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The national surveys on giant panda (Ailuropoda melanoleuca) population and habitat
quality have shown a high-density population of this species in the Qinling Mountains,
China. We investigated five adjacent nature reserves (NR), i.e., the key distribution
area of giant pandas in the Qinling Mountains, to model and identify the potential
dispersal routes for giant pandas. We hypothesized that giant pandas will spread
to neighboring areas when the population of the species keeps increasing. Habitat
suitability was firstly evaluated based on environmental and disturbance factors. We
then identified source and sink patches for giant pandas’ dispersal. Further, Minimum
Cumulative Resistance (MCR) model was applied to calculate cost of movement. Finally,
the Current Theory was adopted to model linkages between source and sink patches
to explore potential dispersal routes of giant pandas. Our results showed that (1) the
three large source patches and eight potential sink patches were identified; (2) the 14
potential corridors were predicted for giant pandas dispersing from source patches to
the neighboring areas; (3) through the predicted corridors, the giant pandas in the source
patches could disperse to the west, the south and the east sink patches. Our research
revealed possible directional patterns for giant pandas’ dispersal in their key distribution
area of the Qinling Mountains, and can provide the strong recommendations in policy
and conservation strategies for improving giant panda habitat management in those
identified sink patches and also potential dispersal corridors.

Keywords: giant panda, the Qinling Mountains, dispersal route, modeling, minimum cumulative resistance,
Current Theory

INTRODUCTION

The “corridor” theory illustrates passage ways for wildlife movement including dispersal routes,
which are essential in ecology and conservation, especially in areas with road disturbance and
human activities (Liu et al., 1999). Protection of endangered as well as vulnerable wildlife
populations and their habitat requires numerous efforts, for instance, constructing the necessary
corridors, helping wildlife species buffer against various disturbances, protecting the valuable gene
bank and further maintaining the overall diversity of the ecosystems. Potential corridors are based
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on the functions of landscape connectivity and population
dynamics—such as animal migration patterns and movements
for better resources (Moilanen and Hanski, 2001). Haddad et al.
(2003) pointed that linkages in the landscape are connected
by dispersal routes and facilitate movement and dispersal of
individuals, genes, and ecological processes.

However, the current natural environment has been strongly
impacted by human activities. Natural landscapes are mostly
fragmented due to human disturbing. As known, landscape
fragmentation can result in a decrease in habitat availability, and
a sharp increase in population density among few suitable habitat
patches (May, 1975; Lovejoy et al., 1984). Fahrig et al. (2019)
made a great discussion on the relationship between habitat
fragmentation and biodiversity. The distance between remnant
habitat patches and the degree of landscape connectivity are
all important determinants for biotic response to fragmentation
(Meurk, 1988). Thus, some individuals in the population would
migrate to other habitat patches, i.e., emigration, in order to
locally reduce population density (Chetkiewicz et al., 2006).
Therefore, it is essential to get clear where could be the migration
corridors as well as the habitat patches which could receive the
migrating individuals.

Giant Panda (Ailuropodamelanoleuca) is a rare and vulnerable
mammal species which is categorized as a first-class species
for protection (Schipper et al., 2008; Swaisgood et al., 2010).
They mainly distribute in six mountainous regions of Sichuan,
Shaanxi, and Gansu provinces, China (Hu, 2001; Songer et al.,
2012). The 3rd national survey on giant panda population and
its habitat showed that there are 273 individuals in Shaanxi
(SFA, 2006), with 192 individuals (70% of the Qinling giant
panda population) in our studied key distribution area of
giant pandas in the Qinling Mountains. This key distribution
area includes five nature reserves (NRs): Changqing, Foping,
Guanyinshan, Laoxiancheng, and Zhouzhi. Liu and Jin (2008)
found out that there are two areas with a high population
density of giant pandas, which are located in Changqing NR
and Foping NR. Assuming that giant pandas in these two areas
keep increasing their local population, some of their individuals
would disperse out to the surrounding suitable habitat patches
due to competitions on food, mate and space, etc., which gives
rise to a natural phenomenon that limits the growth of the
wild population of giant pandas (Reid et al., 1991; Gittleman,
1994). Where could be the suitable habitat patches and the
potential routes for giant pandas to disperse among those
patches? Although the giant panda has been lowdown its status
from endangered to vulnerable species (IUCN, 2016), this species
is still important to pay attention to since it is the flag species
and also umbrella species in wildlife conservation in China as well
as in the world.

