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Predation risk affects the costs and benefits of prey life-history decisions. Predation
threat is often higher during reproduction, especially in conspicuous colonial breeders.
Therefore, predation risk may increase the survival cost of breeding, and reduce parental
investment. The impact of predation risk on avian parental investment decisions may
be hormonally mediated by prolactin and corticosterone, making them ideal tools for
studying the trade-offs involved. Prolactin is thought to promote parental care and
commitment in birds. Corticosterone is involved in allostasis and may either mediate
reduced parental investment (corticosterone-fitness hypothesis), or promote parental
investment through a reallocation of resources (corticosterone-adaptation hypothesis).
Here, we used these hormonal proxies of incubation commitment to examine the impact
of predation risk on reproduction in common eiders (Somateria mollissima) breeding
in the Baltic Sea. This eider population is subject to high but spatially and temporally
variable predation pressure on adults (mainly by the white-tailed eagle Haliaeetus
albicilla and introduced mammalian predators) and nests (by the adult predators
and exclusive egg predators such as hooded crows Corvus cornix). We investigated
baseline hormonal levels and hatching success as a function of individual quality
attributes (breeding experience, female and duckling body condition), reproductive
investment (clutch weight), and predation risk. We expected individuals nesting in riskier
environments (i.e., on islands where predation on adults or nests is higher, or in less
concealed nests) to reduce their parental investment in incubation, reflected in lower
baseline prolactin levels and either higher (corticosterone-fitness hypothesis) or lower
(corticosterone-adaptation hypothesis) baseline corticosterone levels. Contrary to our
predictions, prolactin levels showed a positive correlation with nest predation risk. The
unexpected positive relationship could result from the selective disappearance of low-
quality females (presumably having low prolactin levels) from risky sites. Supporting
this notion, female body condition and hatching success were positively correlated
with predation risk on females, and baseline prolactin concentrations were positively
correlated with duckling body condition, a proxy of maternal quality. In line with the
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corticosterone-adaptation hypothesis, baseline corticosterone levels increased with
reproductive investment, and were negatively associated with nest predation risk.
Hatching success was lower on islands where nest predation risk was higher, consistent
with the idea of reduced reproductive investment under increased threat. Long-term
individual-based studies are now needed to distinguish selection processes occurring at
the population scale from individually plastic parental investment in relation to individual
quality and variable predation risk.

Keywords: corticosterone, prolactin, individual quality, parental care, predation risk, reproductive success,
common eider (Somateria mollissima)

INTRODUCTION

Predation exerts both direct and indirect effects on prey, and
these effects show considerable spatiotemporal variation (Lima,
1998; Laundré et al., 2010). Whereas predators affect prey
populations by direct killing, their mere presence also induces
behavioral and physiological changes in prey (Lima, 1998).
Such changes include increased aggregation tendency (Lehtonen
and Jaatinen, 2016), altered habitat use (Turner, 1996; Creel
et al., 2005), increased sensitivity to disturbance (Gómez-Serrano,
2020), and altered activity budgets (Pöysä, 1987; Blumstein
and Daniel, 2005; Öst and Tierala, 2011). During the breeding
season, the presence of predators affects the costs and benefits
of parental investment, often leading to an exacerbated “cost
of reproduction” (Slagsvold, 1984; Magnhagen, 1991). Indeed,
reproducing prey are particularly exposed to predation by
the risky behaviors they adopt to find a partner, mate, and
successfully raise their offspring (Thomas, 1988; Magnhagen,
1991; Arnold et al., 2012). Consequently, decreased investment
in current reproduction is expected under elevated predation
risk, a prediction verified in birds laying smaller clutches when
exposed to high risk (Doligez and Clobert, 2003; Eggers et al.,
2006; Zanette et al., 2011; Noreikiene et al., 2021).

