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Eusocial insects exhibit reproductive division of labor, in which only a part of colony
members differentiates into reproductives. In termite colonies, the division of labors
is performed among multiple types of individuals (i.e., castes), such as reproductives,
workers, and soldiers to organize their society. Caste differentiation occurs according
to extrinsic factors, such as social interactions, leading to developmental modifications
during postembryonic development, and consequently, the caste ratio in a colony is
appropriately coordinated. In particular, when the current reproductives die or become
senescent, some immature individuals molt into supplementary reproductives, also
known as “neotenics,” that take over the reproductive task in their natal colony.
Neotenics exhibit variety of larval features, such as winglessness, and thus, immature
individuals are suggested to differentiate by a partial release from arrested development,
particularly in the reproductive organs. These neotenic features, which have long
been assumed to develop via heterochronic regulation, provide us opportunities to
understand the developmental mechanisms and evolutionary origin of the novel caste.
This article overviews the accumulated data on the physiological and developmental
mechanisms that regulate the neotenic differentiation in termites. Furthermore, the
evolutionary trajectories leading to neotenic differentiation are discussed, namely
the acquisition of a regulatory mechanism that enable the partial release from a
developmentally arrested state.

Keywords: termite, caste differentiation, neotenic, modularity, heterochrony, developmental arrest

INTRODUCTION: CASTE DIFFERENTIATION IN TERMITES

The acquisition of the caste system in social insects is a critical step in eusocial evolution, in
which colony tasks are allocated to different types of individuals with caste-specific morphological
features (Lin and Michener, 1972). Regulatory mechanisms underlying the development of caste-
specific characteristics should be deeply associated with eusociality (Miura, 2005). In particular,
the reproductive division of labor between the reproductive and sterile castes is one of the most
distinctive features in eusocial insects (Wilson, 1971, 1975). Among eusocial insects, termites, which
are distantly related to hymenopterans (Noirot, 1969; Korb, 2015), exhibit highly sophisticated and
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complex societies. It is believed that the termite sociality first
emerged in the Early Cretaceous, approximately 50 million years
before the appearance of eusocial hymenopterans (Grimaldi and
Engel, 2005; Roisin and Korb, 2011; Engel, 2015). Although
regulatory mechanisms that control the differentiation of
reproductive and sterile castes are thought to differ between
hymenopterans and termites, most of the involved mechanisms
are unclear, particularly in termites.

Generally, in hemimetabolous insects (e.g., cockroaches,
locusts, etc.), adult-specific characteristics, such as compound
eyes, wings, and reproductive organs, gradually develop during
postembryonic development via moltings, and the dramatic
morphological modifications occur at the final molt, ie,
imaginal molt (Anderson, 1972). In termites, caste-specific
morphological characteristics are created through moltings
(Noirot, 1969; Roisin, 2000), in which the developmental
patterns differ depending on the caste fate (Miura, 2005;
Korb and Hartfelder, 2008). Therefore, the regulatory
mechanisms of molting and metamorphosis contribute to
caste-specific development. Concerning the differentiation
into alates, i.e., winged reproductives that form new colonies,
imaginal characteristics, such as compound eyes, wings,
and gonads, dramatically develop (Nutting, 1969; Weesner,
1969; Nii et al., 2019). Thus, the differentiation into alates
is considered homologous to the imaginal development in
other hemimetabolous insects (Nalepa and Bandi, 2000).
In particular, termite colonies include numerous sexually
immature individuals engaged in various tasks such as nursing
and foraging (Thorne, 1996; Korb and Hartfelder, 2008). In
these individuals, the development of imaginal organs like
compound eyes, wings, and gonads is restricted or arrested
during postembryonic development (Nalepa and Bandi, 2000;
Bourguignon et al., 2016).

As caste differentiation fates are determined during
postembryonic development in termites, the patterns of
caste differentiation are often depicted as differentiation
pathways. Among termite families, two major patterns of
caste differentiation pathways are recognized, i.e., linear and
bifurcated pathways (Figure 1; Noirot, 1969; Roisin, 2000;
Bourguignon et al, 2014). Bifurcated pathways have been
described in Mastotermitidae, Hodotermitidae, Termitidae, and
some species of Rhinotermitidae, in which the differentiation
point for alates and apterous individuals occurs at a relatively
early stage of postembryonic development, i.e., first or second
larval instars (Roisin, 2000). Workers in the bifurcated pathways
cannot develop into alates, and thus, they are called “true
workers,” although they still have the potential to develop
into reproductives (Korb and Hartfelder, 2008; Bourguignon
et al, 2016). In contrast, in the linear pathways observed
in Archotermopsidae, Stolotermitidae, Kalotermitidae, and
Serritermitidae, in addition to some species of Rhinotermitidae,
elder larval individuals serve as “workers” while possessing the
potential to differentiate into alates, and thus, they are called
pseudergates, meaning “false workers” (Grassé and Noirot, 1947;
Korb and Hartfelder, 2008).

