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Population declines in terrestrial bird species have been reported across temperate
regions in the world and are attributed to habitat loss, climate change, or other direct
mortality sources. North American and European studies indicate that long-distance
migrants, common species, and species associated with grasslands and agricultural
lands are declining at the greatest rates. However, data from East Asia on avian
population trends and associated drivers are extremely sparse. We modeled changes
in occupancy of 52 common breeding landbird species in South Korea between 1997–
2005 and 2013–2019. Thirty-eight percent of the species showed evidence of declines,
and seven of these were declining severely (46–95%). Occupancy of Black-capped
Kingfisher (Halcyon pileata) populations have dropped the most precipitously over the
study period. Among declining species, long-distance migrants (9/20) and common
species (14/20) showed more rapid declines than other groups. Declines of five species
were associated with climate change, and two species appeared to be affected by
land-cover change. However, causes of change in occupancy of other species (46/52)
remains cryptic. Based on our results, we suggest an immediate re-evaluation of
species’ conservation status and legal protection levels for seven severely declining
species in South Korea, and a dedicated survey design and analysis effort for the
continued monitoring landbird populations. Because many species exhibiting declines
migrate from beyond national boundaries, international collaborations will be required
to better quantify population trends across the full annual cycle, and to understand
mechanisms for these declines.

Keywords: national atlas data, Asian songbird crisis, species conservation status, common bird decline, climate
change, land-cover change, ricefield

INTRODUCTION

In recent decades, a rapid decline in avian biodiversity has been reported around the world. Studies
from Europe (Inger et al., 2014; Gregory et al., 2019), Canada, and the United States (Rosenberg
et al., 2019) show rapid and substantial declines in common and widespread species across wide
geographic ranges. Habitat loss, degradation and climate change are expected to be the most
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substantial anthropogenic drivers of avian biodiversity loss and
population declines (Thomas et al., 2004; Sekercioglu et al., 2008;
Pearce-Higgins et al., 2015).

Increasing pressure on land-use from human population and
economic growth constrains biodiversity conservation efforts,
especially where human population density is high and economic
growth has increased (Lambin and Meyfroidt, 2011; Di Marco
et al., 2018). The loss of avian biodiversity in common and
widespread species from land-cover and climate change can
degrade ecosystem services and ecological functions provided by
avifauna (Şekercioǧlu et al., 2004; Cardinale et al., 2012).

Agricultural land covers at least a third of the earth’s ice-
free land area in the Anthropocene (Ramankutty et al., 2018).
While the conversion of native vegetation for agricultural use
(both cropland and pasture) poses a dominant threat to avian
biodiversity (Gaston et al., 2003), species that are adapted to
open vegetation and agricultural landscape are also declining
in more populated regions of the world (Stanton et al., 2018;
Reif and Hanzelka, 2020). Declines in bird populations that
breed in agricultural areas are known to be related to intensive
management practices such as the increase in pesticide use or loss
of functional diversity from the homogenization of vegetation
(Hallmann et al., 2014; Šálek et al., 2018). However, abandonment
and conversion of farmlands, especially the loss of low-intensity,
small scale traditional farming, has resulted in local biodiversity
loss in different studies (MacDonald et al., 2000; Queiroz et al.,
2014; Katayama et al., 2015).

Migratory and insectivorous species are declining in
temperate regions (Sanderson et al., 2006; Bowler et al., 2019;
Rushing et al., 2020). Climate and land-use change often pose
greater threats to migratory species than resident species due
to the potential effects of these factors on the availability of
arthropod prey and thermoregulation during periods of high
energy demands (Both et al., 2010; McKechnie and Wolf,
2010; Pearce-Higgins et al., 2015). Declines in the availability
of invertebrate foods have been hypothesized to be related to
changing thermal conditions (Lister and Garcia, 2018) and
intensified land use (Sánchez-Bayo and Wyckhuys, 2019),
potentially leading to the functional collapse of food webs
(Hallmann et al., 2017; Seibold et al., 2019). However, these
patterns have been described mainly for temperate ecosystems in
North America and Europe, where there are long-term records
of avian biodiversity data (Van Strien et al., 2001; Sauer et al.,
2013). Many parts of the world still need systematic collection
and analysis of long-term data to quantify and understand these
changes (Proença et al., 2017). In East Asia, there is a long history
of anthropogenic modification of landscapes through rice-paddy
dominated agriculture, forest exploitation and recent recovery,
and conversion of agricultural lands to urban structures (Aikens
and Lee, 2013; Ramankutty et al., 2018).

Up-to-date systematic assessment of breeding land birds has
been rare in this region (but see: Yamaura et al., 2009; Choi
et al., 2020; Lin and Pursner, 2020) except for regional long-term
waterbird monitoring (Mundkur et al., 2017; Amano et al., 2018).
While declines in the global population of once-common species
of buntings in Asia have recently been documented (Kamp
et al., 2015; Tamada et al., 2017), the population status of most
species is uncertain (Yong et al., 2015). Given past and current

changes in land use (Song et al., 2018) and global climate change
effects in this region (Gu et al., 2018), systematic monitoring and
analysis are necessary for detecting changes which could inform
conservation and management actions.

