variation in the relative importance of those
pathways and how those pathways may change. In section
“Attributes of Food Web Models for Supporting Policy,” we
examine the attributes of food web models for supporting policy
by examining food web (network) properties that may provide
indicators of change as well as system resilience. We describe
how food web and ecosystem models can be used to inform
policy makers on scenarios for and risks in the future, what field
measures are needed to help validate models and refine them
over time, and how the models can be used to test the efficacy of
management strategies. Section “Current Developments in Food
Web Modelling” reviews the current developments in food web
modelling and their capabilities in supporting policy, and the key
issues to be resolved in building models to support policy. Lastly,
section “Concluding Remarks—Addressing Needs of Policy
Makers” considers the capability of food web and ecosystem
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FIGURE 2 | (A) Simplified representation of a Southern Ocean food web, incorporating links to dependent fisheries. (B) Key controls underlying food web dynamics.
Figure adapted from Trebilco et al. (2020).

models to address topical issues, current constraints/limitations,
and outlines priorities for model development.

APPROACH

The focus of this paper is on progress in development of
modelling of Southern Ocean food webs as part of the broader
ecosystem. In this context, food web models incorporate
representation of all trophic levels, the potential for competition
within trophic levels, and non-trophic transfers such as
bentho-pelagic flux. This definition may be seen to include
biogeochemical models that typically include representation of

nutrients (N), primary production (P), secondary production
(Z = zooplankton), and carbon export (D = detritus). In this
paper, we do not review biogeochemical models in detail but
instead consider the models that help address policy questions
relating to food web interactions at higher trophic levels, which
need greater flexibility in considering (unpacking) different
functional groups and relationships.

While not always the case, we have in mind that food
web models are informed by, if not embedded within, end-
to-end ecosystem approaches to modelling. In that respect,
compartments of the model would typically involve interactions
between physics, chemistry, and biology, where food webs would
be the biological part. The term “food web” relates to energy
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flow. In this respect, the interpretation of “food web” needs to
be broader than a trophic network but also include the potential
for non-trophic mortality or competition for resources other
than food. These processes are common within the benthic
environment, where benthic disturbance and competition for
space may be important for structuring benthic assemblages
and their influence on benthic-pelagic coupling and carbon
sequestration. That said, the ability to include models of non-
trophic interactions is poor at present for Southern Ocean
ecosystems, despite some important progress over the last decade
(e.g., Kéfi et al., 2015). As a result, we focus this review on pelagic
food webs, taking note wherever possible of what needs to be
done to improve the representation of benthic processes and
bentho-pelagic coupling in Southern Ocean ecosystem dynamics.

Our discussion of progress in Southern Ocean food web
modelling is informed by broader reviews of marine ecosystem
and food web modelling elsewhere (e.g., Fulton and Link, 2014;
Melbourne-Thomas et al., 2017; Fulton et al., 2019) and by the
knowledge of Southern Ocean biological interactions contained
within the MEASO research topic (MEASO, 2020) and other
recent reviews. We do not undertake similar reviews here but
summarise those reviews in Table 1. Instead, we describe the
important characteristics of Southern Ocean food webs that
should be represented in models and the attributes that models
need to have to support policy. Finally, we consider the progress
being made toward that level of modelling and the gaps and
priorities for the future.

CHARACTERISING SOUTHERN OCEAN
FOOD WEBS

Despite the highly dynamic nature of Southern Ocean ecosystems
at a large geographic scale, consistent patterns in food web
structure exist (Murphy et al., 2012). Such regularities can help
determine ecosystem functioning (e.g., productivity, nutrient
cycling, energy flow) (Griffith et al., 2019). Identifying these
consistent patterns and their links to function contributes to
our understanding of the key controls that underlie food web
dynamics (Figure 2). One of the most common descriptions
of food web structure and function is the relative importance
of various species and trophic relationships in dictating how
energy flows through an ecosystem (i.e., energy pathways).
Multiple studies have described the various energy pathways that
exist within Southern Ocean ecosystems, with their dominance
varying across regions and between seasons (Ballerini et al.,
2014; Suprenand and Ainsworth, 2017; Dahood et al., 2019;
McCormack et al., 2019b, 2020; Hill et al., 2021).

The food chain from phytoplankton through Antarctic krill
(Euphausia superba) to various marine mammal and bird species
is typically dominant in Antarctic food webs (Hill et al., 2006;
Murphy et al., 2012; McCormack et al., 2020). This represents
an efficient energy pathway from primary producers to higher
trophic levels, with the potential to sustain a large biomass
(Clarke, 1985). Such central dependence of higher trophic levels
on krill is unique to the Antarctic, leading to krill often being
classified as a key “forage fish” in the context of general ecosystem

model structure (Essington and Plagányi, 2014; Plagányi and
Essington, 2014). For instance, the diets of baleen whales include
a more diverse range of prey species (e.g., fish) in other systems
such as the northern hemisphere. The importance of Antarctic
krill in providing the majority of energy needed to sustain higher
trophic level production has been well demonstrated in various
regions such as the Antarctic Peninsula (Ballerini et al., 2014;
Dahood et al., 2019).

In addition to the archetypal krill pathway, alternative
pathways exist for this transfer of energy to top predators; these
pathways sustain other predators less reliant on krill, notably
toothfish, toothed whales, and a number of seals, penguins, and
flying birds (Figure 2A; Atkinson et al., 2004; Murphy et al.,
2016; McCormack et al., 2019b, 2020; Subramaniam et al., 2020a),
or provide alternative pathways to the suite of krill dependent
predators (e.g., Saunders et al., 2019). Various studies have
emphasised the importance of these alternative configurations
for energy flow, usually involving various combinations of
other zooplankton, fish, and squid species (Ballerini et al.,
2014; Suprenand and Ainsworth, 2017; Dahood et al., 2019;
McCormack et al., 2019b). These diverse energy pathways
maintain a range of ecosystem services (e.g., high-value fisheries,
carbon sequestration; Cavanagh et al., 2021) where distinct suites
of species provide unique contributions (Barnes and Sands, 2017;
Constable et al., 2017). However, what determines the relative
dominance of different energy pathways in space and time
generally remains poorly understood (Constable et al., 2017).

