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Symbiotic relationships enable partners to thrive and survive in habitats where they
would either not be as successful, or potentially not exist, without the symbiosis.
The coral reef ecosystem, and its immense biodiversity, relies on the symbioses
between cnidarians (e.g., scleractinian corals, octocorals, sea anemones, jellyfish) and
multiple organisms including dinoflagellate algae (family Symbiodiniaceae), bivalves,
crabs, shrimps, and fishes. In this review, we discuss the ramifications of whether
coral reef cnidarian symbioses are obligatory, whereby at least one of the partners
must be in the symbiosis in order to survive or are facultative. Furthermore, we cover
the consequences of cnidarian symbioses exhibiting partner flexibility or fidelity. Fidelity,
where a symbiotic partner can only engage in symbiosis with a subset of partners, may
be absolute or context dependent. Current literature demonstrates that many cnidarian
symbioses are highly obligative and appear to exhibit absolute fidelity. Consequently,
for many coral reef cnidarian symbioses, surviving changing environmental conditions
will depend on the robustness and potential plasticity of the existing host-symbiont(s)
combination. If environmental conditions detrimentally affect even one component of
this symbiotic consortium, it may lead to a cascade effect and the collapse of the entire
symbiosis. Symbiosis is at the heart of the coral reef ecosystem, its existence, and
its high biodiversity. Climate change may cause the demise of some of the cnidarian
symbioses, leading to subsequent reduction in biodiversity on coral reefs.
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INTRODUCTION

In 1878, de Bary defined symbiosis as the “living together of differently named organisms”
(translated in Oulhen et al., 2016). “Living together” can lead to organisms existing in habitats where
they may not survive if not for the symbiosis, increasing the biodiversity in that habitat. “Living
together” can also create novel biological entities, a consortium of organisms. When symbionts
are within (endosymbionts) or on (ectosymbionts) the tissue of the host, the host-symbiont(s)
entity, the holobiont (Margulis, 1991), may exhibit novel physiological and ecological attributes.
Although some debate the evolutionary utility of this term (Skillings, 2016), numerous holobiont
characteristics differ from the properties of the organisms in isolation (reviewed in Goulet et al.,
2020). Furthermore, host-symbiont genotypic combinations generate diverse holobionts that differ
physiologically and ecologically from one another (Goulet et al., 2005). Therefore, different
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symbioses and holobionts can lead to increased variability
within and between host species, both contributing to overall
biodiversity in an ecosystem.

Symbioses are ubiquitous in terrestrial and aquatic habitats,
from the tube worm-sulfur oxidizing bacteria in deep sea
hydrothermal vents (Cavanaugh et al., 1981), to the fungal-blue
green algal symbiosis in arctic lichens (Crittenden and Kershaw,
1978). In some habitats, symbioses are key to the existence of an
entire ecosystem, as occurs on coral reefs. In this review, we focus
on the symbioses between members of the phylum cnidaria (e.g.,
scleractinian corals, octocorals, sea anemones, jellyfish) and their
symbionts. These symbioses shape biodiversity on coral reefs, but
with climate change, these pivotal symbioses may falter, leading
to a loss of biodiversity. The structural complexity of coral reefs
may then be reduced (Rossi et al., 2019), detrimentally affecting
other organisms in the ecosystem. The degree of reliance on
the partners within cnidarian symbioses, and their fidelity, may
potentially lead to their demise.

The Symbiotic Continuum and Its
Influences on Biodiversity
de Bary’s definition of symbiosis described a phenomenon,
not its ramifications. Subsequently, attributes were assigned to
symbioses based on benefits and costs, from mutualism (both
partners benefit), commensalism (one partner benefits while the
other is neither harmed nor gains a benefit), parasitism (one
partner benefits while the other is harmed) (Saffo, 1993), to the
recently added amensalism (one partner is harmed while the
other is neither harmed nor gains a benefit) (Apprill, 2020). We
adhere to the subdivisions of symbiosis (Saffo, 1993), as opposed
to treating symbiosis as a synonym for mutualism (Douglas,
2010). Although the symbiotic states may appear as discrete boxes
(Figure 1A), or a sliding continuum (Figure 1B; Lesser et al.,
2013), neither portrayal captures the complexities of symbioses,
since the former assumes that a symbiosis is constrained into
one category while the latter implies that a mutualism needs
to transition into a commensalism or amensalism before it
may morph into a parasitism, and vice versa. Alternatively,
symbiotic states may oscillate from one to another (Figure 1C)
based on the context. Changing environmental conditions, which
often occur in conjunction with climate change, may be an
impetus for such symbiotic shifts. Conversely, if the symbiotic
partner(s) rely on a certain symbiotic state, environmental
changes may lead to symbiosis breakdown and even partner
death (Figure 1C).