In South Korea, rice paddies have decreased by more than 33%
between 1980 and 2014 (Choi et al., 2016; National Geography
Information Institute, 2019). Open agricultural fields are often
converted to urban land cover (125% increase between 1990
and 2010) and greenhouse facilities (85% increase between 1991
and 2012; National Geography Information Institute, 2019).
Meanwhile, forest cover in Korea has remained relatively stable
following a rapid increase between the 1960s and 1990s, due
to intensive reforestation and forest protection efforts after
the Korean War (1950–1953) (Tak et al., 2007; Bae et al.,
2012). If occupancy trends are a function of habitat loss and
degradation, we predicted that these changes (Figures 1B–D)
in land use and climate should be associated with large-scale
changes in the occupancy of breeding landbird populations in
South Korea. More specifically, we expected that occupancy
of species that use forest and urban areas as breeding habitat
should be stable or increasing. However, species that rely on
agricultural ecosystems should have declined, especially those
associated with rice paddies. Migratory species that have been
affected by climate change and land-use change across their
migratory cycle may have been declined more severely. Based
on previous studies and recent environmental changes in Korea,
we suspected that there could be substantial declines in breeding
populations of many species, that would be reflected in the
estimated occupancy dynamics.

We used the South Korean national bird survey data to model
the broad-scale occupancy trends of 52 breeding landbird species
between two survey periods (1997–2005 and 2013–2019). We also
tested whether land-cover and climate change, as well as species’
ecological traits, could explain inter-species variation in trends.
To our knowledge, this is the first comprehensive multi-taxa
analysis of long-term avian occupancy dynamics for the breeding
landbird populations in East Asia.

MATERIALS AND METHODS

Korean Bird Atlas Data, Species Criteria,
and Spatial Units
The National Natural Environment Survey (NES) in South Korea
is one of the first systematic and legally binding nationwide
surveys that included terrestrial avifauna (National Institute of
Ecology, 2017; Choi et al., 2020). The first survey started in the
late 1980s, reporting checklists for species occurrence on a broad
provincial scale, without recording the search effort (time and
space) or consistency in survey methods. Such a lack of baseline
information poses substantial challenges for data analysis. The
second survey phase (1997–2005) covered all of South Korea.
In this phase, the field surveys were conducted in watershed-
based survey units with streams, coastlines, and drainage divide
lines separating the sampling units in different sizes and shapes
(National Institute of Ecology, 2017). For the 1997–2005 period,
experts in field ornithology were selected from universities and
other institutions; for more recent surveys, members of public
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FIGURE 1 | (A) Distribution of sampling units across South Korea. The sampling units are aggregated grids that match the spatial extent of the 1997–2005 survey
units. (B) Differences in land-cover area per sampling unit between two periods. (C) Differences in average May-June precipitation and (D) daily maximum
temperatures per each sampling unit.

who are certified through the Korean Ministry of Environment
(K-MOE)’s training program were included in the surveyor pool
(Kim et al., 2013). Surveyors were asked to visit and record
species, breeding status (in categories), environment and their
relative abundance based on repeated visits in different seasons
to reflect breeding and migration periods. Each surveyor group
was assigned to multiple adjacent units and reported a list
of birds observed from each of these watershed-based units.
However, some survey reports did not provide explicit lists for
each unit and instead, reported a combined list for all units
they surveyed. We excluded these lists from the analysis. Even
with multiple visits, the published data were combined in a
single table for each unit, making NES a single-visit, atlas-type
survey for the 1997–2005 period. For the third (2006–2013)
and fourth survey (2014–2019) phases, sampling units were
set to rectangular plots with nine grid cells of 994 national
reference maps (at a scale of 1:25,000; 2′3′′ × 2′3′′ grids in
latitude and longitude) across South Korea (National Institute of
Ecology, 2017). Survey reports from this period provide date of
each observation, but do not provide exact survey duration or
time of observation.

However, the number of “visits” were reported for each
grid (post-2006) or survey units (pre-2006), and we used this
information as a measure of relative effort. Each visit consists
of a set of consecutive days or number of visits described by
the surveyors. Two observers were assigned for each survey unit,
where they conducted surveys on roadsides or well-established

hiking trails. We reviewed and compiled bird survey reports
from 1997–2005 to 2013–2019 (hereafter survey periods). And
extracted bird lists for the smallest spatial units and gleaned
information on the number of visits per species list. We selected
most recent round of surveys (2013–2019) and earliest period
(1997–2005) that cover the study area twice. Survey reports
are available from the K-MOE Digital Library1, in Korean. We
supplemented missing survey data in 2014–2019 from 2013 to
provide better spatial coverage. For selecting breeding records of
earlier (1997–2005) survey data, we used the information from
the reports to filter out non-breeding records, using breeding
status, list of survey dates, and survey environment. The data
from the later periods came with dates of observation, so we
selected all records from April to August, a period that represents
the general breeding season in south Korea for our target
species. Next, we removed all waterbird species that are covered
in the Asian Waterbird Census (Mundkur et al., 2017) and
removed rare and localized species that only occur in limited
habitats (i.e., coastal islands, subalpine zones). We also excluded
species pairs that can be easily misidentified species (i.e., Bush
Warblers; Horornis diphone / Horornis canturians complex) and
nocturnal species (owls and nightjars; order Strigiformes and
Caprimulgiformes). Since having no false-positive identification
is one of the most important assumptions in occupancy models
(MacKenzie et al., 2002), we carefully removed species that are

1https://library.me.go.kr/
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prone to misidentification. By excluding rarer species and only
including conspicuous species that can be detected and identified
easily with sound and sight, we tried to avoid the violation of
this key assumption. Lastly, we removed species with <10%
occurrence on all sites in both survey periods. We selected all
migratory bird species (41 species) and an additional 11 species of
selected sedentary passerine species from what remains from the
above filtering process, leaving a total of 52 species for the analysis
(Supplementary Table 1). We did not include woodpeckers as
the primarily road-side survey design was not appropriate for
these taxa that mainly use the forest interior and are under-
detected in passive counts (Warren et al., 2005; Kumar and Singh,
2010; Saracco et al., 2011). Among the species selected, three
species (Oriental Turtle Dove Streptopelia orientalis, Eurasian
Magpie Pica pica, and Large-billed Crow Corvus macrorynchos)
are game animals in South Korea; however, we did not consider
the impact of direct human-induced mortality such as legal
or illegal hunting on landbirds in this study, because the
bird harvest, persecution, and poaching activities are believed
to have been well-controlled in South Korea since the 1990s
(Choi and Nam, 2020).