Southern Ocean food webs are highly temporally and spatially
variable across multiple scales (Murphy et al., 2012). There
is marked seasonality, which varies in intensity from the
permanently ice-covered region of the southern Weddell and
Ross Seas (see Figure 1) to the northern areas of the Polar
Frontal Zone and Sub-Antarctic Front. There is also a high
level of interannual variability in regional ocean temperatures
and sea ice conditions associated with atmospheric variation
across the Southern Hemisphere. The asymmetric nature of
the Antarctic continent and the complex bottom topography
results in varied patterns of ocean circulation and seasonal
sea ice dynamics across the Southern Ocean. This temporal
and spatial variability generates different physical and chemical
conditions, which are crucial determinants of regional food web
structure (Murphy et al., 2012). There is also, however, a high
degree of connectivity among regions as a result of transport
in association with both ocean currents and sea ice drift along
with the movement of organisms during development, foraging
and migration (Figure 2B; see also Murphy et al., 2012; Thorpe
et al., 2019; Treasure et al., 2019). This combination of variability
and openness of ecosystems across multiple scales challenges
simple definitions of regional boundaries between food webs,
and hence also characterisation of the structure of food webs
(McCormack et al., 2020).

Insights gained from regional analyses of food web structure
and the mechanisms for energy flow (McCormack et al., 2020;
Hill et al., 2021) have provided the foundation for developing
a generalised view of Southern Ocean food webs, one that
highlights the importance of alternative energy pathways and
regional variability in the relative importance in those pathways
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TABLE 1 | Summary of review papers that inform modelling of Southern Ocean food webs and ecosystems.

Model subject Reviews

Model development Murphy et al., 2012; Fulton and Link, 2014; Melbourne-Thomas et al., 2017; Fulton et al., 2019; Rogers et al., 2019; Geary et al., 2020

Biogeochemistry Post et al., 2014; Cavan et al., 2019; Henley et al., 2020

Primary producers Alvain and Ovidio, 2014; Deppeler and Davidson, 2017; Pinkerton et al., 2021

Zooplankton Atkinson et al., 2012b; Angel and Blachowiak-Samolyk, 2014; Hosie et al., 2014; Kouwenberg et al., 2014; Lindsay et al., 2014; Roberts
et al., 2014; Swadling, 2014; Zeidler and De Broyer, 2014; Schaafsma et al., 2018; Pinkerton et al., 2020

Krill Atkinson et al., 2012a; Cuzin-Roudy et al., 2014; Siegel, 2016; Meyer et al., 2020

Fish and squid Kock et al., 2012; Duhamel et al., 2014; Rodhouse et al., 2014; Caccavo et al., 2021

Flying birds Ropert-Coudert et al., 2014; Bestley et al., 2020; https://www.acap.aq/

Penguins Ratcliffe and Trathan, 2011; Ropert-Coudert et al., 2014; Borboroglu and Boersma, 2015; Hindell et al., 2020; Bestley et al., 2020

Seals Trites and Pauly, 1998; Southwell et al., 2012; Ropert-Coudert et al., 2014; Bestley et al., 2020; Hindell et al., 2020

Whales Trites and Pauly, 1998; Leaper et al., 2008a,b; Ropert-Coudert et al., 2014; Bestley et al., 2020; Hindell et al., 2020

Benthic systems Brasier et al., 2021; Part 5 of the Biogeographic Atlas of the Southern Ocean (Wiencke et al., 2014)

Local drivers Grant et al., 2021

(Murphy et al., 2012). For example, Murphy et al. (2013) drew
upon earlier quantitative food web analyses (Hill et al., 2012;
Sailley et al., 2013; Ballerini et al., 2014), to compare ecosystem
structure in two major regions: South Georgia and the west
Antarctic Peninsula. They showed structural similarity in the
food webs, highlighting the importance of ecological connectivity
across the Scotia Sea from sea ice dominated regions in the
south to warmer open ocean regions in the north. Despite
the similarities, the study also emphasised that the dominant
species at mid-trophic levels involved in the major pathways
of energy flow are not the same across the different habitats
(Murphy et al., 2013). In northern regions, and north of the
Polar Front, copepods and mesopelagic fish (myctophids or
lantern fish) are key mid-trophic levels species, while across
much of the Antarctic Circumpolar Current (ACC) south of
the Polar Front, Antarctic krill become a dominant feature with
mesopelagic fish less so. In the most southerly areas of regular
sea ice cover, it is ice-krill and silverfish that are the most
important mid-trophic level species (Murphy et al., 2013, 2016;
Ballerini et al., 2014; McCormack et al., 2019b). Squids can
also be important in some areas (Subramaniam et al., 2020a).
Salps have long been considered to be an alternative dominant
herbivore to Antarctic krill (Murphy et al., 2012), possibly even
competing but more likely occurring in different water masses
(Johnston et al., in this research). The role of salps in the food
web is less known but becoming increasingly recognised as an
alternative energy pathway to krill and copepods in some areas
(Kelly et al., 2020).

Further comparative analysis of the structure and pathways
of energy in food webs at South Georgia and the west
Antarctic Peninsula was undertaken by Murphy et al. (2016,
Supplementary Information). The study reanalysed food web
data, re-aggregated the species and groups into size groups and
recalculated energy flows between groups. The study further
demonstrated the basic similarity of food web structure and
the crucial role of Antarctic krill in both ecosystems. The
comparative analysis of these food webs suggests that the South
Georgia food web is more dependent on external productivity
(e.g., import of secondary production from external regions) than

that in the west Antarctic Peninsula region. This may, however,
reflect differences in initial food web analysis and data rather than
real differences between the actual food webs.

The view that polar pelagic food webs are dominated by
relatively few major pathways of energy flow involving a small
number of mid-trophic level species was further developed for
the wider Southern Ocean and polar regions more generally in
Murphy et al. (2016). They noted that the crucial role that these
key mid-trophic level species play in Southern Ocean food webs
is related to their life history traits and the associated habitats
in which they dominate. This led to the recommendation that
development of understanding of polar food webs and the impact
of change not only requires analyses of food webs but also
quantitative studies and models of the life history processes of the
key species (Murphy et al., 2016).