Reproduction is a costly life-history event not only because of
its effect on survival (Magnhagen, 1991; Schwarzkopf and Shine,
1992; Arnold et al., 2012), but also because of elevated energy
expenditure (Krapu, 1981). Life-history theory thus predicts
a trade-off between individual investment in reproduction
and survival (Williams, 1966). The cost of reproduction
varies depending on individual state and quality (Feifarek
et al., 1983; Reznick, 1985; Hamel et al., 2009), but also
prevailing environmental conditions (De Steven, 1980; Reznick,
1985). In long-lived species, current parental investment is
generally expected to be higher under favorable environmental
conditions and individual states, i.e., when resources are plentiful
(Whittingham and Robertson, 1994; Storey et al., 2017), weather
conditions are benign (Thierry et al., 2013), predation risk is
low (Ghalambor and Martin, 2000), and when individuals are
in good condition (Chastel et al., 1995; Tveraa et al., 1998). On
top of these factors, long-lived species should invest more into
current reproduction as the prospects of future reproduction
diminish with advancing age (the restraint hypothesis, Curio,
1983; Heidinger et al., 2006), even if environmental conditions
are far from being optimal. This prediction has been well

supported empirically (Forslund and Pärt, 1995; Préault et al.,
2005; Angelier et al., 2007a,b). As a consequence of this survival-
reproduction trade-off, individuals are predicted to modulate
their allocation to current reproduction (Reznick, 1985), and may
even completely refrain from current reproduction by skipping
breeding under prohibitively high costs of reproduction (Chastel
et al., 1995; Erikstad et al., 1998; Bruinzeel, 2007; Öst et al., 2018).

Hormonal mechanisms are involved in the mediation of
life-history decisions when coping with a range of stressors
including predation risk (Ricklefs and Wikelski, 2002). In birds,
prolactin and corticosterone are especially relevant to study
parental investment. Prolactin is the main hormone involved
in the expression of parental behavior, and prolactin levels can
be a reliable proxy of parental investment and reproductive
involvement (Angelier and Chastel, 2009; Angelier et al.,
2016; Smiley, 2019). Consequently, circulating blood prolactin
concentrations are elevated during reproduction (Criscuolo et al.,
2002; Vleck and Vleck, 2011). Furthermore, individuals with
higher prolactin levels may provide better parental care (Angelier
and Chastel, 2009; Smiley and Adkins-Regan, 2016, 2018),
such as higher brood provisioning (Miller et al., 2009; Smiley
and Adkins-Regan, 2016, 2018) and incubation commitment
(Angelier et al., 2015; Wang et al., 2020), or even shorter
latency to return to the nest after a disturbance (Angelier et al.,
2009; Hope et al., 2020). Importantly, circulating prolactin levels
have been shown to decrease in response to stressor, poor
body condition, or low food availability (Delehanty et al., 1997;
Groscolas et al., 2008; Angelier and Chastel, 2009; Riechert
et al., 2014a). This is associated with a concomitant reduction
of parental care, suggesting that prolactin may mediate parental
responses to environmental conditions (Angelier et al., 2016).

Corticosterone, on the other hand, is involved in the
maintenance of homeostasis (McEwen and Wingfield, 2003;
Romero et al., 2009) and in the response to environmental
challenges (Angelier and Wingfield, 2013; Wingfield, 2013).
The corticosterone-fitness hypothesis states that circulating
corticosterone levels are negatively associated with performance
and fitness, because elevated baseline corticosterone levels
may reflect higher energetic demand induced by deteriorating
environmental conditions (Wingfield et al., 1983; Kitaysky et al.,
2007), and may be associated with reduced survival and breeding
success (Silverin, 1986; Angelier et al., 2010; Goutte et al.,
2010; Vitousek et al., 2018; Breuner and Berk, 2019). For
example, high circulating corticosterone levels have been shown

Frontiers in Ecology and Evolution | www.frontiersin.org 2 July 2021 | Volume 9 | Article 637561

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-637561 July 15, 2021 Time: 18:22 # 3