Because the spatial extent and grain size of each survey unit
in the early surveys (1997–2005) do not match with the later
years (2013–2019), we aggregated survey units in later years to
the earlier survey period’s spatial scale. To achieve this spatial
matching, we overlaid the rectangular plots from the third and
fourth phase on the second phase survey units, thereby creating
a new sampling unit (hereafter “sampling unit”; aggregation of
1–43 third/fourth phase plots to second phase survey units, mean
area = 13,840 hectares and standard deviation = 7,086 hectares).
Whenever there was a grid unit from a later period that crossed
the boundaries of an earlier period’s survey unit, we used the
preponderance of area included in each grid as a criterion for
aggregation. Because the grids from 2013 to 2019 are fairly large,
the boundaries did not match perfectly. This spatial error may
introduce errors in parameter estimates, but it should not have
a systematic bias, as the process is basically converting vector
sampling units into raster cells. We selected survey units that
had surveys from both periods (1997–2005 and 2013–2019), but
excluded survey reports that did not provide the number of visits
for sampling units for each survey period. Following these data
filters, we obtained 464 sample units for both periods for use in
our analysis (Figure 1A).

We reviewed species accounts (Gore and Won, 1971;
Billerman et al., 2020) to classify each species into simple
categories based on their breeding season diet (arthropod,
vertebrate, and others), general habitat association (i.e., farmland
and forests), and migratory behavior (i.e., sedentary, short-
distance migrant, long-distant migrant). Most species were
assigned to the arthropod diet group or the vertebrate group
diet. We classified crow and magpies into the vertebrate diet
group together with raptors, shrikes and kingfishers, and two
remaining dove and grouse species into the “others” category
(Supplementary Table 1). Given the lack of definite classification
in this region, we considered short-distance migrants as those
species that are partial migrants or migrating within Korea, Japan,
and East China, whereas long-distance migrants were those that

winter in tropical climate zones in Southeast Asia, South Asia,
and South Africa (Supplementary Table 1).

Environmental Covariates: Land Use and
Cover, Topography and Climate Data
We obtained land-use and cover maps produced by the
Korean Ministry of Environment for the 1997–2000 period
(classified from 5-m resolution imagery) and 2018 (classified
from 1-m resolution imagery) from Environmental Geographic
Information Services2 and used these to assess land-use and
cover amounts in each period. As two maps were created from
satellite imagery with different resolutions, we rasterized the
provided vector maps to 30-m resolution for final use. We
grouped detailed land-use and cover classes to four general land-
cover variables. We reclassified all roads, buildings, other built
structures, and landscaped artificial green spaces into “urban,”
all dry, non-rice open agricultural lands to “dry-field,” all forest
types to “forest,” and all rice paddies to “ricefield.” We then
extracted the area of each variable per survey unit for both survey
periods (Figure 1). We used historical monthly climate data for
South Korea from CRU-TS 4.03 (Harris et al., 2014), downscaled
in WorldClim 2.1 (Fick and Hijmans, 2017). We chose two
climate covariates, breeding season (May-June) average daily
maximum temperatures and cumulative precipitation for the
same period, matching each survey unit’s survey years. We
then extracted the average values per each survey unit from
summarized 1-km resolution raster datasets of two variables.
Also, elevation and topographic roughness indices were extracted
from a 10-m resolution digital elevation model. All covariates
were standardized with mean and variance (average is set to
zero) for the model fitting. No pairwise relationships between
covariates showed a high level of correlation (r < 0.70). We
prepared all environmental covariate data using the following
R packages: “raster” (Hijmans, 2020), “exactextractr” (Baston,
2020), “sf” (Pebesma, 2018), and “dplyr” (Wickham et al., 2020).

Modeling Changes in Bird Occurrences
We modeled bird occurrences and dynamics between two survey
periods (1997–2005 and 2013–2019) in our study area using the
single-visit dynamic occupancy model approach (Peach et al.,
2017). This approach uses an effort variable to estimate detection
probability instead of repeated observation data in robust
multiple-visit surveys (MacKenzie et al., 2003). This allowed
us to model each bird species occurrence while accounting for
imperfect detection in bird survey data with no repeated visits
(Lele et al., 2012). The model uses the combined probability
of detection (Pi,j∗) for detection probability given the species
is present (pi,j) at each observation per site j and season i,
for unit effort (Ei,j) and covariates (x1 ... x1+k) with intercept
(β0) and coefficients β1+k for each x1+k covariates. We modeled
each survey period’s detection probability independently as two
separate sub-models (p1j, and p2j), each with separate intercepts.
For the effort variable, we used the number of visits to each
sampling unit.

logit
(
p1,j

)
= β0 + β1 × x1 + ...+ β1+k × x1+k

2https://egis.me.go.kr/
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logit
(
p2,j

)
= β0 + β1 × x1 + ...+ β1+k × x1+k

P1,j
∗
= 1−(1−p1,j)

E1,j

P2,j
∗
= 1−(1−p1,j)

E2,j

Dynamic occupancy models explicitly model initial occupancy
(ψ1,j) and two dynamic parameters, the probability of
colonization (γi,j) and probability of extinction (εi,j) at each site j,
and primary periods i, while accounting for imperfect detection
by adjusting observational data with estimated detection
probability (MacKenzie et al., 2003). Note that since we have two
primary periods (1997–2005 and 2013–2019), one parameter will
be estimated per site for each probability of colonization and
extinction.