Major gaps remain in information on food web structure for
most areas of the Southern Ocean and on the species involved in
major flows of energy, the degree of sub-system connectivity (e.g.,
pelagic—benthic—sea-ice) and seasonal changes in interactions.
An increased focus on the development of comparative analyses
of food web structure will be crucial for improving understanding
and generating and validating models for projecting the potential
impacts of future change. A concerted and systematic effort
is required to quantify and compare food web structure and
variation throughout the Southern Ocean (Murphy et al.,
2016; Newman et al., 2019). Such studies would also need
to quantify the seasonal and interannual variation, food web
subsidies (input of external energy: allochthonous production)
and inter-food web connectivity (Murphy et al., 2007, 2013,
2016; Treasure et al., 2019). Understanding of the life-
histories of many of the less-studied key mid-trophic level
species is improving (e.g., Moteki et al., 2017; Queirós
et al., 2018; Groeneveld et al., 2020; Kelly et al., 2020;
Lin et al., 2020; Saunders et al., 2020; Zhu et al., 2020),
however, for most species, quantitative understanding of life-
cycles and population dynamics is still very limited (Constable
et al., 2014, 2017). Models of distribution and population
processes of these species are required to provide inputs into
food web models.
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ATTRIBUTES OF FOOD WEB MODELS
FOR SUPPORTING POLICY

Assessing variability and change in Southern Ocean food webs
and their underlying causes is required to inform policy and
guide management. Constable et al. (2016) discuss four general,
inter-related classes of ecosystem properties relevant to food web
structure and function that may be used to develop statements on
status and trends to inform policymaking:

1. Primary production: Production of organic material by
photosynthetic and chemosynthetic autotrophs.

2. Structure: Abundances of taxa in space and time, related to
patchiness of the organisms; size structure of populations
and functional groups; relationships between biota
(including trophic connections); and processes/responses
that give rise to structure (note that the meaning of
“structure” here encompasses both food web network
structure and the structure of populations).

3. Production: Production of organic material at different
trophic levels of the food web in a region. This may
include factors that affect production such as non-trophic
interactions and disease.

4. Energy transfer: Efficiency in transferring/utilising energy
in the food web, which will need to account for spatial
and temporal overlap of consumers and resources, which
in turn will be affected by habitat characteristics and
behaviour.

Climate-driven changes in physical and chemical conditions
are expected to generate shifts in the distribution of organisms
during the coming decades, which will affect food web structure
as a consequence (e.g., Hill et al., 2012; Murphy et al., 2012,
2013, 2016; Ballerini et al., 2014; Suprenand and Ainsworth,
2017; Dahood et al., 2019; McCormack et al., 2019b). Developing
projections of change in food web structures will require models
that can represent the major alternative structures and energy
transfer pathways that exist now or may occur in the future,
requiring a nuanced understanding of potential shifts in the
food web. Development of models for multiple regional food
webs with a high degree of species resolution is useful for
improving understanding. However, given the current relatively
poor state of knowledge of the structure of food webs throughout
much of the Southern Ocean, and the low resolution of models
used to generate future projections, such high-resolution food
web modelling is less useful at this time for considering large
scale, Southern Ocean-wide responses to change. Instead, a
more generalised and generic approach, in which the major
components of food webs throughout the Southern Ocean
can be represented in a single model structure, is likely to
be more useful in generating projections and understanding
the potential impacts of future change (Trebilco et al., 2020).
In current ocean-scale models, biogeochemical processes and
plankton dynamics are represented by generalised and often very
simple models that can capture major structural and process
variations. A similar approach has been proposed for Southern
Ocean ecosystems, aiming to generate generic representations of

the wider (meta-) food web that provides a basis for predicting
the major pathways of energy flow and food web structure in
different regions and the potential impacts of future change
(Murphy et al., 2012, 2013, 2016).

A challenge for researchers and for observing systems
is to identify and measure meaningful indicators of these
ecosystem properties. So-called ecosystem Essential Ocean
Variables (eEOVs) are defined as biological and ecological
variables selected for regular measurement by observing systems,
that can be used as indicators of status and change in
ecosystem properties (as well as to attribute the causes of
change), and that are feasible to collect at appropriate spatial
and temporal scales (Constable et al., 2016). eEOVs can also
inform the development of ecological models (e.g., qualitative,
statistical/empirical, dynamic mathematical models) to support
assessments. The identification of eEOVs for Southern Ocean
ecosystems is an ongoing process (Newman et al., 2019;
Muelbert et al., to be published in this research topic) and the
identification of key data streams that constrain biological energy
pathways by better characterising the transfer of mass through
food webs, into carbon export, and into fish stocks has been
identified as a priority to inform Southern Ocean ecosystem
modelling, assessment, and management (Constable et al., 2017;
Newman et al., 2019).

Indicators of food web processes of utility to policy making
can also relate directly to Southern Ocean ecosystem services
(Cavanagh et al., 2021). For example, Trebilco et al. (2020)
considered four types of indicators relating to ecosystem
services, using network models to investigate their response to
perturbations in a simplified food web. These indicators included
target species of fisheries (Antarctic krill and toothfish), predator
groups of conservation importance (krill specialists such as
Adelie penguins, and fish/squid specialists such as elephant seals),
baleen whales and carbon export potential. Modelling changes
in these indicators under different scenarios for climate change
impacts and human use can help in identifying where there might
be counterintuitive changes in ecosystem services due to feedback
effects in Southern Ocean food webs.

CURRENT DEVELOPMENTS IN FOOD
WEB MODELLING

Food web and ecosystem models have been fundamental and
highly influential to the provision of robust, policy-relevant
scientific advice about status and change, particularly in the
context of ecosystem-based management of fisheries (Essington
and Plagányi, 2014). Such models continue to be used in
assessments of change, investigations of causality and the
prediction of potential impacts. These models vary in their
representation of ecological systems, ranging from conceptual
models, qualitative mathematical models, statistical algorithms,
and dynamic quantitative simulation models (see Fulton and
Link, 2014 for a review of model types and applications)
(Figure 3). They allow for the exploration of alternative
conservation and management strategies in relation to achieving
specified objectives. Through synthesising information and
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representing an ecosystem or species in a coherent form,
particular questions of interest can be explored to generate
scientific advice.

Whilst modelling approaches and applications across the
Southern Ocean vary considerably in scope (i.e., socio-ecological
and spatial representation), each provide a degree of insight
into various aspects of Southern Ocean food webs. This section
discusses approaches to modelling Southern Ocean ecosystems,
outlining the insights and gaps highlighted by various models
(published following Murphy et al., 2012) in relation to food
web structure, function, and change. The key limitations of these
existing models and their potential to be integrated in support
of Southern Ocean food web assessments to inform policy are
evaluated in section “Concluding Remarks—Addressing Needs of
Policy Makers.”