Mohring et al. Parental Investment Under Predation Threat

to be involved in a reduction of parental care (Silverin, 1986;
Angelier et al., 2009; Ouyang et al., 2011; Lynn, 2016; Schoenle
et al., 2017), or even induce nest abandonment (Wingfield
et al., 1983; Robin et al., 1998; Groscolas and Robin, 2001;
Spée et al., 2011). In contrast, circulating corticosterone levels
may also be positively associated with fitness, as stated by
the corticosterone-adaptation hypothesis (Bonier et al., 2009).
Indeed, elevated baseline corticosterone levels may enhance
energy mobilization (Romero, 2002; Breuner, 2011) and therefore
promote reproductive effort (Riechert et al., 2014a). For example,
elevated baseline corticosterone levels have been associated with
higher incubation effort (Ouyang et al., 2013), higher brood
provisioning (Miller et al., 2009; Bonier et al., 2011; Ouyang
et al., 2013), or higher offspring production (Bonier et al.,
2011; Love et al., 2014). Importantly, the association between
fitness and corticosterone may be dose-dependent (Bonier et al.,
2009). In line with hormetic mechanisms (Costantini et al., 2010;
Costantini, 2014), the corticosterone-fitness hypothesis may be
validated under high levels of baseline corticosterone, while the
corticosterone-adaptation hypothesis may be validated under
lower baseline corticosterone levels.

Here, we investigate to what extent prolactin and
corticosterone—two endocrine mediators of parental
investment—are affected by predation risk in a long-lived
ground-nesting bird, the common eider (Somateria mollissima),
hereafter eider. Specifically, baseline prolactin and corticosterone
levels have been shown to be closely related to incubation
commitment in several species (Ouyang et al., 2013; Schoenle
et al., 2017; Bowers et al., 2019; Hope et al., 2020), including the
eider (Criscuolo et al., 2002, 2005). We therefore expect female
eiders, as a long-lived species, to display lower baseline prolactin
levels and either higher (corticosterone-fitness hypothesis)
or lower (corticosterone-adaptation hypothesis) baseline
corticosterone levels at the end of incubation if they reduce their
investment in incubation as a response to increased predation
threat. In our study area in SW Finland, northern Baltic Sea,
female eiders nest on islands showing substantial spatial and
temporal variation in predation pressure on adults and their
nests (Öst et al., 2018) as well as in nest concealment (Öst and
Steele, 2010), allowing us to test the impact of predation risk
on variation in these endocrine traits and hatching success. We
analyzed baseline hormone levels (prolactin and corticosterone)
as a function of direct or indirect proxies of female quality
(i.e., breeding experience, female body condition, offspring
body condition), energetic investment in current reproduction
(clutch weight), and predation risk on incubating female eiders
and nests. In addition, we examined the endocrine correlates
of reproductive success (i.e., hatching success). We expect (1)
higher baseline prolactin and either lower (corticosterone-fitness
hypothesis) or higher (corticosterone-adaptation hypothesis)
baseline corticosterone levels in high-quality breeders and/or
birds producing heavier clutches, as experience and condition
are known to influence hormone levels (Angelier et al., 2007b;
Bókony et al., 2009; Breuner, 2011). We also expect (2) birds
nesting in riskier environments (i.e., on islands where predation
on adults or nests is higher, or in less concealed nests) to have
lower prolactin levels and either higher (corticosterone-fitness

hypothesis) or lower (corticosterone-adaptation hypothesis)
corticosterone levels, reflecting lower investment in incubation
under increased threat. Finally, due to the link between
parental investment and both prolactin and corticosterone
levels (Angelier and Chastel, 2009; Bonier et al., 2009), we
expect (3) lower baseline prolactin levels and either higher
(corticosterone-fitness hypothesis) or lower (corticosterone-
adaptation hypothesis) baseline corticosterone levels to be
associated with poorer reproductive performance (i.e., reduced
hatching success).