logit
(
ψ1,j

)
= β0 + β1 × x1 + ...+ β1+k × x1+k

logit
(
γi,j

)
= β0 + β1 × x1 + ...+ β1+k × x1+k

logit
(
εi,j

)
= β0 + β1 × x1 + ...+ β1+k × x1+k

The initial occupancy model for each species includes the
land-cover area variables of the first period (cover type_t1),
breeding season average daily maximum temperatures (tmax_t1),
and precipitation of the first period (precip_t1). The land-
cover variables included land-cover types of forest, dry-field,
ricefield, and urban cover, as described above. Two dynamic
parameters (probability of colonization: γj and the probability
of extinction: εj) were modeled with the land-cover change
variables and climate change variables. We defined land-
cover as both proportional change in land cover between two
periods and the remaining amount of land-cover at the second
survey period. To incorporate this definition, we included
both land-cover area the second period (land-cover area; cover
type_t2), and their % change from the first period (land-
cover change; cover type_d) per each land-cover type. For
climate variables, we used the difference between two periods
(precip_d, tmax_d) for dynamic parameter submodels. Because
our sampling units are not homogenous in size and shape,
we always included the land-cover area variable and land-
cover change variable of each land-cover type together as a
pair for dynamic parameter models (Supplementary Materials
S2). By using this approach, we intended to reflect the overall
land-cover type change, including both the retained amount
of land-cover type after the change and the magnitude of
land-cover change between the two periods. The detection
probability sub-models included the sampling unit area,
elevation, and terrain roughness index (TRI; Wilson et al., 2007)
as covariates, accounting for accessibility and spatial extent of
each sampling unit.

We built 64 candidate model sets for the probability
of colonization, extinction, and initial occupancy, and eight
candidate models for each detection probability models with
these covariates. We fit models using maximum likelihood and

selected the best subset using Akaike’s Information Criteria (AIC)
and evidence ratios for inference (Burnham and Anderson,
2004). Instead of comparing the full combination of these sub-
models sets, which would result in more than 16.7 million
(643

× 82) possible models, we used a “secondary candidate
set strategy” described by Morin et al. (2020). This ad hoc
model selection strategy selects the best model sets for multilevel
models in two stages of model selection. In the first stage, the
candidate sets for each sub-models (ψ1,j, γi,j, εi,j, p1,j and p2,j)
are fitted with all candidate target sub-model structures while
non-target sub-models (e.g., first fitting and finding first stage
candidate sets of initial occupancy while holding all other sub-
model structure to most general model). We then established
a secondary model set using the selected model sets from the
first step that had 1AIC < 5. Secondary model set included
all possible combinations of sub-models selected from the first
step. We used evidence ratios (ER) for model selection criteria
for this secondary set evaluation, accepting models with a
likelihood of support (ER) of 0.5 (<2 evidence ratio) than
the best model. This approach is computationally efficient (208
models per species for first stage per each species) while giving
comparable results to the “all-plausible combinations” approach
(Morin et al., 2020).

Occupancy is often used as a surrogate for abundance
(MacKenzie and Nichols, 2004) and tends to be positively
correlated with abundance (Strayer, 1999; Gaston et al., 2000;
Zuckerberg et al., 2009). Thus, we used our estimates on
occupancy and occupancy trends as a proxy for population
changes in each species (Steenweg et al., 2018). The correlation
between occupancy and population size is imperfect and
scale dependent. This is partly due to inter-species variation
in home range sizes (Steenweg et al., 2018). In the case
of the NES, the size of sampling unit varied over time,
which likely further complicated the relationship between
abundance and occupancy. Nevertheless, spatial matching of
two surveys allowed us to infer the magnitude of change
in occupancy between two periods across the study area
(Zuckerberg et al., 2009). As our main interest was in identifying
changes in occurrences that reflect trends in populations
across South Korea, we derived mean occupancy in the
second survey period (2013–2019) for each species (ψt = 2),
and mean trend parameter (rate of change in occupancy;
λ = ψt = 2/ψt = 1). We used parametric bootstrapping
(bootstrap sample size n = 1,000) to provide uncertainty
measures for all parameter estimates. We conducted goodness-
of-fit tests for final models following MacKenzie and Bailey
(2004) using Pearson’s Chi-square statistics to check the
fit of the selected models. Bootstrap goodness of fit using
Pearson’s Chi-square confirmed acceptable fit of all models
from the final set (p > 0.58; Supplementary Table 2),
though for species with very high or low prevalence, the
overdispersion parameter (ĉ) was very low (<0.1). We also
assessed for agreement within each species’ model sets by
visually assessing bootstrapped distributions and departures
from the maximum likelihood estimates. With the final set
of the model, we inferred each parameter from pooled
bootstrapped parameters for evaluating each species trend, using
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confidence intervals (95% for strong evidence and 90% for
moderate evidence). We considered a species’ trend parameter
(λ) to support a statistically significant decline if the upper
confidence interval was below 1, and an increase when the
lower confidence interval was above 1. For all species’ model
sets, we examined the effect of each land-cover change and
climate change covariate using bootstrapped 95% confidence
intervals of beta coefficients for these model terms in the
dynamic parameter sub-models. We combined beta coefficients
of land-cover area covariates for the 2013–2019 survey period
(cover type_t2) and land-cover change covariate (cover type_d)
to estimate the overall effect of the land-cover change on
dynamic parameters. Single-visit dynamic occupancy models
were fitted using the “optim” function in the base package of
R, with the Newton-Raphson algorithm (“BFGS”; Nash, 1990;
R Core Team, 2020). The code for specifying the maximum
likelihood of single-visit occupancy models was modified from
Peach et al. (2017, 2019).