Qualitative Modelling and Network
Approaches
Qualitative Models
Qualitative models can help to capture, communicate, and
represent knowledge of food webs. They can be used in a multi-
step process starting with a simple conceptual model of the
pair-wide relationships (e.g., feeding interactions) for specific
research questions, to being used in “real time” workshop
sessions to collectively pool knowledge across many researchers
and stakeholders. To date, these models have been used for
the Southern Ocean to identify interactions to aid quantitative
model development and for assessing the consequences of
simulated changes on interaction pathways (Melbourne-Thomas
et al., 2013a; Goedegebuure et al., 2017; Figure 3). These
types of models remain underutilised in the Southern Ocean
context particularly for integrating and communicating food
web research results along with other concepts and research
results to aid policy decisions (e.g., Trebilco et al., 2020).
Decision-support software (e.g., www.mentalmodeler.com; or
QPress in R, Melbourne-Thomas et al., 2012; https://github.
com/SWotherspoon/QPress) exist that allow a scenario interface
to be easily developed to allow stakeholders to run and
compare changes under different potential scenarios representing
collective knowledge and then revisit and revise in the light of
new information.

Ecological Network Models
Network science, meaning the study of interactions to quantify
the structure and dynamics of complex systems such as
food webs (see Box 1), has proved useful in evaluating the
diverse effects of climate change (i.e., local extinctions, sea-
ice dynamics) on the structure and functioning of Southern
Ocean food webs (Jacob et al., 2011; Cordone et al., 2018;
Rossi et al., 2019). A comparison between pelagic regions in
the Arctic and Antarctic using standard network measures
such as degree distribution (frequency distribution of the
number of trophic links) suggests that the most connected
prey species in Antarctic food webs, such as E. superba
are more vulnerable to extinctions (de Santana et al., 2013).
Network science suggests that many food webs exhibit the
so-called “small-world” pattern that involves high clustering

and short interaction path lengths between species conferring
resistance to perturbations (such as species removal) (Montoya
and Solé, 2002). Marina et al. (2018b) studied the prevalence
of such a property in food webs of two Southern Ocean
locations: Potter Cove (South Shetland Islands) and Weddell
Sea. Interestingly, Potter Cove and the Weddell Sea food
webs showed opposite results, meaning that the latter network
presents a “small-world” pattern while the former does not.
This implies that understanding how each local food web
self-organises is essential to gain precise knowledge about the
impact of perturbations (e.g., climate change) on local food web
structure and function.

Two recent studies of Arctic food webs using a network
science approach suggest that polar food webs can self-organise
through new interaction pathways. What had previously been
considered as a system-wide regime shift with changing climate
and species invasion was shown to be limited to changes in
a limited set of species interactions (Yletyinen et al., 2016).
In another study, the core ecological processes of an Arctic
food web have been shown to be resilient to cumulative
perturbations (ocean warming, decreasing sea-ice and arrival
of invasive species) by the self-organisation of direct and
indirect species prey interactions. Both studies caution that the
resilience may be short-lived (Griffith et al., 2019; Yletyinen,
2019). Resilience in this case is defined from a complex
adaptive systems perspective (Hagstrom and Levin, 2017) that
the resilience of food webs to on-going perturbations emerges
from the dynamic self-organisation of small-scale interactions.
It remains unclear if Antarctic food webs show a similar
pattern to perturbation. A probabilistic model that accounts for
trophic structure, colonisation, and extinction events from the
Antarctic metaweb suggests that the modification of habitats due
to climate change will probably modify individual populations
distributions and abundances (Saravia et al., 2021). However,
food web structure could rearrange without producing abrupt
changes (regime shifts) (Saravia et al., 2021). This may be due
to internal dynamical feedback (Suweis and D’Odorico, 2014;
Ward et al., 2018).

Dynamic Modelling
Modelling Key Species and Trophic Interactions
Developing a suite of models that vary in scope and their
spatial and socio-ecological representations (Figure 3) is required
to support management approaches in complex ecological
systems (Murphy et al., 2012; Fulton et al., 2015; Melbourne-
Thomas et al., 2017). Through offering varying representations
of ecological scales (e.g., individual, local, regional, global)
and dimensions (e.g., physical, ecological, social, management)
(Figure 3), integrated modelling approaches can provide
flexibility for supporting decision making and for constraining
the abstracted views developed for an ecosystem (Murphy et al.,
2012; Melbourne-Thomas et al., 2017). Insights gained from
models that focus on particular species of interest (see Table 2 for
Southern Ocean examples) can provide knowledge into key food
web processes and guide the development and implementation of
multi-species management tools (Plagányi, 2007).

Frontiers in Ecology and Evolution | www.frontiersin.org 9 October 2021 | Volume 9 | Article 624763

http://www.mentalmodeler.com
https://github.com/SWotherspoon/QPress
https://github.com/SWotherspoon/QPress
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-624763 October 9, 2021 Time: 16:12 # 10

McCormack et al. Southern Ocean Food Web Modelling

FIGURE 3 | Summary of various ecological modelling approaches and the associated spatial and socio-ecological scales at which they can be applied (concept
visualisation based on Fulton and Link, 2014; Melbourne-Thomas et al., 2017). Coloured rectangles indicate the inclusion and level of focus (i.e., dark—primary
focus, light—peripheral) of each of the components for the summarised qualitative (orange) and quantitative (blue) models. Reference to spatial scales relate to
Southern Ocean applications.

In Table 2 we assess the spatial coverage of Southern Ocean
focussed models published since the last assessment of Southern
Ocean food webs in 2012 (see Murphy et al., 2012), with respect
to each MEASO sector (Figure 1). Table 2 also distinguishes
between the following classes of models, all of which can be
used to inform the development of food web models and/or to
validate them:

i) habitat models (including species distribution models,
niche models and foraging habitat models) that might
influence interpretation of food web models i.e., “where
might a particular species do best”;

ii) population dynamics models, including both non-spatial
(life-history modelling) and spatial (metapopulation)

approaches e.g., matrix models and stock assessment
models; and

iii) trophic models (including predator-prey models and
Models of Intermediate Complexity (MICE; Plagányi et al.,
2014) that focus on a particular species and represent a
subset of the food web.

Bridging the gap between single-species assessment models
and more comprehensive ecosystem models are those that
consider system operation and change based on a subset of the
ecosystem and key processes, i.e., selected trophic interaction
models (such as predator–prey models) and MICE models
(Figure 3). These models have a long history of use in the
Southern Ocean, particularly for evaluating the nature and
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TABLE 2 | Examples of published models (since 2012) for the Southern Ocean which capture habitat, population and trophic interactions for key species (not fully
comprehensive).