In addition to these developmental stages, other derived
pathways, i.e., soldier and neotenic differentiation pathways,
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FIGURE 1 | Representative caste developmental patterns in termites.

(A) Linear pathway. (B) Bifurcated pathway. Arrows indicate hatching and
molts. A, Alate; L, Larva; N, Nymph; NE, Neotenic reproductive; PS,
Presoldier; S, Soldier; W, Worker. Elder larvae (Ln) in the linear pathway are
referred to as “pseudergates” in this article.

have also been investigated by many researchers. Both soldier
and neotenic castes are novel developmental stages only present
in termites, and these castes represent synapomorphies of the
termite lineage, as they are present in all termite species with
few exceptions (Noirot, 1969; Korb, 2015). Soldiers differentiate
from workers or pseudergates through two molting events
via a presoldier stage (Noirot, 1969; Roisin, 2000; Korb
and Hartfelder, 2008). Because soldier differentiation can be
artificially induced by the application of juvenile hormone (JH),
several studies have described soldier developmental process
in different species (Hrdy and Krecek, 1972; Howard and
Haverty, 1979; Scharf et al., 2003). During soldier differentiation,
the body plan of termites, particularly the anterior parts
that are used for defensive behaviors, are largely modified
through a specific morphogenesis (Miura and Matsumoto, 20005
Koshikawa et al., 2003; Watanabe and Maekawa, 2008; Toga
et al., 2013). The morphogenetic process occurs downstream of
hormonal and morphogenic factors, which are well documented
(Cornette et al, 2008; Sugime et al, 2019; Miura and
Macekawa, 2020). However, until recently, because methods
for inducing neotenic differentiation had not been established,
studies on neotenic differentiation are relatively sparse compared
with those of soldier differentiation (Shimoji et al., 2017;
Oguchi et al., 2020).

Neotenic reproductives are seen in nearly all the termite
families, although they are occasionally lost in some genera
(Myles, 1999; Bourguignon et al, 2016). Neotenics, also
known as secondary reproductives, can also be referred to
as replacement or supplementary reproductives, depending
on situations of occurrence (Korb and Hartfelder, 2008).
At the time when primary reproductives die or become
senescent, they differentiate from immature individuals and
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FIGURE 2 | Schematic illustrations of the developmental degree of imaginal organs in each caste. “+” indicates well-developed imaginal organs like alates. “-”

indicates imaginal organs with suppressed or interrupted developments compared with those of alates.

exclusively engage in reproduction in their natal nests (Figure 1;
Liischer, 1961; Thorne, 1996; Korb and Hartfelder, 2008).
Some species produce neotenics not only as replacements
but also as backup against the loss of primary reproductives
(Matsuura et al., 2009; Hellemans et al, 2019). Upon the
differentiation of neotenic reproductives, adult-specific
characteristics related to reproductive organs develop, whereas
other imaginal features, such as wings, do not (Figure 2).
Thus, it is suggested that the neotenic-specific morphology
is accomplished by a heterochronic regulation, in which the
development is accelerated or arrested depending on body
modules (Nalepa and Bandi, 2000).

The differentiation of neotenic reproductives is controlled by
genetic, maternal, and environmental factors. In Reticulitermes
speratus and several other species, for instance, genetic,
and maternal factors influenced by sex-linked genetic
mechanisms, i.e., the asexual queen succession (AQS) system,
are responsible for the neotenic differentiation (Hayashi
et al, 2007; Matsuura et al., 2009; Matsuura et al., 2018;
Hellemans et al, 2019), although environmental factors
during the postembryonic development also affect the caste
fate determination (Hayashi et al., 2007, 2013). In contrast,
environmental factors during postembryonic development,
such as social interactions between reproductives and non-
reproductive castes, are also determinant force for the
neotenic differentiation (Liischer, 1974; Shimoji et al., 2017;
Sun et al, 2017; Masuoka et al., 2021). Recently, neotenic
differentiation was studied by applying induction methods in
species with bifurcated and linear caste differentiation pathways
(Saiki and Maekawa, 2011; Shimoji et al., 2017), focusing
on morphogenetic processes during differentiation and the
underlying physiological regulation (Saiki et al., 2015; Oguchi
and Miura, 2019; Oguchi et al., 2020). By reviewing accumulated
knowledge on the physiological and developmental regulation
of neotenic differentiation in termites, the evolutionary
processes toward the acquisition of neotenic reproductives
are hypothesized.