The Benefits Brought About by Cnidarian
Symbioses on Coral Reefs
The core of the coral reef ecosystem is the mutualism between
members of the phylum cnidaria and unicellular dinoflagellate
algae (family Symbiodiniaceae). Symbiodiniaceae transfer some
of their photosynthetically fixed carbohydrates to the cnidarian
host (Muscatine and Porter, 1977), contributing as much
as 143% of the coral’s maintenance respiration (Muscatine
et al., 1984). But, Symbiodiniaceae differ in their metabolic
contribution to their hosts, with some Symbiodiniaceae even

FIGURE 1 | Depiction of symbiosis states as discrete separate entities (A), a
continuum (B), or as oscillating between one state to another based on
context (C).

acting as parasitic at some stage in host ontogeny (Banaszak
et al., 2013) or under different environmental conditions
(Lesser et al., 2013), reiterating symbiotic state oscillation
(Figure 1C). The cnidarian host, through their pigments,
may enhance Symbiodiniaceae photosynthesis (Schlichter et al.,
1994), even in light limited mesophotic depths (Schlichter
et al., 1986). Scleractinian corals’ calcification is increased by
Symbiodiniaceae, thereby enhancing coral growth which then
affects the overall coral reef structure (Goreau and Goreau,
1959; Pearse and Muscatine, 1971), influencing the organisms
that rely on the reef for habitat and/or food. From the host’s
nitrogenous wastes, Symbiodiniaceae gain a steady nitrogen
source in an oligotrophic habitat (Muscatine and D’Elia,
1978). As endosymbionts, the Symbiodiniaceae exposure to
environmental parameters such as ultraviolet radiation and
thermal stress is attenuated (Kawaguti, 1944; Shibata, 1969;
Goulet et al., 2005).

In addition to Symbiodiniaceace, cnidarians contain bacteria
and Archaea (reviewed in Knowlton and Rohwer, 2003; Bourne
et al., 2016; Peixoto et al., 2017). Bacteria may provide a
source of sulfur, nitrogen and carbon, and protect cnidarians
via antibiotics, inhibitors, and out competing other microbes
(Shashar et al., 1994; reviewed in Knowlton and Rohwer,
2003; McDevitt-Irwin et al., 2017; Peixoto et al., 2017). From
cnidarian mucus, bacteria can obtain wax ester and triglycerides
(Johannes, 1967; Benson and Muscatine, 1974). Cnidarians may
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also obtain benefits from Archaea aiding in nitrogen cycling,
gene transfer from viruses, and fungal anti-microbial activity
and contribution to the carbon and nitrogen cycles (reviewed in
Knowlton and Rohwer, 2003 and Peixoto et al., 2017). On the
other hand, viruses, bacteria, and fungi may harm the symbioses
and are associated with cnidarian diseases (Richardson, 1998;
Mera and Bourne, 2018). The data on non-Symbiodinaceae
microbiome members are predominantly limited to identifying
the entities involved, with a paucity of data on their role and
function (Bourne et al., 2016). Furthermore, despite the tight
coupling of scleractinian coral-bacteria phylogenies (Pollock
et al., 2018), some argue that the relationship with bacteria
should not be put in symbiotic terms (Mushegian and Ebert,
2016). Hence, although we recognize that bacteria, Archaea
and other entities exist in cnidarians, given the current limited
knowledge of their relationships, we do not discuss them in the
subsequent sections.

Cnidarians also form symbioses with macro organisms such
as bivalves (Mokady et al., 1998), crabs, shrimp (Glynn, 1980),
and fish (Collingwood, 1868; Mariscal, 1970; Liberman et al.,
1995; Howell et al., 2016) that continuously dwell within and
between cnidarian branches/tentacles. Macro organisms can
provide protection to their cnidarians; crabs and shrimp nip
at the tube feet of the coral predator star fish Acanthaster
planci (Glynn, 1980), and resident fishes chase away predators
(Mariscal, 1970; Chase et al., 2014). Cnidarian dwelling fish
remove sedimentation and debris from their hosts (Mariscal,
1970; Liberman et al., 1995). In addition, boring bivalves
(Mokady et al., 1998), shrimp (Spotte, 1996), and fish (Roopin
and Chadwick, 2009) provide their nitrogenous waste to the
symbiosis. Coral dwelling fish’s movements within their host
contribute to coral oxygenation as proposed in Liberman
et al. (1995) and demonstrated in Goldshmid et al. (2004).
Many cnidarian dwelling macro organisms rely on their host
cnidarian for their habitat and protection (Mariscal, 1970) in
addition to utilizing the coral mucus, and occasionally coral
tissue for nutrition.