MATERIALS AND METHODS

Study Area and Species
Study Area and Female Monitoring
Fieldwork was conducted in the archipelago surrounding
Tvärminne Zoological Station (59◦50′N, 23◦15′E), in the western
Gulf of Finland, in 2013. In this area, female eiders nest on islands
of various sizes (N= 17 islands, mean area± SD = 1.78± 2.72 ha,
min = 0.13 ha, max = 10.22 ha). Vegetation cover varies from bare
rocks and sparse patches of herbs or stands of juniper (Juniperus
communis) to pine (Pinus sylvestris) dominated forest. The study
islands are relatively close to each other, typically only hundreds
of meters apart, in a total study area of ca 15 km2. Nevertheless,
islands vary considerably in predation risk on both incubating
females and their nests (Öst et al., 2011), due to variable forest
cover (Ekroos et al., 2012; Öst et al., 2018) and range of available
nest micro-habitats in terms of concealment (Seltmann et al.,
2014). Importantly, the breeding period represents a period of
elevated predator-induced mortality in this ground-nesting bird,
and thus the survival of adult females is lower than that of
males in eider populations subject to significant predation risk
(Ramula et al., 2018).

Eiders are long-lived ground-nesting birds, with a mean life
expectancy of ca. 21 years (Coulson, 1984). The eider breeding
population at Tvärminne has been monitored every year since
1990. Incubating female eiders were trapped on their nest with
hand nets between May and early June to measure hormone levels
(N = 148 out of 355 breeding females in 2013). Females incubate
for about 26 days (Korschgen, 1977), and incubating birds were
captured predominantly during the later phase of incubation to
minimize nest abandonment (mean± SD = 17.6± 4.6 days after
the start of incubation, range = 6.5–25.5 days). Incubation stage
was estimated using an egg floatation test (Kilpi and Lindström,
1997). Each trapped female was ringed with a standard metal
ring and a unique color-ring combination, weighed to the nearest
5 g with a Pesola spring balance, and its radius-ulna length
was measured to the nearest 1 mm with a wing ruler as a
proxy of body size.

Breeding Experience, Body Condition, and Clutch
Weight
We characterized female breeding experience using a qualitative
indicator (Jaatinen and Öst, 2011). We categorized females
as either experienced (already ringed when captured) or
inexperienced breeders (unringed at capture; only adult breeders
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are ringed in the study area). As eiders are philopatric (Swennen,
1990, 1991; Coulson, 2016) and show high nest-site fidelity
(Öst et al., 2011; Coulson, 2016), and as the majority of
breeding females are captured annually (trapping success in
2013 = 65.1%), with a constant trapping effort since 1996
(Jaatinen and Öst, 2011), this indicator of breeding experience
can be considered reliable.

For each trapped female, we calculated two indices of body
condition: one measured when the bird was trapped and
sampled for blood (physiological parameters are expected to
vary according to the instantaneous condition at the time of
sampling, Kitaysky et al., 1999; Riechert et al., 2014b), and the
other estimated at hatching (to allow direct comparison between
females by taking into account weight loss during incubation, see
below). To avoid any weight bias due to females potentially still
laying eggs, only females that had incubated for more than 5 days
were kept for further analyses. Body condition at trapping was
calculated as the standardized residuals of a linear regression of
log-transformed weight on log-transformed radius-ulna length.
As eiders fast and lose weight during incubation (Criscuolo
et al., 2000), it is essential to take into account the incubation
stage to compare individual differences in energy reserves, in
addition to structural size. Hence, we estimated body condition
at hatching. To do so, we used the standardized residuals of a
linear regression of log-transformed estimated weight at hatching
on log-transformed radius-ulna length (Öst et al., 2008). Weight
at hatching was estimated as the weight of the female at trapping
subtracted by the estimated weight that the female was expected
to lose during the remaining incubation time (estimated log-
transformed daily weight loss: E ± SE = −0.221 ± 0.004,
t = −51.64, P < 0.001). This estimate of mean weight loss rate
during incubation was derived as the slope of the linear regression
of log-transformed body mass on log-transformed incubation
time and projected hatching date (see Öst and Steele, 2010).
In addition, for each trapped female, total clutch weight was
measured to the nearest 1 g in order to control for a potential
influence of clutch weight on endocrine traits. Because eggs
lose mass during development, we corrected clutch mass for
incubation stage, evaluated by egg floatation, by extracting the
residuals obtained from the linear regression of clutch weight on
incubation stage.