MEASO sector Model domain/region Modelling approach Model purpose Focus taxa Reference

Circumpolar Circumpolar Population dynamics Project climate Emperor penguins Jenouvrier et al., 2014

Circumpolar Circumpolar (Global) Trophic (foodweb sub-set) Biogeochemistry
(WOMBAT)

Phyto-plankton Oke et al., 2013

Circumpolar Circumpolar (aspatial) Trophic (foodweb sub-set) Nutrient recycling through
trophic interactions

Phyto-plankton,
krill, whales

Ratnarajah et al., 2015

Circumpolar Circumpolar Trophic (foodweb sub-set) Harvesting impacts Baleen whales Tulloch et al., 2017

Circumpolar Circumpolar Habitat (growth rate) Krill growth potential and
impacts of change

Krill Murphy et al., 2017

Circumpolar Circumpolar Trophic (Trophic MICE
model with NPZD model)

Climate change impacts Baleen whales, krill Tulloch et al., 2019

Circumpolar Circumpolar Niche model Estimate present and future
distribution of Myctophids

Myctophids Freer et al., 2019

Circumpolar Circumpolar (spatial) Habitat Climate change impacts on
growth potential

Antarctic krill Veytia et al., 2020

Circumpolar Circumpolar Individual-based model Metazoan biology Salps Henschke et al., 2018

Circumpolar Circumpolar Habitat Krill spawning habitat
quality to understand
source and sink areas

Antarctic krill Green et al., 2021

Atlantic West Antarctic Peninsula Population dynamics Spatial population
dynamcis

Salps Groeneveld et al., 2020

Atlantic West Antarctic Peninsula Habitat Advection pathways Krill Piñones et al., 2013

Atlantic West Antarctic Peninsula Foraging habitat model Project future foraging
habitat for Southern Ocean
predator

Crabeater seal,
Antarctic krill

Hückstädt et al., 2020

Atlantic Scotia Sea Trophic (foodweb sub-set) Feedback management Krill, predators,
fishery

Hill and Cannon, 2013

Atlantic Scotia Sea, southern Drake
Passage

Trophic (foodweb sub-set) Sensitivity analysis Krill, predators,
fishery

Hill and Matthews,
2013

Atlantic Scotia Sea Habitat Climate change impacts Krill Hill et al., 2013

Atlantic Scotia Sea Trophic (foodweb sub-set) Risk assessment Krill, predators,
fishery

Plagányi and
Butterworth, 2012

Atlantic Scotia Sea and southern
Drake Passage

Trophic (foodweb sub-set) Risk assessment Krill, predators,
fishery

Watters et al., 2013

Atlantic Scotia Sea Habitat Trophic (foodweb
sub-set)

Climate change impacts Krill, predators,
fishery

Klein et al., 2018

Central Indian Aspatial but fit to Indian
sector

Trophic (foodweb sub-set) NPZD Plankton Melbourne-Thomas
et al., 2013b

Central Indian Kerguelen Plateau and
surrounding area (spatial)

Foraging behaviour Simulated prey fields
(micronekton) as a
predictor for predator
foraging behaviour

Southern elephant
seal, mesopelagic
prey

Green et al., 2020

Central Indian East Indian Foraging behaviour Simulate energy use and
life history of a Southern
Ocean predator

Southern elephant
seal (females)

Goedegebuure et al.,
2018

West Pacific Ross Sea Population dynamics Stock assessment Antarctic toothfish Mormede et al., 2014a

West Pacific Ross Sea Population dynamics Spatial population
dynamics

Antarctic toothfish Mormede et al., 2014b

West Pacific Ross Sea Trophic (foodweb sub-set) Mesopredator release Antarctic toothfish,
silverfish, Adelie
penguins

Pinkerton et al., 2016

The colour of each row corresponds to the MEASO sectors in Figure 1.

impact of fishing on predators that share a fished resource.
Beginning with the work of May (1979) and the subsequent
agreement for the Convention on the Conservation of Marine
Living Resources (CCAMLR), explicit acknowledgement of the
importance of maintaining the integrity of food webs to support

dependent species was developed, laying the foundation for the
input of modelled insights into management and policy decisions
globally (Plagányi, 2007).

Historically, the nature and impact of fishing on predators
that share a fished resource has been an important consideration
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in ecosystem-based fisheries management (Constable, 2001).
In the Antarctic, predator–prey modelling procedures have
been used to assess the impacts of Antarctic krill harvesting
on krill predator populations and to inform subsequent
recommendations for setting annual krill catch levels. For
example, initial modelling estimated the level of krill harvesting
that would reduce the availability of krill and hence impact
predator populations (Thomson et al., 2000). More recently,
modelling procedures have been developed to consider these
krill predation issues and advise on the spatial allocation of
krill catches (e.g., in the Scotia Sea; Plagányi and Butterworth,
2012). Watters et al. (2013) developed a dynamic model of
Antarctic krill, its predators and fishery, to explore potential
krill fisheries impacts in the Southwest Atlantic. Klein et al.
(2018) modified the model to simulate ocean warming impacts
on krill growth by incorporating the results of Hill et al. (2013).
These results suggested spatial disconnect between the strongest
potential impacts of krill biomass and those on the abundance
of its predators.

Whilst there is a general acceptance that parameter estimates
for krill are often highly uncertain and subject to spatial,
seasonal and interannual variability (Hill et al., 2006; Atkinson
et al., 2012a), many models have developed innovative methods
for dealing with such uncertainty (Hill et al., 2012; Watters
et al., 2013). For example, Plagányi and Butterworth (2012)
used models that are composed of alternative combinations
of parameters to bound the uncertainty. Nevertheless, better
understanding of the fine-scale interactions between both
predators and fisheries with krill in relation to fishing operations
and foraging trips (Cresswell et al., 2008; Waluda et al., 2010)
will help refine some of these uncertainties along with identifying
critical gaps in representations of krill in food-web models
(Atkinson et al., 2012a).

Whole-of-Food Web Models
Ecopath with Ecosim (EwE) (Christensen and Walters, 2004) has
been one of the most widely applied modelling frameworks for
assessing the impacts of fishing and environmental change on
Southern Ocean food webs. Indeed, there are only a few examples
of whole-of-food web models for the Southern Ocean that use
modelling approaches other than EwE (see Table 3), and there
are no published whole-of-ecosystem models for any region of
the Southern Ocean. There are many approaches to evaluating
how change propagates through modelled networks using
EwE including manipulation of specific ecosystem components,
analytical methods (e.g., metrics built into the EwE software)
and more intensive methods such as the forcing of parameters
in dynamic Ecosim models to represent the direct impacts of a
specified driver.