Obligate vs. Facultative Cnidarian
Symbioses
In most of the symbioses with coral reef cnidarians, at least
one of the partners obligatorily engages in the symbiosis in
order to survive. For example, many cnidarians obligatorily
host Symbiodiniaceae, and some jellyfish even require
Symbiodiniaceae infection to enter a stage in their life
cycle (Ohdera et al., 2018; Djeghri et al., 2019). Conversely,
Symbiodiniaceae genetic signatures were detected from open
water samples (Decelle et al., 2018), and Symbiodiniaceae in
feces of fish and a nudibranch that fed on anemones were
viable (Muller Parker, 1984), indicating that the mutualism
may not be reciprocally obligative. Perturbations can lead to
a reduction in algal numbers and/or chlorophyll content per
Symbiodiniaceae cell within cnidarian hosts, termed coral
bleaching, which may lead to cnidarian death (Glynn, 1996). The
same environmental perturbations, however, affect cnidarian
symbioses differently, resulting in within (Berkelmans and van

Oppen, 2006; Goulet et al., 2008; Sampayo et al., 2008) and
between (Marshall and Baird, 2000; Goulet et al., 2008) species
differences in susceptibility and survival. Coral species that can
offset the loss of nutrients, brought about from the reduction in
Symbiodiniaceae, with heterotrophic input via predation, often
withstand perturbations better than coral species that are more
autotrophic (Grottoli et al., 2006).

Many fish obligatorily associate with corals (Liberman et al.,
1995) or sea anemones (Collingwood, 1868, reviewed in Fautin,
1991). Conversely, not all corals or anemones, even of the same
species, at the same depth and habitat, host fish (Liberman
et al., 1995; Chadwick and Arvedlund, 2005) or shrimp (Spotte,
1996), demonstrating the facultative nature of the relationships
for the cnidarians. Furthermore, even though mutualisms are
often referred to as a partnership between two organisms, most
often mutualisms occur in networks, with a nested hierarchy
between the members. Cnidarians epitomize the consortium
concept (reviewed in Goulet et al., 2020) and the multi-
level effects. Although macro symbionts associate with the
cnidarian hosts, their nitrogen excretions provide nitrogen for
the Symbiodiniaceae (Spotte, 1996; Mokady et al., 1998). The
complexity of the interactions in the symbioses, along with
their obligative vs. facultative nature, may further compound the
effects of climate changes on them.

DISCUSSION

When symbioses face changing environmental conditions,
several scenarios are plausible (Kiers et al., 2010). An existing
mutualistic symbiosis may either thrive, or it may shift
from beneficial to antagonistic (Figure 1C). Conversely, the
current symbiosis may be dissolved and a new partnership
formed, or the symbiosis may breakdown (Figure 1C; Kiers
et al., 2010), potentially leading to the death of one if
not all of the symbiotic partners (Kiers et al., 2010, 2015).
Since holobiont adaptability may occur at a faster rate than
evolutionary change of the hosts, cnidarian symbioses may
survive climate change (Apprill, 2020). On the other hand, if
the vast majority of cnidarian symbioses on coral reefs are
obligatory with high fidelity, the range of potential scenarios for
cnidarian symbioses faced with climate change may be limited,
potentially leading to an overall reduction in cnidarian symbioses
and biodiversity.

The Consequences of Obligate vs.
Facultative Cnidarian Symbioses on
Biodiversity on Coral Reefs Under
Climate Change
A symbiosis can be obligate and resilient at the same time.
If the symbiosis is physiologically plastic and robust, it will
survive a perturbation. Alternatively, a stressor can adversely
affect a symbiosis. The more reliant a partner is on the symbiosis,
the more vulnerable it is if the symbiosis falters (Chomicki
et al., 2019). When a coral bleaches, residual Symbiodiniaceae
remain (Hayes and Bush, 1990), and if they repopulate the host,
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the symbiosis survives. Conversely, if a cnidarian host cannot
repopulate or switch its Symbiodiniaceae, coral bleaching may
lead to coral death.