The Qinling Mountains have experienced commercial logging
from 70s to 90s in the last century (Liu et al., 2017b, 2018; Zhang
et al., 2019), started the forest restoration after 1998 when the
logging was banned. It has made certain forest fragmentation
in some areas on the Qinling landscape. With the strengthened
natural protection, the giant panda population is increasing
according to the national surveys (SFA, 2006, 2015). Therefore,
if dispersing of giant panda individuals occurs, they need to

find their routes to disperse to the suitable habitat patches
which can make them settle down under current fragmented
environment. Dispersal is an important factor for the function
and dynamic state of the endangered species (Hanski, 2001).
Animal individual’s dispersing out of the local source patches is
also the most appropriate way for giant pandas to obtain suitable
habitat, choosing the palatable bamboo as their food, therefore,
slowing down the increasing rate of population in one given
area (Lu et al., 2001; Pan et al., 2001). Therefore, existence of
the dispersing routes for giant pandas and further for human to
protect them are crucial, and some necessary restoration efforts
can be made to them.

So this study aimed at exploring the potential dispersal routes
in the key distribution area of giant pandas in the Qinling
Mountains, on the base of identifying the suitable habitat patches
as well as the sink patches for receiving the dispersing giant
pandas potentially. We tried to achieve our aim by answering
the following main scientific questions: (1) What is our modeling
approach for identifying the potential dispersing routes for giant
pandas? (2) Where are the source and sink patches of giant
pandas? (3) Where are the potential dispersal routes among
source and sink patches?

MATERIALS AND METHODS

Study Area
Based on the reasons described in the introduction, we selected
five giant panda nature reserves (107◦17′–107◦58′, 33◦19′–
33◦46′) who are neighbored each other: Changqing, Foping,
Guanyinshan, Laoxiancheng, and Zhouzhi NRs as the study area
(Figure 1 and Table 1), which is the key distribution area of giant
pandas with a high density population in the Qinling Mountains.

The five NRs in our study were established in different years
according to the conservation progress and steps of China.
Guanyinshan NR, originally a commercial logging bureau, was
established lastly among these five NRs directly due to the logging
ban to be enacted in 1998 in order to protect the forest and
restore the habitat for giant pandas. The five NRs have similar
environmental and climatic conditions. The summer season has
a warm humid climate accompanied by the south-east ward
monsoon, which makes the area has a northern sub-tropical
floras with rich species composition (Liu, 2001). The study
area grows a mixture of forest types including warm-temperate
deciduous broadleaf forest and sub-tropical evergreen broadleaf
forest. Mountainous terrain showed that vegetation changes with
elevation increasing, such as deciduous broadleaf forest at low
elevation, beech forest at middle elevation, and conifer forest at
high elevation (Liu et al., 2017a). This area provides adequate
habitat for wildlife survival (Liu and Li, 2008).

Data
This study used multi sources data including:

(1) Distribution data of giant panda signs (including feces,
tracks, feeding signs, and individual occurring sites) from
the 3rd national survey of giant panda population and
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FIGURE 1 | Five nature reserves (NR) in the key distribution area of giant pandas in the Qinling Mountains, China.
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TABLE 1 | Basic information of five giant panda nature reserves in the Qinling Mountains, China.

Nature reserve (NR) Location Year of establishment Year assigned a national NR Area (ha) Elevation range (average) (m)

Changqing 107◦17′∼107◦55′ E 1995 1995 29906 800∼3071 (2271)

33◦19′∼33◦44′ N

Foping 107◦40′∼107◦55′ E 1978 1978 29240 980∼2904 (1924)

33◦33′∼33◦46′ N

Guanyinshan 107◦51′∼107◦58′ E 2000 2013 11728 1150∼2574 (1424)

33◦35′∼33◦45′ N

Laoxiancheng 107◦40′∼107◦49′ E 1993 2013 12600 1524∼2904 (1380)