MODULARITY: REPRODUCTIVE
ORGAN-SPECIFIC MORPHOGENESIS

Neotenic reproductives in termites exhibit the juvenile
characteristics of hemimetabolous insects, and thus, they
are termed “neotenic” (Thorne, 1996). Meanwhile, they lack
imaginal characteristics such as well-developed wings and
compound eyes (Mackawa et al., 2008; Saiki and Maekawa,
2011). Neotenics can be roughly classified into two types:
“nymphoids” that differentiate from nymphs and “ergatoids”
that differentiate from workers (Korb and Hartfelder, 2008).
Depending on the developmental stages from which neotenics
derive, the developmental degree of imaginal characters differs
(e.g., nymphoids have wing buds and slightly developed eyes,
whereas ergatoids lack these features). However, in all cases,
neotenics possess well-developed gonads that are comparable
to those of primary reproductives (Thorne, 1996; Korb and
Hartfelder, 2008; Saiki and Maekawa, 2011; Oguchi et al,
2016). This suggests that gonadal development is accelerated in
neotenics in contrast to other body parts. This acceleration might
be a case of “paedomorphosis,” which is a type of heterochrony
that involves a delay of specific organ development (Reilly et al.,
1997; Nalepa and Bandi, 2000). The adaptive significance of
neotenic differentiation, in which only some imaginal characters
develop, might be that it permits individuals to immediately
become reproductives through fewer moltings. In most cases,
one molting event is required for neotenic differentiation from
the previous undifferentiated stages, such as pseudergates,
workers, or nymphs (Korb and Hartfelder, 2008), except in
some species with bifurcated caste differentiation pathways of
Reticulitermes labralis, Nasutitermes corniger, and Nasutitermes
aquilinus, in which the pre-neotenic stages and two molts are
required (Thorne and Noirot, 1982; Su et al., 2017; da Silva
et al,, 2019). The fact that the neotenic differentiation requires
moltings suggests that morphological alterations are required for
reproductive activities such as copulation and oviposition. In the
case of neotenic molt (only female individuals) in a dampwood
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termite Hodotermopsis sjostedti, which possesses a linear caste
differentiation pathway, the loss of styli at the abdominal tip
and expansion of the seventh sternites are observed (Oguchi
and Miura, 2019). Therefore, the differentiation of neotenic
reproductives may be accomplished by a partial release of
immature individuals from arrested development, particularly
in the reproductive organs. In other words, the pre-existing
imaginal developmental processes (i.e., a late differentiation
processes) are partially involved in neotenic differentiation;
therefore, neotenic differentiation may be regarded as a case of
“modular heterochrony.” Thus, the neotenic reproductive is a
distinctive phenotype (caste) that morphologically differs from
primary reproductives (alates) (Figure 2). These mosaic-like
phenotypes were not only observed in termites but also in
eusocial hymenopteran species, particularly in ants (Wheeler
and Nijhout, 1981; Abouheif and Wray, 2002; Miyazaki et al,,
20105 Yang and Abouheif, 2011). Of note, “ergatoid queen” in
ants, which has both the queen and worker traits, was believed to
have emerged from the combination of the caste developmental
systems (Miyazaki et al, 2010; Yang and Abouheif, 2011;
Molet et al., 2012). Therefore, modular and heterochronic
regulation by tinkering with the pre-existing developmental
systems are thought to be important and ubiquitous evolutionary
mechanisms for the acquisition of novel castes (cf. Cohen, 1999).