Trait Group and Species Status Analysis
We estimated the magnitude of change in declining species
for each ecological trait group and initial occurrence level
(using the median of initial predicted occupancy = 0.63 as a
cutoff for common versus uncommon species) to characterize
ecological traits associated with declining species. We used linear
mixed model analysis of variance to compare the differences
between the probability of occupancy of 1997–2005 and 2013–
2019 (1ψ = ψt = 2 −ψt = 1). We used bootstrapped estimates
of the 1ψ to account for uncertainty in each point estimate.
The model was specified with “species” as a random effect
and each ecological trait (i.e., migratory behavior, diet, habitat
association, and their initial abundance) as fixed effects. We
conducted post hoc pairwise comparisons for the trait groups with
some evidence of differences from Analysis of Variance. Alpha
level was adjusted for multiple comparisons using the Tukey
method. We estimated marginal means for each trait groups and
plotted them to show differences among categories within each
trait group. We fitted generalized linear models using package
“lme4” (Bates et al., 2015) with the default maximum likelihood
estimation option. Pairwise comparisons and estimation of
marginal means were conducted using R package “emmeans”
(Lenth, 2020).

Lastly, we used IUCN’s red list criteria (IUCN Standards and
Petitions Subcommittee, 2016) to evaluate the status of declining
birds for the national level and compared these with multiple
conservation status assessments, including the current IUCN Red
List (IUCN, 2020), a current national red list prepared by the
Korean Ministry of Environment (Suh et al., 2014). We also
compared avian conservation status with legal protection status
based on the “Wildlife Protection and Management Act (Act
No. 15835)” and “Cultural Heritage Protection Act (Act No.
15827)” (Korea Legislation Research Institute, 2020). The former
act mandates the legal protection of endangered species listed
by the K-MoE, and the latter protects species that are listed as
“natural monuments.”

We used program R version 4.0.2 (R Core Team, 2020) for all
statistical analyses.

RESULTS

We selected 89 final sets of plausible models for all 52 species
from the model selection procedure (Supplementary Table 2).
Twenty species of the 52 that met our criteria for inclusion
(38.4%) showed moderate levels of evidence for declining
trends in occupancy, ten species (19.2%) increased during
the study period, and for the remainder we did not detect
statistically significant occupancy changes (Figure 2). Brown-
eared Bulbuls (Hypsipetes amaurotis), Chinese Sparrowhawk
(Accipiter soloensis), Daurian Redstart (Phoenicurus auroreus),
Japanese Wagtail (Motacilla grandis), and Northern Hawk
Cuckoos (Hierococcyx hyperythrus) exhibited moderate evidence
for declines. The remaining 22 species showed no evidence
of change or remained stable during the study period
(Supplementary Table 4 and Figure 2). Most of these declining
species (15 species) had initial occupancies over 50% across the
study area in 1997–2005, while the other five species (Yellow-
rumped Flycatcher Ficedula zanthopygia, Ruddy Kingfisher
Halcyon coromanda, Northern Hawk-Cuckoo, Lesser Cuckoo
Cuculus poliocephalus, Brown Shrike Lanius cristatus) were
less common than others. The magnitude of change varied
greatly among these declining common species, from a 3%
decline in Brown-eared Bulbuls to a drastic, 95% decline in
Black-capped Kingfishers (Halcyon pileata). The probabilities of
occupancy of all five less common declining species declined
more than 50% between the two survey periods. Increasing
species had moderate levels of initial occupancy overall (<80%)
and increased from 4% (Bull-headed Shrike Lanius bucephalus,
White’s Thrush Zoothera aurea) to 81% in the Large-billed
Crow. The distributions for each species’ parameter estimates
are provided in the Supplementary Materials (Supplementary
Figures 1–4).

From 89 selected models for all species, only 31 models for
12 species retained local extinction covariates in the models, and
44 models for 16 species retained local colonization covariates.
For two species, Chinese Sparrowhawk and Eurasian Hoopoe
(Upupa epops), landscapes with increased amounts of ricefields
and forest, and the remaining amount of each land cover
types, respectively, had the lowest rates of local extinction.
The other four species’ (Gray Starling Spodiopsar cineraceus,
Red-rumped Swallow Cecropis daurica, Eurasian Kestrel Falco
tinnunculus, and Hazel Grouse Tetrastes bonasia) colonization
probabilities were related to changes in breeding season mean
daily maximum temperatures and change in breeding season
precipitation. Precipitation effects on colonization were species-
dependent, with rainfall having a positive effect on Eurasian
Hoopoe colonization, and a negative effect for Hazel Grouse.
Aside from these six species, however, most species’ change
in occupancy was not explained by land-cover and climate
covariates (Figure 3).

Migratory behavior was a marginal predictor of species’
declines (F2,13 = 3.006, p = 0.084) (Figure 4 and Supplementary
Table 3). We found greater support for initial occurrence
as a predictor of avian occupancy declines (F1,13 = 4.7340,
p = 0.048), but we did not detect evidence for differences in
diet nor habitat groups (p > 0.70). Long-distance migrants (9
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species; marginal mean = −0.208, CI = −0.388 – −0.048) have
declined more severely than short-distant migrants (DF = 13,
t = −2.285, p = 0.094), but we found no evidence for differences
between sedentary species and long-distance migrants (DF = 13,
t = −1.801, p = 0.208), or sedentary species and short-distance
migrants (DF = 13, t = 0.598, p = 0.824). Common species
(initial occupancy > 0.63; 14 species, marginal mean = −0.1760,
CI = −0.319 – −0.033) suffered greater magnitudes of decline

compared to less common species (DF = 13, t = −2.176,
p = 0.049). We did not find any statistical support for differences
among habitat groups or dietary traits (Figure 4).