33◦33′∼33◦46 N

Zhouzhi 107◦39′∼108◦19′ E 1986 1988 56393 1196∼2996 (1180)

33◦41′∼33◦57′ N

habitat provided by Shanxi Forestry Department, used
for deriving the density map of giant panda signs with a
resolution of 30 m× 30 m for later spatial calculation;

(2) Vegetation map with a resolution of 30 m× 30 m provided
by Shanxi Forestry Department;

(3) Bamboo distribution maps with a resolution of
30 m × 30 m provided by five nature reserves related to
this study;

(4) Terrain data including digital elevation data layer and
its derived slope data layer and slope aspect data layer
with also a resolution of 30 m × 30 m from Institute of
Geographic Science, China Academic Sciences;

(5) Hydrological data with river distribution map from Shanxi
Forestry Department, used for deriving the map of distance
to rivers with a resolution of 30 m× 30 m;

(6) Human disturbance data including locations of medicinal-
herbs collection, lacquer collection, bamboo shoot
collection, hunting, road construction, and farming. from
the 3rd national survey of giant panda population and
habitat provided by Shanxi Forestry Department, used for
deriving the map of distance to human disturbance with a
resolution of 30 m× 30 m;

(7) Road distribution map provided by Shanxi Forestry
Department, used for deriving the map of distance to roads
with a resolution of 30 m× 30 m.

We used all these data to analysis habitat suitability,
identify important patch areas as source patches where giant
pandas dispersing from and sink patches where giant pandas
dispersing into, and find potential dispersal routes between
source and sink patches.

Software
Linkages Mapper toolbox in ArcGIS was a software program
used in our study that needed proper conditions to be applied
generally. Linkage design models such as isolation-by-resistance
(IBR) model (McRae, 2006), least-cost path (LCP) model
(Adriaensen et al., 2003) combine with the Current Theory were
widely applied to predict pathways connecting population pairs
or gene flow (McRae and Paul, 2007; St-Louis et al., 2014).

Integrative Modeling Approach
The whole modeling approach of our study contained four
submodels (Figure 2). These submodels were taken to predict
the giant pandas’ dispersing pattern through analyzing habitat
suitability (submodel 1), identifying source and sink patches
(submodel 2), calculating the habitat resistance patterns
(submodel 3), and final mapping the potential dispersal
routes (submodel 4).

Submodel 1: Analyzing Habitat Suitability
An efficient method for modeling the individuals’ dispersal
was habitat suitability analysis to understand the nature
conditions that the species confronted during migrating. The
main eight habitat factors used were elevation, slope, aspect,
vegetation, bamboo as well as distances to rivers, roads, and
human disturbances (Supplementary Figure 1), similar with the
research work done by Wu et al. (2013). In order to implement
the spatial calculation, the same map resolution and projection
is required. So, we standardized all GIS data layers in the same
spatial projection and resampled these layers into 30 m × 30 m
resolution to match with the resolution of vegetation map
(30 m × 30 m). To obtain the suitability value, we applied expert
assessment approach by which the weight assigning to different
habitat factors has been often applied in giant panda habitat
assessment, such as Ouyang et al. (2000); Li et al. (2005), Xu
et al. (2005), and Wu et al. (2013). For map calculation, we used
values of 0, 1, 2, and 3 to represent unsuitable, marginal suitable,
suitable, and most suitable (Supplementary Material).

To integrate the eight habitat factors, we applied Analytic
Hierarchy Process (AHP) which is based on the judgment of
importance of each factor. The AHP method was developed by
Saaty (1980), and has been often applied, such as Li et al. (2005);
Nekhay et al. (2009), and Liu and Sun (2010). We divided the
factors into three groups which are biotic factors (vegetation and
bamboo), abiotic factors (elevation, slope, aspect, and distance
to rivers), and disturbing factors (distances to roads and human
disturbances). We then made comparison of importance between
every two factors and formed the matrix of importance values.
Then the weights of the eight factors were obtained by computing
the maximum latent roots and corresponding eigenvectors of the
matrix (Liu and Sun, 2010). The weights were 0.492 for bamboo,
0.240 for human disturbances, 0.093 for vegetation, 0.080 for
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FIGURE 2 | Integrative modeling approach to map the dispersal routes for giant pandas in their key distribution area of the Qinling Mountains, China.