HETEROCHRONIC SHIFTS VIA
PHYSIOLOGICAL CONTROL

Generally in insects, molting and metamorphosis are coordinated
by JH and molting hormone (i.e., ecdysone) (Belles and Santos,
2014). It is well known that the imaginal molt is induced by
the lowering of JH titers in an insect (Romana et al, 1995;
Treiblmayr et al., 2006). A similar physiological pattern is also
present during alate differentiation in termites (Figure 3A;
Nijhout and Wheeler, 1982; Cornette et al., 2008). However,
detailed physiological analyses, especially on JH dynamics, have
yet to be conducted concerning the differentiation into neotenic
reproductives, although previous studies predicted that the
shift from low to high JH titers during the intermolt period
would induce neotenic differentiation (reviewed in Nijhout and
Wheeler, 1982; Korb, 2015). Some studies actually reported an
extraordinary high JH titer in the female neotenics (e.g., Elliott
and Stay, 2007; Maekawa et al., 2010; Korb et al., 2012; Saiki
et al., 2015). Similar tendencies of high JH titers were observed
after female alate differentiation (Cornette et al., 2008; Maekawa
etal., 2010). The high JH titers in female reproductives probably
contribute to the development of female reproductive systems,
including ovaries (Korb, 2015; Saiki et al., 2015). Furthermore,
in many insects including termites, JH is sequestered in fat
bodies and engaged in yolk protein synthesis (Nijhout, 1994),
suggesting that this function of JH is also driven at the time
of neotenic differentiation. However, the JH function in the
ovarian development is only applicable to the differentiation
of female neotenics, and thus, the JH action leading to the
differentiation of male neotenics should also be elucidated
in future studies.

A Molt
g
T
-
Low JH
Nymph Alate
B
5 Heterochfonic
= shif}’s
mn o
=

Neotenic

Pseudergate/
Worker/ Nymph

FIGURE 3 | Schematic illustrations of models on the transitions of juvenile
hormone (JH) titer (vertical axis) during alate or neotenic differentiation.

(A) Consistently-lowered JH titer lead alate molt from nymphal instar. After
alate molt, the JH titer rise in female alates. Figures were modified as per
Cornette et al. (2008, Figure 7). (B) JH titer ransition from low to high leads the
neotenic differentiation. Dotted line indicates the JH titer during alate molt.

Recently, the physiological regulation at the time of neotenic
differentiation was unraveled in the dampwood termite
H. sjostedti (Oguchi et al., 2020). This research applied an
induction method for neotenic differentiation in which the
sex caste ratio was artificially manipulated (Shimoji et al.,
2017). Under these experimental conditions, the existence of
only a male (or female) neotenic reproductive promotes the
differentiation of female (or male) neotenics from pseudergates.
Their findings illustrated that the JH titer of female pseudergates
in the presence of a male neotenic without a female neotenic
continuously lowered and then increased immediately before
the molt (Oguchi et al., 2020). Thus, this study supports
the hypothesis by Nijhout and Wheeler (1982), at least in
terms of the female neotenic differentiation, considering
that neotenic differentiation requires a transition of JH titers
from low to high (Figure 3B). The similar tendencies and
models have been shown in other species, such as R. speratus
(Saiki et al., 2015) and Cryptotermes secundus (Korb et al.,
2012), suggesting that this model can be applicable to other
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termite lineages, at least lower termite species. Moreover, the
JH analog application of female pseudergates inhibits the
reproductive organ development and neotenic molt (Oguchi
et al., 2020). This role of JH is similar to the antimetamorphic
action of insects and lowering JH titer, which are required
for the imaginal molts (Nijhout, 1994). Therefore, the fact
that female neotenic differentiation requires low JH titers
suggests that the neotenic molt can be regarded as a type
of imaginal molt and rapid change of JH titers might be
heterochronic shifts (Figures 3A,B). In other words, the
neotenic reproductive can be regarded as a “physiological
imago.” Recently, the master regulatory pathway controlling
molting and metamorphosis, ie., the MEKRE93 or Met-
Krh1-E93 pathway, was demonstrated to work downstream
of JH and ecdysone in insects (Belles and Santos, 2014;
Urefia et al., 2014), suggesting that this pathway is also
involved in caste regulation in termites (Korb and Belles, 2017;
Miura and Maekawa, 2020).