If the obligate cnidarian-algal symbiosis is detrimentally
affected by abiotic or biotic factors, other obligate symbionts
will also be adversely affected. For example, the metabolic
rate of juvenile clownfish Amphiprion chrysopterus inhabiting
bleached Heteractis magnifica sea anemones was higher than
in anemonefish inhabiting non-bleached anemones (Norin
et al., 2018). Egg production in female A. polymnus in
bleached Stichodactyla hadonni and H. crispa anemones was
reduced by 38% compared to egg production in non-
bleached anemones (Saenz-Agudelo et al., 2011). The effects
on individual anemones and their symbionts in turn affects
the populations of both. On a reef in the Gulf of Eilat
(Aqaba) Red Sea, from 1997 to 2015 the number of the sea
anemones, H. crispa and Entacmaea quadricolor, declined by
86% (Howell et al., 2016). Concurrently, a 74% reduction
in the anemonefish A. bicinctus population occurred. In the
original censuses, about 50% of sea anemones were inhabited
by A. bicinctus. By 2015, all 25 sea anemones in the population
were occupied by anemonefish, potentially limiting subsequent
anemonefish recruitment (Howell et al., 2016). Hence, if the
sea anemone population continues to decline on this reef,
the reef biodiversity will be lowered with the loss of both
the sea anemones and their resident anemonefish. Such a
consequence occurred in the Keppel Islands, Australia, where
a decade after a fishing moratorium not only did the sea
anemone E. quadricolor and the anemonefish A. melanopus
populations not bounce back to historic densities, but the
anemone H. crispa and anemonefish A. clarkii were not seen in
the surveys, demonstrating the dramatic decline in that symbiosis
(Frisch et al., 2019).

Likewise, Trapezia cymodoce, a crab that obligatorily associates
with scleractinian corals, was detrimentally affected when its host
Pocillopora damicornis bleached (Stella et al., 2011). Trapezia
egg clutch sizes were lower in bleached than in healthy corals
(Stella et al., 2011). In bleached corals, either both members
of the Trapezia breeding pair were lost, or only one Trapezia
remained. A laboratory experiment demonstrated that Trapezia
abandoned a bleached coral in search of a healthy one, with
larger Trapezia usurping the resident smaller Trapezia (Stella
et al., 2011). Hence, the bleaching in P. damicornis led to a
reduction of the resident Trapezia fecundity and population
and, through emigration, also affected Trapezia in healthy corals
(Stella et al., 2011).

The Consequences of Cnidarian
Symbiotic Partner(s) Fidelity vs.
Flexibility on Coral Reef Biodiversity
Under Climate Change
In both obligatory and facultative cnidarian symbioses, the
symbionts may exhibit high fidelity, whereby a cnidarian
species associates with a subset of symbionts, and vice versa.
Alternatively, a host and/or symbiont may be flexible, forming
symbioses indiscriminately. On coral reefs, many cnidarian

symbioses demonstrate fidelity. Even if multiple entities can
enter the host cnidarian, such as in initial Symbiodiniaceae or
bacterial acquisition, winnowing occurs and the adult cnidarians
exhibit symbiont affinity (Coffroth et al., 2001; Abrego et al.,
2009; Epstein et al., 2019). Similarly, when a coral species hosts
two or more Symbiodiniaceae genera, specific Symbiodiniaceae
species within these genera associate with that given species
(Goulet, 2006, 2007; Hume et al., 2020). Bacteria exhibit
fidelity to cnidarian host species (Ainsworth et al., 2015;
Shirur et al., 2016; van de Water et al., 2017, 2018; Huggett
and Apprill, 2019; McCauley et al., 2020). Likewise, resident
crabs, shrimp and fish associate with specific cnidarian species
(Fishelson et al., 1974).

Is Fidelity Absolute or Context
Dependent?
If fidelity occurs in a symbiosis, even for one of the partners,
this may limit the potential range of responses of the holobiont
to changing environmental conditions. Faced with climate
change, with high fidelity, an existing host-symbiont(s) genotypic
combination may be limited to the two outcomes of either
surviving or dying. Alternatively, what appears as fidelity
may be a context dependent consequence, i.e., under certain
environmental conditions, a specific host-symbiont pairing may
form since that is the best combination for those conditions.
If the conditions change, then that host-symbiont combination
may not be optimal, which may lead to a different host-
symbiont symbiosis forming either during the establishment of
the symbiosis (Baird et al., 2007) or in an existing symbiosis
(Baker, 2003).