roads, 0.068 for rivers, 0.036 for slope, 0.012 for elevation,
and 0.006 for aspect. For creating the final habitat suitability
map, each pixel was calculating its suitability value by summing
the eight layers through each habitat factor’s suitability value
multiplied by AHP weights (maintained two numbers behind
decimal and then changed to integer by timing 100 for running
GIS calculation). This map has a value range from 0 to 835.
We reclassified this map into four categories with thresh hold
values by using Natural Breaks (Jenks) method: (0∼208.75) as
unsuitable, (208.75∼417.5) as marginal suitable, (417.5∼626.25)
as suitable, (626.25∼835) as most suitable.

Submodel 2: Identifying Source and Sink Patches
In our research, source patches are the most suitable habitat
patches with high-density signs of giant pandas to indicate more
animal individuals, where the individuals disperse from and to
other habitat patches. Sink patches are the suitable habitat patches
with low-density signs of giant pandas, where can receive those
dispersing individuals. Linkages between sources and sinks for
dispersal have been described as landscape processes, where the
matter and energy of source patches can outflow to sinks under
viable conditions. Giant pandas disperse and spread to areas with
abundant bamboo food, water, and other environment resources
for its survival and reproduction.

We first created the density map of giant panda signs and
further we used this map to indicate the density of giant panda
population. Using the home range of the giant panda, about
6 km2 (Hu et al., 1985), density maps were calculated using point

density tool in ArcGIS with a searching radius of 1.38 km (home
range area of 6 km2). According to Liu and Jin (2008), two high-
density areas all have giant panda sings of ≥4 sites/km2. So we
maintained to use these criteria to determine source patches.
We further defined sink patches with giant panda sings of <4
sites/km2 and continuous suitable habitat of ≥20 km2.

Submodel 3: Calculating Habitat Resistance by Using
MCR Model
When a species moves through various landscapes, it normally
encounters obstacles on the way (Gabelli et al., 2006). The
Minimum Cumulative Resistance (MCR) model was used for
calculating the habitat resistance, which reflects the accessibility
and possibility for the species to disperse and find suitable habitat.
The MCR model was first proposed by Knaapen et al. (1992) and
we applied the formula (1) which was modified by Yu (1998).

MCR = fmin
i=m∑
j=n

Dij× Ri (1)

Dij is the spatial distance from source j to landscape unit i. Ri is
the resistance of pixel i in landscape. We assigned the resistance
in Table 2 with values of 1, 4, 7, and 10 for eight habitat factors
to represent four classes of habitat resistance, i.e., smallest, small,
strong, and strongest. We then summed up the resistance values
by using AHP weights to obtain Ri for each pixel. Min was the
minimum resistance of the assessed pixel to all different sources,
and f was the function coefficient between MCR and dispersing
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TABLE 2 | Value assignment for habitat suitability classes and resistance analysis
for the selected eight habitat factors in the key distribution area of giant pandas in
the Qinling Mountains, China.