EVOLUTIONARY IMPLICATIONS

One of the most important steps in the evolution of eusociality
is the acquisition of reproductive labor division (Wilson, 1971;
Lin and Michener, 1972). In termites, especially in basal species
with linear caste pathways, immature individuals, that are
homologous to “nymphs” in general hemimetabolous insects,
engage in colony tasks without participating in reproduction
(Korb and Hartfelder, 2008). These immature individuals
undergo successive moltings, but they do not completely develop
adult-specific characteristics such as compound eyes and wings
(Miura et al., 2004; Katoh et al, 2007; Nii et al., 2019).
Considering the evolutionary process of termite eusociality,
the appearance of immature castes that are engaged in colony
tasks (i.e., pseudergates) would be an important step (cf.
Nalepa and Bandi, 2000). Before the emergence of such
immature castes, bifurcation (i.e., develop or less develop) of
imaginal organ development within the colony members is
suggested to lead the reproductive division of labor (Bourguignon
et al, 2016). Therefore, during the eusocial evolution in
termites, it is suggested that the postembryonic development of
hemimetabolous insects is partially (i.e., body parts specifically)
or completely arrested during the linear adult developmental
process (Bourguignon et al., 2016).

Thus, what mechanisms enable neotenic wingless
reproductive  differentiation? =~ Some  studies  provided
circumstantial evidences that the development of adult-
specific characteristics (e.g., reproductive organs, wings,
compound eyes, sensillae) is connected and induced under
the control of physiological signals (i.e., hormonal signals),
leading to alate differentiation (e.g., Miura and Matsumoto,
1996). Therefore, during neotenic differentiation, such alate-
specific characteristics could also be expressed. In fact, neotenic
reproductives display dark coloration of the cuticles caused
by pigmentation and sclerotization during differentiation
that resembles alate coloration (e.g., Watson and Abbey,
1985; Hu and Forschler, 2012). Moreover, it was reported

that ergatoids possessed wing bud-like structures on their
thoraces and slightly developed compound eyes on their
heads (e.g., Noirot and Thorne, 1988; Miura and Matsumoto,
1996; da Silva et al, 2019). This phenomenon suggests that
the development of these adult-specific characteristics is
interlinked, permitting their expression simultaneously with
the gonadal development required for the differentiation
of functional ergatoids. These links among adult-specific
characteristics are assumed to arise from the linkage of gene
regulatory networks.

Recently, transcriptomic analysis suggested that Ras-
MAPK pathway genes involved in ergatoid differentiation in
Reticulitermes labralis (Ye et al., 2019). In general, the Ras-
MAPK pathway is known to control the signal transduction
from plasma membrane to nucleus, regulating downstream
genes involved in cell proliferation, differentiation, and cell death
(Foster and Malek, 2016). Therefore, specific regulations in such
cellular processes may be crucial for ergatoid differentiation.
It is unclear whether these gene expression changes also occur
during nymphoid differentiation; however, the differences of
gene expression patterns between ergatoids and nymphoids
may help to understand the genetic networks that regulate body
part-specific development.

As mentioned previously, there are several morphological and
functional differences between alates and neotenics, and thus,
there should be different physiological regulatory mechanisms
underlying the differentiation processes leading to the two
reproductive types. In both alate and neotenic differentiation,
JH and ecdysone pathways might be involved in each molt,
although the timing of JH elevation differs between them.
Therefore, these gaps might explain the partial differences
between alates and neotenics. During neotenic differentiation,
only some body parts and organs that are related to reproduction
undergo further developmental processes that also occur during
alate differentiation (Figure 2). In soldier differentiation in
termites, such body part-specific morphogenesis, i.e., mandibular
enlargement (Koshikawa et al., 2003; Watanabe and Maekawa,
2008; Watanabe et al., 2014; Miura and Maekawa, 2020), is
organized by patterning genes providing spatial information,
such as Hox genes, which are upregulated under the control
of hormonal factors (e.g., Toga et al, 2013; Sugime et al,
2019). Considering these mechanisms, neotenic differentiation
should also require similar regulatory mechanisms of gene
expression including toolkit genes such as Hox genes and
hormonal factors. Obviously, because anterior body parts are
dramatically modified during soldier differentiation whereas
posterior body parts such as reproductive traits develop
during neotenic differentiation, different Hox genes should
be responsible for the body-part development in each caste.
During the evolutionary processes of the termite lineage, it is
suggested that such regulatory mechanisms leading to body
part-specific differentiation processes were acquired in the
common ancestor, resulting in the appearances of novel castes,
such as soldiers and neotenic reproductives. Thus, comparative
approaches between termites and sister-group cockroaches, the
genus Cryptocercus, may uncover the underpinnings of social
evolution in termites.
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