Based on mass-balance constraints, Ecopath describes food
webs in terms of the biomass, consumption, production and
diets of species or life stages, which can be aggregated into
functional groups according to trophic similarity and/or data
availability. Applications of Ecopath in the Southern Ocean (see
Table 3) have contributed significantly to our understanding of
food web characteristics and emerging patterns following change
across multiple regions and latitudes. Commonly characterised

as a top-down model (i.e., trophic interactions are represented
in relation to predator diets), Ecopath can be inverted to
represent interactions in terms of the fate of prey biomass
(Steele and Ruzicka, 2011). This simplified calculation can help
tease apart the response of higher trophic levels to changes
exhibited by lower trophic levels. Ballerini et al. (2014) used
this approach to explore five scenarios of change in an Ecopath
dataset representing an area adjacent to the western Antarctic
Peninsula. The simulated changes included reduction in the
size of unicellular phytoplankton, which predicted a reduced
production of Antarctic krill and the top predators that feed on it.

An alternative approach is to manipulate the biomass of
functional groups within an Ecopath dataset and to introduce
compensatory changes elsewhere in the food web during the
balancing process (Hill et al., 2012). McCormack et al. (2019b)
and Saunders et al. (2019) used this approach to examine
the consequences of reduced krill biomass for other trophic
pathways in the Scotia Sea and Prydz Bay. Whereas the krill
pathway remained dominant in the former, pathways involving
squid and fish became dominant in the latter area. Similarly,
the Mixed Trophic Impact (MTI) metric built into the EwE
software provides an indication of the effect of a change in the
biomass of one functional group on another (Libralato et al.,
2006; Christensen et al., 2008). Subramaniam et al. (2020a)
used this method to explore the direct and indirect impacts of
the Patagonian toothfish (Dissostichus eleginoides) and mackeral
icefish (Champsocephalus gunnari) fisheries activities (catch and
by-catch) on trophic interactions on the Kerguelen Plateau. This
identified the functional groups that frequently interact with
fishery target species, and the importance of fished species in the
transfer of energy through the food web.

Several studies have used Ecosim to explore the time-
dynamic variations of Southern Ocean food webs (Surma et al.,
2014; Suprenand and Ainsworth, 2017; Dahood et al., 2019;
Subramaniam et al., 2020b). This approach fits models from
Ecopath to time-series and/or fisheries data for functional
groups (Christensen et al., 2008). Most models are fitted
to the data by manipulating how consumption is influenced
by changes in predator and prey biomass (vulnerability
parameter; Christensen et al., 2008) while others also use
forcing functions (e.g., Dahood et al., 2019). Since 2012, Ecosim
has been used to explore the effects of whaling and bottom-
up forcing, concluding that they may have had counteracting
impacts on krill biomass (Surma et al., 2014). Suprenand
and Ainsworth (2017) explored potential future change, with
most scenarios resulting in reduced biodiversity and increased
trophic level. Dahood et al. (2019) evaluated changes to
sea-ice cover as an environmental driver of predator–prey
interactions, finding that the sea-ice regime was needed to
recreate observed biomass trends and Subramaniam et al.
(2020b) correlated time-dynamic food web interactions with
environmental variables, highlighting sea surface temperature,
zonal wind, and the Southern Annular Mode as important drivers
of ecosystem change.

An additional component of EwE is Ecospace, which simulates
Ecosim models over a two-dimensional grid using habitat maps
and movement rates (see Christensen et al., 2014). Ecospace
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TABLE 3 | Examples of Southern Ocean EwE and whole-of-food web models published since 2012 (not fully comprehensive).

MEASO sector Model domain/region Modelling approach Model purpose (year/s represented) Reference

Circumpolar Circumpolar Ecopath with Ecosim Food web exploration (Ecopath 1900;
Ecosim 1900–2008)

Surma et al., 2014

Circumpolar Nearshore (shelf);
Circumpolar (aspatial)

Conservative normal food web Parameter refinement Bates et al., 2015

Circumpolar Circum-Antarctic Ecopath Food web exploration, iron balance (1900,
2008)

Maldonado et al., 2016

East Pacific West Antarctic Peninsula Inverse food web Carbon flux Sailley et al., 2013

East Pacific West Antarctic Peninsula Ecopath Food web exploration (2001, 2002) Ballerini et al., 2014

East Pacific West Antarctic Peninsula Inverse food web Biogeochemical fluxes Ducklow et al., 2015

East Pacific West Antarctic Peninsula Ecopath with Ecosim Climate change impacts (Ecopath
1992–2002; Ecosim 1996–2012)

Dahood et al., 2019

East Pacific Antarctic Peninsula Ecopath with Ecosim Food web exploration (Ecopath 1978,
2010; Ecosim scenarios 2010–2050)

Suprenand and
Ainsworth, 2017 (see
also Hoover et al.,
2012)

Central Indian Prince Edward Islands Ecopath Food web exploration (1960s, 1980s,
2000s)

Gurney et al., 2014

Central Indian Prince Edward Islands ECOTRAN Food web exploration Treasure et al., 2015

Central Indian Prince Edward Islands ECOTRAN Food web exploration Treasure et al., 2019

Central Indian Prydz Bay Ecopath Explore alternative energy pathways
(2010s)

McCormack et al.,
2019b

Central Indian Kerguelen Plateau Ecopath with Ecosim Food web exploration, harvesting impacts
and environmental drivers of ecosystem
change (Ecopath average state
2008–2018; Ecosim 1986–2018)

Subramaniam et al.,
2020a,b

West Pacific Ross Sea RSTM/Ecopath Harvesting impacts Pinkerton et al., 2010

The colour of each row corresponds to the MEASO sectors illustrated in Figure 1.

presents an advantage and incentive to build EwE models as food
web models that incorporate spatial information are few in the
Southern Ocean. One published spatially explicit food web model
currently exists for the Southern Ocean, exploring scenarios
relating to ecosystem-based fisheries management (Dahood et al.,
2020). The model evaluated scenarios regarding the designation
of marine protected areas and future changes in sea ice and krill
fishing effort. Results from the study indicate that establishing
marine protected areas in the right locations could be important
for mitigating the negative effects of climate change.