Factors (weights) Grade Habitat suitability/
class value

Resistance/
class value

Elevation (m) <1500 Marginal suitable/1 Strong/7

(0.012) (1500–1900) Most suitable/3 Smallest/1

(1900–2200) Suitable/2 Small/4

(2200–2700) Most suitable/3 Smallest/1

(2700–2900) Marginal suitable/1 Strong/7

>2900 Unsuitable/0 Strongest/10

Slope aspect (◦) N Unsuitable/0 Strongest/10

(0.006) NE Marginal suitable/1 Strong/7

E Suitable/2 Small/4

SE Suitable/2 Small/4

S Most suitable/3 Smallest/1

SW Suitable/2 Small/4

W Marginal suitable/1 Strong/7

NW Unsuitable/0 Strongest/10

Slope degree (◦) (0–5) Most suitable/3 Smallest/1

(0.036) (5–20) Most suitable/3 Smallest/1

(20–30) Suitable/2 Small/4

(30–40) Marginal suitable/1 Strong/7

(40–50) Marginal suitable/1 Strong/7

>50 Unsuitable/0 Strongest/10

Vegetation type Coniferous forest Most suitable/3 Smallest/1

(0.093) Mixed
conifer-broadleaf

forest

Most suitable/3 Smallest/1

Deciduous
broadleaf forest

Suitable/2 Small/4

Mixed evergreen
deciduous

broadleaf forest

Suitable/2 Small/4

Evergreen
broadleaf forest

Suitable/2 Small/4

Shrub Marginal suitable/1 Strong/7

Man-made forest Marginal suitable/1 Strong/7

Others Unsuitable/0 Strongest/10

Bamboo types
(0.492)

Bashania fargesii
and F. qinlingensis

Most suitable/3 Smallest/1

Fargesia nitida Suitable/2 Small/4

Fargesia
dracocephala

Marginal suitable/1 Strong/7

No bamboo Unsuitable/0 Strongest/10

Distance to rivers (m) ≤200 Most suitable/3 Smallest/1

(0.068) (200–500) Suitable/2 Small/4

(500–1000) Marginal suitable/1 Strong/7

>1000 Unsuitable/0 Strongest/10

Distance to roads (m) ≤100 Unsuitable/0 Strongest/10

(0.080) (100–400) Marginal suitable/1 Strong/7

(400–1000) Suitable/2 Small/4

>1000 Most suitable/3 Smallest/1

Distance to human
disturbances (m)

≤100
(100–400)

Unsuitable/0 Strongest/10
Marginal suitable/1 Strong/7

(0.240) (400–1000) Suitable/2 Small/4

>1000 Most suitable/3 Smallest/1

process. Habitat resistance surface was derived from cost distance
toolbox in ArcGIS using resistance layer.

Submodel 4: Predicting Dispersal Routes by Applying
the Current Theory
The Current Theory belongs to physics, in which circuits is
defined as networks of nodes connected by resistors. When a
voltage, V, applied across a resistor, the amount of current, I,
flowing through the resistor depends on the voltage applied and
the resistance, R (McRae et al., 2008). Nowadays, ecologists are
thinking that ecological process like individual movement and
gene flow can be related to resistance, current, and voltage in
raster grids, which is like what the Current Theory described.
Based on the calculated habitat resistance in submodel 3, the
Current Theory was applied to predict giant pandas’ dispersal
routes by using formula (2).

I =
V
R

(2)

Longer distance giant pandas disperse, the higher habitat
resistance they would encounter. In order to simulate the density
of individual movement like the current, the Current Theory was
used to simulate the resistance layer. The greater the resistance
is, the smaller the current (the dispersing flow of giant pandas)
is. We regarded source patches as the starting locations and
sink patches as the terminal locations of migration. The habitat
resistance determines corridors between any pairs of source and
sink patches. The implementation of the Current Theory was
applied by the Linkage Mapper Toolkit in ArcGIS.

RESULTS

Reclassified Eight Habitat Factors
Table 2 showed the eight habitat factors and their detailed classes
for habitat suitability assigned based on the expert knowledge.
Based on this constructed expert knowledge system, the eight
habitat factors were all reclassified with four classes: unsuitable,
marginal suitable, suitable and most suitable with values of 0, 1, 2,
3, respectively. The eight new maps of these factors were obtained
and shown in Supplementary Figure 2. They are ready for being
used in spatial calculation of habitat suitability of giant pandas.

Suitability Pattern of Giant Panda Habitat
Habitat suitability map (Figure 3) showed that the area of the
most suitable habitat was 101.8 km2 in total and shown by
three main patches: the largest one 68 km2, the second largest
one 24 km2, and the third largest one 10 km2. The most
suitable and suitable habitats were distributed in the western
part of the study area. The most suitable patches were mainly
in Foping, Changqing and Laoxiancheng NRs, while marginal
suitable and unsuitable areas were in Zhouzhi NR and the east
part of Guanyinshan NR.