From our review of the IUCN Red List and the South Korean
Red List, we learned that 14 species out of 20 species that
were declining our study have no quantitative support for
their population trend statements (Table 1), even though
the IUCN red list describes “trend unknown” for only one

FIGURE 2 | Distribution of bootstrapped parameter estimates of the probability of occupancy (occurrence) of each species in 1997–2005 (dotted line) and
2013–2019 (solid line) period and rate of change between the two periods. Species are ordered by the magnitude of change from low to high. Each density
distribution can be used to understand the uncertainty of estimates (more uncertainty when it is flat and wide, for average occupancies and trend parameters). Note
that the rate of change is log-transformed with two base. Thus, one unit change refers to a two-fold change in the probability of occupancy.
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FIGURE 3 | Effects of landscape and climate covariates on dynamic parameters. Mean and confidence interval (95%) above 0.5 indicate an increase in the
probability of colonization and extinction per unit increase in covariate, and values below 0.5 indicate a decrease in colonization and extinction per unit change in
each covariate.

FIGURE 4 | Each trait group’s marginal means and confidence intervals (Tukey-adjusted significance level) for the difference in occupancy between 1997–2005 and
2013–2019 (1ψ = ψt = 2 −ψt = 1) in declining species (20 species) in this study. Numbers in the y-axis label indicate the number of species per each group.
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species (Gray Starling). Seven declining species are eligible for
threatened categories (Endangered and Critically Endangered)
at the national level when we apply IUCN’s criteria to
our findings. Black-capped Kingfisher, which declined 95%,
is eligible for Critically Endangered, and other six species
(Brown Shrike, Japanese Wagtail Motacilla grandis, Lesser
Cuckoo, Northern Hawk-Cuckoo, Ruddy Kingfisher, and Yellow-
rumped Flycatcher) are eligible for the Endangered category
at the national level based on A2 criteria in IUCN guidelines
(population decline with the source of threat unidentified nor
ceased). However, the current South Korean Red List published
by the K-MoE has classified only the Chinese Sparrowhawk in
the Vulnerable category, based on the D1 criteria (abundance
less than 1,000 individuals). No species on our list were
classified as threatened in the IUCN’s global Red List. Among
declining species from our study, only two species are legally
protected in South Korea as endangered species class II (Chinese
Sparrowhawk) and natural monument (Lesser Cuckoo and
Chinese Sparrowhawk).

DISCUSSION

While occupancy estimates for 32 species were stable or
increasing, about 38% of the species (20/52) we examined were
declining, and the majority of those species were common (14/20)
or migratory (14/20) species. For species that have a small
breeding range in East Asia, such as Yellow-rumped Flycatcher,
Japanese Wagtail, and Northern Hawk Cuckoos, our trends could
reflect a high proportion of global population trends for these
species. The general pattern of decline in South Korea follows
similar studies in Europe (Inger et al., 2014; Gregory et al., 2019)
and North America (Rosenberg et al., 2019), where common
and widespread breeding bird species have declined rapidly in
recent decades. In East Asia, studies of Japanese breeding bird
data (Yamaura et al., 2009) using unadjusted encounter data have
found similar results. The relationship between environmental
drivers and dynamic parameters was cryptic for many species; few
of the land-use or climate variables we identified were predictive
of occupancy trends. This leaves us without clear suggestions as
to the primary drivers of breeding bird declines in South Korea,
despite apparent declines in 20 species.

The declines of common birds are a serious concern because
similar percentage occupancy losses in these species equates to
many more individual birds (and even higher losses to avian
biomass) than declines in rare species (Gaston et al., 2018). Such
species are much more likely to contribute to ecosystem processes
and services (Smith and Knapp, 2003; Maas et al., 2016). For
example, breeding landbird populations may play a key role as
keystone predators of arthropod communities and populations
(Terborgh, 2015; Nyffeler et al., 2018). In addition to their roles
in trophic interactions, some of these declining common species
are also known to provide other ecosystem services and functions
such as seed dispersal (Brown-eared Bulbuls; Fukui, 1995; Kim
et al., 2015) and scavenging (Eurasian Magpies; Inger et al., 2016).
Thus, the observed decline of once-common breeding landbirds
in this study suggests associated changes in the bird-related
communities, ecosystem services, and functions in the study area.

Migratory species, especially long-distance migrants, have
suffered greater declines between the 1997–2005 and 2013–2019
periods. Our results agree with the general patterns of sharper
declines in long-distance migrants from studies in North America
and Europe (Vickery et al., 2014; Rosenberg et al., 2019), as well
as with long-distance migrant declines in Japanese breeding birds
(Amano and Yamaura, 2007; Yamaura et al., 2009). Migratory
bird species are affected by climate change and habitat losses
across separate breeding, migration and wintering locations
(Buehler and Piersma, 2008; Reudink et al., 2009; Faaborg et al.,
2010), which amplifies the potential exposure to these and
other stressors. For example, two declining species from our
study, Common and Lesser Cuckoos, are extreme long-distance
migrants – wintering in Africa and India (Erritzøe et al., 2012).
Previous studies suggest that these cuckoo species are known to
be exposed to threats on the non-breeding grounds and climate
change-driven phenological mismatches with their host species
on the breeding grounds (Saino et al., 2009; Hewson et al., 2016;
Yun et al., 2020). These species and other declining long-distance
migrants that winter in Southeast Asia also face stressors from
similar sources.