Steps toward addressing model reliability and parameter
uncertainty have resulted in additional tools, guides, and
improvements to the EwE software. Heymans et al. (2016)
provide guidelines for testing and reviewing EwE models
for management, detailing pre-balancing diagnostics and
thermodynamic and ecological rules for balancing models.
Ainsworth and Walters (2015) outline the top ten mistakes
made by EwE modellers to help new users side-step pitfalls.
Current tools address uncertainties for management strategy
evaluation (Steenbeek et al., 2016) and find best statistical fits
to Ecosim input (stepwise fitting procedure, Scott et al., 2016).
A new development addresses EwE-wide parameter uncertainty
by recording alternate mass-balanced parameter sets in the
Monte Carlo routine (Ecosampler; Steenbeek et al., 2018). These
guidelines and improvements to the software provide a path
forward for developing reliable models for ecosystem-based
management, including multi-model ensemble approaches to

predict ecosystem response to change (Heymans et al., 2016; Hill
et al., 2021).

Although the suite of regional food web models has expanded
since 2012, the only attempt at a circumpolar food web model
(de Santana et al., 2013) is based on a simple interrogation of
the Southern Ocean Diet and Energetics Database (Scientific
Committee on Antarctic Research, 2020). This is a static
network model (see section “Ecological Network Models”) that
considers only the links between species, with no possibilities to
compensate for the significant spatial heterogeneity in sampling
effort. As suggested previously a significant improvement for
this model would be to consider weights for the links based
on the probability of interactions due to species distributions
(Poisot et al., 2015). Most Southern Ocean food web models
consider relatively small scales whereas the dynamic models often
consider regional (>1 million km2) or circumpolar (>10 million
km2) scales. The food web models predominantly consider
continental shelf ecosystems. This reflects data availability:
intensive ecosystem studies across multiple trophic scales tend
to be localised within the area of interest of particular Antarctic
operators, which in turn tends to be associated with land-
based research stations. The SCAR Southern Ocean Diet and
Energetics Database, collated by the SCAR Expert Groups on
Antarctic Biodiversity Informatics (EG-ABI) and Birds and
Marine Mammals (EG-BAMM), provides data related to diet and
energy flow from conventional (e.g., gut content) and modern
(e.g., molecular) studies, stable isotopes, fatty acids, and energetic
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TABLE 4 | Summary of progress in the development of Southern Ocean food web models to meet three different approaches to informing policy makers and supporting
decision making—testing outcomes of future scenarios, support of decision-making, and assessment of risks.

Aspects of need Progress Requirements to meet each aspect of need

Testing outcomes of scenarios Regional coverage • • • • • Requires adequate coverage of food web models across all
Southern Ocean regions. Currently, three out of five of the MEASO
sectors have models, and coverage is skewed to Atlantic sector
(see Tables 2, 3 for current coverage)

Whole of ecosystem
representation

• • • • • Requires whole of ecosystem models to be available. Better
representation of pathways alternative to the krill pathway is
needed. There are currently no published whole-of-ecosystem
models (that incorporate physics, chemistry, and the entire food
web, either coupled or through end-to-end modelling)

Representation of realistic
future scenarios

• • • • • Requires agreed scenarios and available forcing data (e.g., see
Cavanagh et al., 2017), specifically require improved earth system
modelling for the Southern Ocean and means to downscale to
appropriate ecological scales

Enabling assessments of
spatial variation

• • • • • Requires spatially structured models allowing reasonable
representation of spatial dependencies of predators and prey and
their covariation (e.g., see McCormack et al., 2020)

Support for decision making Ability to test food web
performance in
management systems

• • • • • Requires models in which predator and prey dynamics are realistic
in their co-dependency and covariation, despite that these may
operate at different spatial and temporal scales

Climate change context
considered

• • • • • Requires available models to test the sensitivity of food webs to
decision rules under climate change scenarios

Relevant scales for
decision-making

• • • • • Requires that the spatial resolution and overall spatial scale of
models is suitable for scales of decision-making

Assessment of risks Capacity to address
uncertainty in evaluation of
risks

• • • • • Requires model uncertainty to be characterised and translated in
evaluation of risk

Capacity to evaluate spatial
risk

• • • • • Requires representation of spatial connectivity (and
down-stream/up-stream effects)

Capacity to evaluate
ecosystem-level risk

• • • • • Requires whole of ecosystem models + methods to consider
ecosystem-level risk

General model suitability Validation • • • • • Requires models to have their behaviour shown to be satisfactorily
for the task for the right reasons. If they are intended to represent a
known period of time or a known region then their behaviour needs
to be assessed against observations from that time and place

Verification • • • • • Requires model code to be verified to be operating in the manner
expected, particularly relevant for models that are not widely used

Progress is indicated by a dot scale-bar (1 filled dot, minimal progress - 5 filled dots, significant progress). General requirements for assessing suitability of models
are also presented.

content. At larger spatial scales, the available data are limited to
remote sensed chlorophyll data and population or distribution
estimates for high profile taxa including Antarctic krill, marine
mammals, and penguins. Despite the higher level of detail at
intensively studied sites, most Southern Ocean food web models
incorporate parameter estimates which are not based on direct
observation of the modelled site.

Building on Murphy et al. (2012, 2013), Murphy et al.
(2016) suggest that development of a generic food web model
approach (i.e., representative of all Southern Ocean regions) is
both possible and useful in analyses of Southern Ocean food
webs. A number of potential general model structures for food
webs have been suggested, involving different sets of species
or functional groups or alternative representations of groups
of organisms and interactions (e.g., based on classifications of
guilds or organism size) (Murphy et al., 2012, 2013, 2016).
These provide a valuable basis for the development of generic
computational models of Southern Ocean food webs. The aim

of such an approach is to apply a single model throughout the
Southern Ocean, and on the basis of a series of environmental
constraints/drivers (physical and biogeochemical), identify the
major structural form of regional food webs and the main
species/groups involved in the major pathways of energy
flow. Such an approach can be extended to include more
complex representations of the food web if there is sufficient
understanding and data to validate model outcomes.

While the on-going development of more complex food web
models is providing greater understanding of Southern Ocean
ecosystems, there is also a growing awareness, particularly from
management, of the uncertainties of this approach. Given the
complexity and associated uncertainty, ecosystem models face
many challenges which are complicated further by the additional
uncertainties associated with representing environmental and
harvesting scenarios (Travers et al., 2007; Plagányi et al.,
2011). General uncertainties include the lack of observational
data, concerns on the ability of such models to capture the
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underlying ecosystem dynamics and the ability to identify
emergent behaviour, regime shifts and evolution of food web
structure and function (Griffith and Fulton, 2014).