Source and Sink Patches
We used the created density map of giant panda activity signs
to reflect the density of giant panda population. From this
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sign density map, we mapped the source patches and the sink
patches (Figure 4). Figure 4A showed that the largest population
patches were located in Changqing and Foping NRs, and the
highest density of giant panda signs reached 8 sites/km2. Three
identified crucial large source patches contained two in the north
of Changqing with areas of 7.5 km2 and 11.7 km2, and one in the
middle of Foping with an area of 19.0 km2. Some small source
patches appeared separately in the different locations: two of
them in Changqing with areas of 2.1 km2 and 0.7 km2, and two of
them in Foping with areas of 1.5 km2 and 1.8 km2. Zhouzhi and
Laoxiancheng NRs had one smaller source patch for each with
areas of 0.8 km2 and 1.9 km2.

Figure 4B showed the identified sink patches and 8 big patches
with an area of ≥20 km2 were found in the study area, including
three patches in Changqing with areas of 28.7 km2, 34.8 km2,
47.5 km2, one patch in Foping with an area of 22.1 km2, one patch
in Laoxiancheng with an area of 32 km2, two patches in Zhouzhi
with areas of 24 km2 and 39.1 km2, and one patch at the junction
area of Foping and Guanyinshan with an area of 97.8 km2.
Meanwhile, we found four smaller sink patches with areas all less
than 20 km2 where giant pandas can also potentially disperse to.

The total areas of the source and sink patches are 47.3 km2

and 325.8 km2, respectively. The large sink areas indicates that
the population of giant pandas in the study area does have the
space to increase potentially.

Resistance Patterns for the Dispersal of
Giant Pandas
The final resistance cost pattern calculated by MCR, to indicate
the difficulty for giant panda to pass through the landscape,
was shown in Figure 5 in which each pixel reflected the cost of
migration to the nearest habitat sources. It shows that there exists
less cost for giant panda to disperse in the west part of the study
area, while the high resistance occurs in the eastern part such
as Zhouzhi. Based on this resistance patterns, it was possible to
identify areas where giant pandas would potentially disperse to.

Dispersal Routes for Giant Pandas
Figure 6 showed the spatial distribution of our predicted
dispersal routes by the Current Theory model. We found the
potential dispersal routes between three large source patches and
eight large sink patches where the least distance and cost exist.
Between source and sink patches, we found 14 routes in the
study area in the key distribution area of giant pandas in the
Qinling Mountains. Based on three large source patches, the
most important potential dispersal routes for giant pandas were
from the east of Changqing to the west, to the middle, to the
south of Changqing, to the west of Foping and to the northeast
to Laoxiancheng. The second-most important routes were from
Foping to the west of Foping, to the southwest of Changqing,

FIGURE 3 | The suitability map of the key distribution area of giant pandas in the Qinling Mountains, China.
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FIGURE 4 | Maps of source patches (A) and sink patches (B) in the key distribution area of giant pandas in the Qinling Mountains, China.

to the junction area of Foping and Guanyinshan, to the south
of Laoxiancheng, and to the west of Zhouzhi, to the west of
Guanyinshan and further to the east of Zhouzhi. The center part
(with blue color in Figure 6) of the predicted potential dispersing
routes has the high “current with circuits” with an ecological
meaning of that giant pandas are easy to disperse in these
center parts. This showed the possible intensity of giant pandas’
dispersal in the corridors with blue and orange representing high
and low intensity of animal dispersing, respectively.

DISCUSSION

We obtained three major findings: (1) an integrative modeling
approach established with applying three submodels to predict
giant pandas’ dispersal routes; (2) the three large source patches
and eight sink patches mapped by this integrative model; and (3)
the 14 dispersal routes identified by the Current Theory model.
We reached our proposed three research objectives.

Importance of Predicting the Potential
Dispersal Routes for Giant Pandas
Fragmentation generally results in a discontinues landscape that
consists of remnant areas of native vegetation surrounded by
a matrix of agricultural or human developed land (Saunders
et al., 1991). As known land use change can lead to conversion
of ecological processes and reduction of biological diversity
(Graham et al., 2006). Human disturbances changed the
landscape of our research area, where there were increasingly
more human residents in the northeast Zhouzhi and there was
a national-level road (G108) in the east of Guanyinshan. So the
resistance value was high in the east part of study area. Along with
the essential dispersal route (from the source of Foping NR to the
east sink in Zhouzhi NR), human disturbances have an impact
in both sides of this route, thus, a necessity for conservation
and restoration such as decreasing traffic flow, conducting more
tunnels or ecological corridors in giant panda habitat should
get more attention.