We found that all four species with significant changes in
the probability of colonization were affected by climate; both
temperature and precipitation in May and June were the most
common drivers of dynamic processes of bird occurrence change
in our study. Three species had positive effects of climate variables
on colonization probability, including breeding season maximum
temperature (Eurasian Kestrel, Gray Starting) and increased
precipitation (Eurasian Hoopoe). These three species are all
short-distance migrants, which have previously been shown to
respond more rapidly to changing climate, and are capable of
adjusting migration and breeding phenology more effectively
than long-distance migrants (Yamaura et al., 2009; Ollerton et al.,
2011). Thus, we speculate that these species have potential to
colonize vacant habitat as the climate changes. Eurasian Kestrels
in Northern Europe have expanded their range and had greater
breeding success as spring temperature have increased (Elmhagen
et al., 2015; Huchler et al., 2020). Gray Starlings and Eurasian
Hoopoe forage on the ground (Joo et al., 2016; Plard et al., 2020),
and warmer temperatures and increased precipitation could lead
to increased prey availability in agricultural landscapes (Arlettaz
et al., 2010; Plard et al., 2020). In general, precipitation during
the breeding season is decreasing in Korea (Figure 1C), so any
positive effects of precipitation on the probability of colonization
by Eurasian Hoopoes may not be widely observed across
South Korea. On the other hand, the only species that showed
strong evidence for negative effects of warming and increased
precipitation colonization was Hazel Grouse. Hazel Grouse is a
strictly sedentary species with limited dispersal capacity (Åberg
et al., 1995) and a narrow dietary niche. Studies from Europe
found that increased precipitation and temperature during the
chick-rearing period had negative effects on chick survival (Klaus,
2007). In Galliform birds that have precocial chicks, local climatic
conditions, especially precipitation, negatively affect the growth
and survival of chicks and population expansion (Viterbi et al.,
2015; Terhune et al., 2019). However, it is unclear whether
temperature effects in our study were due to challenges associated
with thermoregulation (Sunday et al., 2012), the indirect effects
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TABLE 1 | Comparison of current species status assessments and re-evaluation of national level species status for declining species in this study.

Declining species in this
study

This study IUCN red list – global status Current national status

Change in occupancy
(95% C.I.)

Species status
(IUCN criteria)

IUCN red list Trend statement Justification National red list
(IUCN criteria)

Legal protection
status

Asian Stubtail
Urosphena squameiceps

−0.23 (−0.32 – −0.13) – LC Stable Unquantified –

Black-capped Kingfisher
Halcyon pileata

−0.95 (−0.97 – −0.92) CR (A2) LC Decreasing Suspected decline –

Brown-eared Bulbul
Hypsipetes amaurotis

−0.03 (−0.06 – 0.00) – LC Increasing Unquantified –

Brown Shrike
Lanius cristatus

−0.59 (−0.72 – −0.43) EN (A2) LC Decreasing 80% decline in Japan –

Chinese Sparrowhawk
Accipiter soloensis

−0.11 (−0.20 – −0.01) – LC Decreasing Strong declines
reported

VU (D1) Endangered Species,
Natural Monument

Common Cuckoo
Cuculus canorus

−0.16 (−0.28 – 0.00) – LC Decreasing European population
decline

–

Daurian Redstart
Phoenicurus auroreus

−0.04 (−0.09 – −0.01) – LC Stable Unquantified –

Eastern Great Tit
Parus major minor

−0.05 (−0.12 – −0.02) – LC Stable Unquantified –

Eurasian Jay
Garrulus glandarius

−0.09 (−0.13 – −0.05) – LC Increasing European population
increase

–

Eurasian Magpie
Pica pica

−0.08 (−0.12 – −0.05) – LC Stable European population
increase

–

Gray Starling
Spodiopsar cineraceus

−0.12 (−0.19 – −0.05) – LC Unknown Unquantified –

Japanese Wagtail
Motacilla grandis

−0.46 (−0.84 – 0.00) EN (A2) LC Stable Unquantified –

Lesser Cuckoo
Cuculus poliocephalus

−0.56 (−0.67 – −0.44) EN (A2) LC Stable Unquantified – Natural Monument

Long-tailed Tit
Aegithalos caudatus

−0.22 (−0.35 – −0.03) – LC Stable European population
stable

–

Meadow Bunting
Emberiza cioides

−0.15 (−0.25 – −0.05) – LC Stable Unquantified –

Northern Hawk-Cuckoo
Hierococcyx hyperythrus

−0.52 (−0.80 – −0.13) EN (A2) LC Stable Unquantified –

Oriental Turtle Dove
Streptopelia orientalis

−0.05 (−0.07 – −0.03) – LC Stable Unquantified –

Ruddy Kingfisher
Halcyon coromanda

−0.73 (−1.00 – −0.36) EN (A2) LC Decreasing Suspected decline –

Yellow-rumped Flycatcher
Ficedula zanthopygia

−0.66 (−0.77 – −0.53) EN (A2) LC Stable Unquantified –

Yellow-throated Bunting
Emberiza elegans

−0.13 (−0.17 – −0.09) – LC Stable Unquantified –
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of climate change on trophic relationships (Both et al., 2006;
Miller-Rushing et al., 2010), or alternative mechanisms. Given
neither hunting or poaching have been reported for this species
in South Korea, overexploitation can likely be excluded as a
cause. Instead, small-scale and subtle habitat changes or food
resources that are not afforded by the spatial scale of our study
may be implicated.

Three species had estimates for local extinction that were
influenced by land-cover and climate covariates. Chinese
Sparrowhawks almost exclusively forage in shallow freshwater
wetlands, especially ricefields surrounded by forests (Kwon and
Won, 1975; Choi et al., 2012), and Eurasian Hoopoes also
prefer forest edges (Tagmann-Ioset et al., 2012); the covariates
on extinction probabilities reflected these associations. Indeed,
declines in Chinese Sparrowhawks are likely explained by
increased local extinction rates in the many areas where ricefields
are being lost (Figures 2, 3). However, it is unclear why Red-
rumped Swallows show reduced extinction probabilities in areas
that warmed during the study period. We speculate that warming
spring temperatures could have advanced the emergence of prey
species for these swallows, increasing the availability of prey
population temporally (Jonsson et al., 2015; Anderson et al.,
2019), which could affect colonization of this declining species.