To tease apart if the fidelity exhibited in a certain
symbiosis is absolute or context-dependent, one can pursue
several investigative directions. Comparing cnidarian gene
and metabolite expression profiles with homologous vs.
heterologous symbionts may shed light on the cnidarian
reaction to heterologous symbionts and if novel host-symbiont
genotypic combinations are feasible (Matthews et al., 2017).
Furthermore, if fidelity appears to exist because of the symbiosis’
stability under certain environmental conditions, then if
environmental parameters are pushed beyond a potential
threshold, a different symbiosis partnership may form. Thus
far, changing environmental conditions such as sea water
temperatures, ultraviolet radiation, nutrient enrichment,
reduction in pH and transplantation to different habitats on the
same and different reefs have not resulted in the establishment
of novel, persistent symbioses (reviewed in Goulet, 2006).
In scleractinian corals, novel Symbiodiniaceae were detected
following environmental change, but these Symbiodiniaceae
were transient (Thornhill et al., 2006; Sampayo et al., 2008;
Lee et al., 2016). If the perturbation did not lead to the demise
of the symbiosis, the specific cnidarian-Symbiodiniaceae
combination re-established itself. Nevertheless, one could
argue that the symbioses have not been pushed to the point
that would lead to flexibility (Baird et al., 2007). Thus far,
experimental attempts at creating hardier artificial holobionts
in the sea anemone Exaiptasia, by inoculating Exaiptasia with a
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more thermally tolerant Symbiodiniaceae, have not succeeded,
with Exaiptasia displaying selectivity to its specific symbiont
(Gabay et al., 2019; Herrera et al., 2020), countering the idea that
these symbioses can change.

How Do the Effects of Climate Change
on a Member of a Symbiotic Consortium
Impact the Consortium as a Whole? Are
There Cascade Effects?
Since cnidarian symbioses can contain a multitude of symbiotic
interactions, changes in environmental conditions may affect
only one, some, or all of the partners, and the degree
and the directionality of the effect may vary (Goulet, 2015).
Furthermore, even if the environmental change directly affects
only one of the partners, since the symbiotic partners
are interconnected, the entire symbiotic consortium may be
affected. For example, elevated seawater temperatures can
detrimentally affect Symbiodiniaceae photosynthesis which may
in turn detrimentally affect the cnidarian host and hence
the entire symbiosis (Warner et al., 1999). Even if the
Symbiodiniaceae are not directly influenced by a stressor,
the cnidarian host may be affected (Baird et al., 2009).
Since the Symbiodiniaceae reside within their cnidarian host,
death of the host will lead to the demise of the entire
symbiosis. Conversely, the interplay of the potential negative,
neutral, and positive effects may, in essence, cancel each
other out, resulting in the symbiotic cnidarian consortium
surviving and potentially thriving under the new environmental
conditions. In order to potentially predict the effects of
a stressor on a cnidarian species, and hence coral reef
biodiversity, one needs to assess the effects of the stressor
on the consortium.

Selective symbiosis survival may lead to a reduction in
biodiversity both within and between species. For example,
on the Great Barrier Reef, the scleractinian coral Stylophora
pistillata hosts multiple Symbiodiniaceae types within the genus
Cladocopium. In a thermal event, S. pistillata colonies hosting
Cladocopium C79 and C35/a died at a higher proportion than
those hosting C78 and C8/a. As a result, although S. pistillata
still existed on the reef, the symbiosis diversity within S. pistillata
was reduced (Sampayo et al., 2008). Likewise, in the coral
Montipora digitata genotypic variability in both the host coral and
Symbiodiniaceae led to differential stress susceptibility between
coral holobionts (Kavousi et al., 2020).

CONCLUSION

Living together in symbioses may enable organisms to inhabit
environments where they may not exist in isolation. Obligate
and/or high fidelity in symbioses may lead to increased
biodiversity in an ecosystem because of the many intra and
interspecific host-symbiont genotypic combinations. Such is
the case on coral reefs where cnidarian symbioses drive the
ecosystem. When environmental conditions change, mutualism
may transition to parasitism, the symbiosis may be abandoned,
the existing host-symbiont(s) genotypic combination may
withstand the perturbation, or the entire symbiosis will collapse.
The obligate and fidelity of many cnidarian symbioses will
make symbiotic transitions probably unlikely. The strength of
a specific obligate symbiosis may be its downfall, leading to a
reduction in intra and interspecific biodiversity. Understanding
the nature of cnidarian symbioses (obligative to facultative,
fidelity vs. flexibility), the symbiotic consortium, and the effects
of the environment on these symbioses, will advance our
knowledge of the current and future biodiversity of cnidarian
symbioses on coral reefs.
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