Dispersal route construction has been proposed as a measure
to enhance the long-term genetic diversity (Schonewald-Cox
et al., 1983), as well as viability of the regional panda
population growth (Yin et al., 2006). Establishing, enlarging,
and networking among nature reserves, and strengthening
supervision and management in the predicted potential dispersal
routes with populations of giant pandas were essential for
decision-makers (Diamond, 1975; Diamond et al., 1976; Xu et al.,
2006, 2014). From findings of our study, government planning
departments should find out the low resistance dispersal routes
especially in the boundary regions of NRs (like the junctions
of Laoxiancheng-Foping-Zhouzhi and Foping-Laoxiancheng-
Changqing), and further strengthen the effort of bamboo
restoration and continuous supervision.

Rather than find corridors by adding linkages among sinks
and sources, it is necessary to compare relative conservation
priority of all linkages through conservation planning research
(Possingham et al., 2000). Other researchers only found the cost
of dispersal throughout different habitats and a linear path for
giant pandas (Li et al., 2010). However, we found 14 polygon
dispersal routes, where more complex spatial suitability analysis
model and the physical theory were applied to effectively weight
the importance of each route. Through these efforts, the influence
from disturbing factors can be minimized (Zeller et al., 2012),
and the structural and functional quality of ecosystem could be
improved (Crooks and Sanjayan, 2006).

Conserving regional habitat connectivity could facilitate
recovery and reproduction for many biological population (Bian
and West, 1997; Carroll et al., 2012). Thus, we can implement
ecological restoration of the damaged and threatened ecosystem;
therefore, enhance the capacity and stability of the ecological
system (Liu et al., 2015). More nature reserves and conservation
stations should be established in the north and east of Changqing,
meanwhile, we must reduce the human disturbance in Zhouzhi.
Furthermore, improving habitat quality shouldn’t be ignored
because this measure could get higher conservation returns than
only increase the size and optimized the components of patches
(Prugh et al., 2009).
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FIGURE 5 | The summed minimum resistance cost pattern in the key distribution area of giant pandas in the Qinling Mountains, China.

FIGURE 6 | Giant pandas’ dispersal routes in the key distribution area of giant pandas in the Qinling Mountains, China.
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Key Work in Predicting the Dispersal
Routes
Source patches, sink patches, and resistance are necessary to be
defined based on empirical environmental data. Source patches
represent the starting locations of an animal’s movement, which
can be expressed in GIS as discrete points, lines and polygons
(Oh and Jeong, 2007; Liu and Li, 2008). Sink patches have
overall good habitat suitability, and can act as potential sites
for occupancy of animals. Resistance can be reflected through
calculation of cost, which is quantified by ranking the pixels
in GIS.

The MCR model, a way to calculate cost, has been applied in
a number of fields, such as landscape eco-planning, landscape
ecological suitability assessment (Yu et al., 2005; Liu et al., 2010),
landscape pattern analysis (Nelson et al., 2009), and landscape
accessibility analysis (Wang et al., 2007; Gan and Hu, 2008).
Liu and Li (2008) used an applied least cost paths model,
similar to the MCR model, to make a functional division for
Laoxiancheng NR. MCR model was also applied to calculate
the amount of ecological land that meets the demand of
socioeconomic development and ecological protection (Li F.
et al., 2015). The results of our study illustrated the initial
dispersing directions with a low resistance cost, whereby they
stop dispersing further when encountering areas with high
resistance (Sawyer et al., 2011). So MCR model is aiming at
quantifying multiple environmental factors and find an optimal
solution for conservation or restoration of migration corridors.

For two sub-models’ processing, i.e., submodel 1 and
submodel 3, we applied AHP approach to develop a system
for classifying the habitat factors in order to evaluate the
suitability and also the resistance of the habitat. AHP model
is a very experienced approach and has been applied in many
different fields which tried to calculate the weights based on the
eigenvalues (Liu and Sun, 2010) for various indicators or factors
through comparison the importance between any two indicators.
While we admit that such comparison could be a subjective
process, experienced experts will guarantee the robustness of the
results as only two factors were included in the comparison.
To invite more knowledgable experts might further improve the
model results and give a proper pattern of giant panda dispersal
routs, whereas trade-off needs to be considered between the
model output and extra time cost.