Given that we were only able to detect changes in occupancy
with low sensitivity over large sample units, our findings are
likely a conservative estimate of the proportion of species
in decline and the magnitude of those declines (Strayer,
1999). Decreases in occupancy could only be observed in our
study if complete local extinction occurred within a sample
unit, so more subtle declines have been obscured. However,
our proxy of population decline should be understood with
caution when exact changes in abundance are needed, as the
relationship between occupancy and abundance can vary among
each species and for the density of individuals (Strayer, 1999;
Steenweg et al., 2018). In addition, detailed information with
diverse environmental metrics, such as vegetation composition,
vegetation structure, soil conditions, and riparian management,
would greatly improve explanatory climate and land-cover
variables we used to model dynamic parameters. Our sampling
units may partially obscure associations with these drivers; land-
cover variables in our study only quantify relatively broad-
scale changes and may not adequately describe specific habitat
requirements for these species (Betts et al., 2014). Future analyses
at finer scales of analysis will be possible as data from fine-
resolution survey units that have been accumulating since 2006.
Also unlike our analysis, exactly matching sampling units in
future sampling may improve the precision of the estimates,
and enable estimation of abundance-occupancy relationships in
survey units (Steenweg et al., 2018).

For example, our results indicate that Black-capped
Kingfishers have declined severely in South Korea (a 95%
reduction in occupancy), which meets the criteria for inclusion
as a nationally critically endangered species. This species almost
entirely nests in excavated cavities in riverbanks and exposed soils
on the hillside, but in the past two decades, intensive riparian
management throughout all rivers and streams were conducted
for flood management, agricultural irrigation improvement,

and as an economic boost (Normile, 2010; Woo, 2010). These
projects have removed exposed riverbanks in almost every
corner of lowland riparian areas, hardening the riverbanks and
altering the flow, removing shallow wetlands on the sides of
the rivers and creating deeper channels (Im et al., 2020). Loss
of both foraging and nesting habitats for this kingfisher species
is potentially related to the drastic decline in their breeding
population in South Korea, yet their non-breeding period
stressors or even their migration connectivity to wintering
grounds have not been identified. To understand better the
causes of population decline, it will be critical to understand
both the migration ecology and fine-scale habitat requirements
of this species.

In addition, the apparent weak effects of land-cover and
climate on species’ population changes (i.e., extinction and
colonization rates) could be due to the presence of other
unmeasured stressors. For instance, many declining migratory
species spend most of their annual cycle outside their breeding
ranges in South Korea. Clearly, we were unable to test
for these migration and wintering-ground stressors in our
analysis. Understanding demographic processes throughout the
full annual life cycle in migratory species is essential for the
conservation of migratory species (Marra et al., 2015). For
example, direct mortality sources (Loss et al., 2012) are not
incorporated into our models. Direct mortality from collision
(Bing et al., 2012; Low et al., 2017), poisoning from pesticides
and pollutants (Kim et al., 2016; Barghi et al., 2018), and illegal
trapping and consumption (Kamp et al., 2015; Yong et al., 2015)
are reported in the region, and are possible cause of declines
of these species. These sources of direct mortality, in addition
to habitat loss and degradation from land-use change are still
major threats on the breeding grounds in South Korea and
non-breeding grounds.

Obtaining better knowledge of each species’ population trends
and potential causes are the first critical steps for biodiversity
conservation. Based on our review of the conservation and
legal protection status of declining landbird species (Table 1),
it is clear that information was lacking for both national and
international species status classifications. We recommend that
at least seven species from our declining species list should have
immediate status re-evaluation and appropriate conservation
action to identify and protect remaining breeding habitats.
This should be followed by the assessment of major threats,
close monitoring of demographic rates, and identification of
primary migration routes and key sites for the implementation
of conservation measures (McComb et al., 2010). We strongly
suggest the development of a transparent and robust plan for
monitoring avian biodiversity. Point counts (Ralph et al., 1995),
or constant effort surveys, accompanied by explicit recording
and documentation of effort and key variables that affect bird
detections will greatly improve our ability to infer on bird
population changes (MacKenzie and Royle, 2005). Based on
our results, we recommend more detailed follow-up studies on
individual species as well as the creation and implementation of
conservation plans in near the future.

Our study’s scope is limited to common and widespread
breeding landbird species occurring at relatively low elevations,
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and specifically the areas where road systems provided access.
Even though such surveys are efficient, they are well known to
poorly represent the status of bird species that are associated
with less accessible habitats (Betts et al., 2007; Harris and Haskell,
2007). Due to the NES’s survey protocol, we were not able to
incorporate montane forest species, subalpine species, or forest
interior species. To overcome this limit we suggest a long-term
monitoring plan for this specific stratum of avian habitat in
South Korea, which covers more than two thirds of the country.

The current focus on the “Asian Songbird Crisis” tends to
be trapping for the cagebird trade in Southeast Asia (Marshall
et al., 2020). However, widespread threats such as habitat loss
and degradation, as well as climate change across the wintering
grounds could be the hidden drivers of population declines
in temperate-breeding migratory species that migrate through
or winter in tropical regions of the East Asian Flyway (Yong
et al., 2015). Without an effort to collect robust information that
supports conservation actions, loss of landbird populations and
their diversity could pass unnoticed. Even though some recent
studies reported changes in avian biodiversity from this region
(Amano and Yamaura, 2007; Ko et al., 2014; Tamada et al., 2017;
Choi et al., 2020), it still remains a small portion compared to the
breeding and wintering range of landbirds in East Asia.
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