The interactions between species are generally defined by
correlations. If the underlying dynamics are non-linear then
mirage correlations can occur in which the causally connected
interaction can be positive or negative or neutral over different
periods of time (Fogarty et al., 2016). The “dynamical systems”
perspective offers an alternative and complementary approach
to viewing marine food webs (Griffith, 2020). It assumes that
the food web results from the complex interplay between
multiple processes. Viewing Southern Ocean food webs in this
way allows us to leverage some powerful approaches from
dynamical systems theory. These concepts are particularly useful
in the Southern Ocean context where observing all the species
that inhabit an ecosystem is near impossible, and knowledge
of which of the observed variables are relevant and causally
related is lacking. Rather than attempting to investigate system
dynamics through complex equation-based models (e.g., Ecopath
models) that explicitly account for each interaction, the “non-
linear dynamic” perspective draws on the concept from state-
space reconstruction which implies that any variable in a state-
dependent dynamic system encodes the history of its interactions
with other system variables (Munch et al., 2020). That is, the
data itself provides the evidentiary portal to identifying the
causal relationships in complex real-world system dynamics.
Previously, this approach has been limited by requiring long-
time series. Recent work shows that integrating an equation free
non-linear approach with a Bayesian model can overcome the
problem of short ecological time series (Johnson et al., 2020).
To many in marine management, this concept is challenging
despite recent work demonstrating the utility of this approach
to a wide range of topics in marine ecology (Griffith, 2020).
In future work, sensibly applied and complementary to existing
Southern Ocean food web models, this approach may provide
valuable insights into understanding and predicting causal food
web interactions.

CONCLUDING
REMARKS—ADDRESSING NEEDS OF
POLICY MAKERS

Policy makers need information on how changing climate
and environmental drivers (Henley et al., 2020; Morley et al.,
2020) and local drivers, such as fisheries and pollution (Grant
et al., 2021), will impact on the conservation and long-
term maintenance of Southern Ocean species, biodiversity and
productivity. Modelling to date has shown how these drivers have
cascading effects through food webs and ecosystems. The parallel
changes that are occurring through climate change, increasing
ocean acidification, increasing krill fishing, and recovery of
whales means that not only are individual species being
affected but, also, the relative importance of different energy
pathways may change (Trebilco et al., 2020). Policy makers will
need to develop ecosystem-based strategies for achieving their
conservation and sustainability objectives that take account of the

changing ecosystems (Constable et al., 2017). A good example of
this requirement is embedded in Article II of CCAMLR, such that
fisheries must be managed in such a way to ensure.

“prevention of changes or minimisation of the risk of changes
in the marine ecosystem which are not potentially reversible over
two or three decades, taking into account the state of available
knowledge of the direct and indirect impact of harvesting,
the effect of the introduction of alien species, the effects of
associated activities on the marine ecosystem and of the effects
of environmental changes, with the aim of making possible the
sustained conservation of Antarctic marine living resources.”

Changing system productivity is naturally embedded in
existing approaches to managing fisheries under CCAMLR
(Constable, 2001, 2002). However, the potential for changing
food web structures could lead to unwanted outcomes if they
are not countenanced, not only in terms of shifting the relative
importance of production of different fished species but also in
the conservation of biodiversity generally (Constable et al., 2017).
Food web and ecosystem models could be used to support policy
makers at present but there is much room for improvement,
particularly with respect to the challenges of climate change.

Based on our review here, we provide an expert synthesis
to summarise the state of ecosystem models to support policy
makers in Table 4. We also summarise the expected requirements
of models that may be used in three different forms of advice.
The use of food web and ecosystem models for testing specific
scenarios is becoming common place, such as through FishMIP
(Tittensor et al., 2018) or in specific circumstances (Holsman
et al., 2019). Typically, future scenarios are from Earth System
models. As a result, end-to-end modelling approaches are needed
to simulate and predict changes in the state of marine ecosystems
and remain to be developed for the Southern Ocean. Testing
scenarios helps form hypotheses about, or frame, plausible
futures for which management strategies need to be developed.
End-to-end ecosystem models, or simpler versions of them, can
be used to evaluate management strategies and for assessing risks
of failing to meet objectives (Constable, 2002, 2011; Melbourne-
Thomas et al., 2017; Plagányi and Fulton, 2017). A great challenge
in these cases is to provide satisfactory representation but with
computational economy in order to explore the many and varied
uncertainties that plague decision-makers. Novel representations
of the properties and dynamics of ecosystems can be very
useful in these circumstances if they satisfactorily represent the
decision environment and its relationship to the real world
(Griffith, 2020).

Table 4 shows that considerable effort and resources remain
to be invested in developing ecosystem and food web models
that satisfactorily represent the whole of the ecosystem in a
manner suitable for policy makers. A major advance since
Murphy et al. (2012) has been better characterisation of food webs
around the Southern Ocean. However, three critical challenges
remain to be addressed by the scientific community and policy
makers. First, end-to-end ecosystem models or food web models
coupled to Earth System model outputs are urgently needed
for developing future scenarios under climate change, and to
frame the ecosystem issues for policy makers to address in the
coming decades. A second challenge, and no less important,
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is to establish sustained observations of food webs in more
than just the Antarctic Peninsula and Scotia Arc (Newman
et al., 2019). Without these observations, it will be very difficult
to detect changes in food webs, validate ecosystem models of
the region and support management in areas other than the
south Atlantic and Antarctic Peninsula. The third challenge is
to establish processes and procedures for validating ecosystem
and food web models and for verifying that their behaviours are
“right for the right reasons,” a process that still challenges the
Earth System modelling community (Russell et al., 2018). The
importance of validation and verification cannot be overstated.
Russell et al. (2018) articulates very well that fitting a model to
data, while centrally important to the validation process, does
not guarantee that the model will provide satisfactory projections
into the future. Models need to also have behaviours of state
variables as well as spatial and temporal correlations amongst
variables that make sense when compared to known broader
patterns, understanding, and theory. With appropriate validation
and weighting of each model’s utility for the task, ensembles
of different models can help with understanding the impacts of
model uncertainty on the conclusion about different scenarios.

Managers rely on models, heuristic or formal, to make
decisions. Ecosystem models enable conversations about what
processes are important, how species interact and where the
greatest risks and vulnerability to ecosystem structure and
function may lie. They also allow scientists and policy makers
to frame the possible futures that we face. Earth System models
point to the vulnerability and diminution of polar systems. At
present, we can foresee how species will be affected by physical
changes and what the consequent pathways of effects might be. In
the absence of ecosystem models, we are unable to foresee what

the system-level response will be for Southern Ocean ecosystems
once climate recovery begins.
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