The Current Theory is a reliable, efficient method to
identify, further protect, restore, and construct connectivity
among landscapes (Lacher and Mares, 1996). It can simulate
the random movement of population by taking into account
routes between patches through a connectivity parameter called
resistance distance (McRae et al., 2008; Walpole et al., 2012). Qing
et al. (2016) created corridors among Xiaoxiangling Mountains,
which research combined the Maxent distribution model and
the Current Theory and took spatial distribution of giant
panda into consideration. Wang et al. (2014) conducted least-
cost and circuit models to identify giant panda dispersal paths
among Huangbaiyuan NR and Niuweihe NR, and compared
the dispersal cost under different scenarios. Comparing with
previous study, we not only identified corridors among the

patches as well as reserves, but also predicted possible intensity
of dispersal in the corridors.

Limitations From Small Habitat Patches
for Animal Dispersal
From all source patches obtained, we easily found six small
source patches (Figure 4A), which were not able to calculate
out the optimal linkages between sources and sink patches.
Two reasons are (1) the source patches were too small to
react to any changes in the landscape; in addition, negative
calculations confirmed that the least cost paths and corridors
between small source and sink patches were unobtainable, (2)
habitat and resistance around small source patches have a low
spatial heterogeneity, and consequently no suitable corridors
occur among sources and sink patches. Therefore, giant pandas’
capability and probability of moving among these six small
habitat patches was unfortunately limited. These two reason were
found and explained for the first time.

The Evidence of Giant Panda Using the
Predicted Potential Dispersal Routes
Data from the 4th national survey of giant panda provided a very
strong evidence on giant pandas’ using our predicted potential
dispersal routes (Supplementary Figure 3). From this spatial
pattern, dispersal trend could be revealed through comparing
distribution in two periods of the 3rd and 4th national surveys.
The 7.6% signs from the 4th national survey in the Qinling
Mountains (Unpublished) appeared in the identified dispersal
routes. This indicated giant pandas used to minimalize the
resistance in their dispersal process and tried to control the
distance they move and the energy they spend. From the signs
occurred eastward in the dispersal routes in Supplementary
Figure 3, the 38% signs appeared in the long distance routes,
which evidenced they had used this long distance route from
source patches in Foping NR and headed to sink patches in the
east of Zhouzhi NR. So the 4th national survey’s data helped
us verify the utilization of dispersal routes. Lack of distribution
data, further researches by applying the infrared cameras are
necessary to record the giant pandas’ activity patterns and so
to provide strong proof to their utilization of dispersal routes.
Due to limitation of environment data, giant pandas’ habitat
environmental maps can be supplemented in the future by
remote sensing inversion models developed to provide spatial
continuous, high-resolution environmental layers (Li et al., 2013;
Li Z. et al., 2015).

CONCLUSION AND MANAGEMENT
IMPLICATIONS

This study successfully applied MCR and Current Theory models
to predict giant pandas’ potential dispersal routes on the southern
slope of the Qinling Mountains. The results showed that giant
pandas in high-density areas may disperse multi-directionally
to neighboring sink patches from the source patches. The three
large sources, eight sinks, and 14 dispersal routes between sources
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and sinks were identified among five NRs. We showed the
potential linkages between five NRs, and mapped the intensity
and direction of giant pandas’ dispersing.

Our research revealed possible directional patterns for giant
panda dispersal in the key distribution area of the Qinling
Mountains. This can provide the scientific support to facilitate
planning and managing of giant panda NRs, encourage them
to reduce the impacts from human disturbance directly on the
predicted dispersal corridors and sink patches, for instance, either
planting suitable bamboos in the sites where need more food
resources for giant panda or thinning the bamboo stems in the
places where provide some space for giant panda to pass and get
new bamboo shoots. In these cases, more suitable habitat can be
maintained for giant pandas.
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