Endocrine Correlates of Parental Investment
In 2013, a total of 148 breeding female eiders were trapped on
the nest and sampled for blood (∼1.5 mL) from the ulnar vein
within 3 min following capture (mean ± SD = 2.42 ± 0.35 min,
range = 1.67–3.22 min) in order to obtain baseline hormonal
levels (Romero and Reed, 2005). Baseline corticosterone levels
were not related to sampling time (linear regression: t = 1.23,
P = 0.22, r2 = 0.004); hence the two blood samples taken
after 3 min (3.12 and 3.22 min) were kept for further analyses.
Blood samples were centrifuged and plasma was stored at
−20◦C until assay. Plasma concentrations of corticosterone and
prolactin were determined by radioimmunoassay at the Centre
d’Etudes Biologiques de Chizé (CEBC), as previously described
(corticosterone: Lormée et al., 2003; Öst et al., 2020); prolactin:
Criscuolo et al., 2002) (corticosterone, 5 assays, inter-assay CV:

14.31%, intra-assay CV: 10.97%; prolactin, 2 assays, inter-assay
CV: 12.05%, intra-assay CV: 11.32%).

Hatching Success and Offspring Condition
For each nest, hatching success (0: failure, 1: success) was
determined by returning to the nest at the end of incubation and
monitoring the presence of ducklings. The eider is a precocial
species and ducklings usually leave the nest within 24 h of
hatching (Öst and Bäck, 2003). If no ducklings were found in the
nest, they had either already hatched and left the nest, or the nest
had been depredated. Consequently, egg shells were examined
to determine if the breeding attempt had been successful or
not. Hatched eggs were recognizable by their intact leathery
membrane while depredated nests had either no eggs or eggs
broken into pieces, usually with a bloody membrane still attached
to the shells (Bolduc et al., 2005; Öst and Steele, 2010). A nest was
considered as hatched if at least one duckling or one hatched egg
membrane was found.

If ducklings (N = 209) were found in the nest (N = 66 out
of 93 successful nests), their tarsus length was measured to the
nearest 0.1 mm with a Vernier caliper and they were weighed
to the nearest 1 g. Duckling body condition was estimated as a
proxy of offspring quality by extracting the standardized residuals
of the linear regression of log-transformed body weight against
log-transformed tarsus length (Öst et al., 2020).

Assessment of Predation Risk
Nest-Site Micro-Habitat
Females breed on the ground under variable cover and
mainly rely on crypsis to avoid being detected by predators.
Concealment mainly offers protection from avian predators, and
to a lesser extent from mammalian predators. To quantify nest
concealment, we measured the amount of nest cover (including
all layers of vegetation from ground level to canopy, including
rocks) above each nest based on hemispherical photographs. To
do so, we used a 42-mm fisheye lens mounted on an Olympus C-
740 digital camera placed in each nest cup and aimed vertically
(Öst and Steele, 2010; Jaatinen et al., 2014). Each picture was
converted to black and white and the proportion of black pixels
(corresponding to vegetation or other obstacles, e.g., rocks) was
measured using Image Tool (version 3.00; University of Texas
Health Science Center, San Antonio).

Island-Specific Female and Nest Predation Risk
Breeding females and their eggs are subject to predation from
native and non-native species. The main predators of incubating
females are the native white-tailed eagle (Haliaeetus albicilla),
the population of which has increased rapidly since the 1990s
(Stjernberg et al., 2005; Öst et al., 2018), the eagle owl (Bubo
bubo) as well as two introduced mammals: the American mink
(Neovison vison) and the raccoon dog (Nyctereutes procyonoides)
(Jaatinen and Öst, 2013; Öst et al., 2018). In addition, eggs are
depredated either by primary predators of female eiders, or by
nest predators such as hooded crows (Corvus cornix) or gulls
(Larus spp.) (Jaatinen et al., 2014). The latter consume eggs either
when the female is absent from the nest or act as secondary
predators after the female has been attacked on the nest.
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In order to distinguish between these different types of
predation, we determined for each island an index of adult female
and nest predation risk, respectively. These two indices are based
on confirmed cases of depredated females or nests rather than
unsuccessful predation attempts, as the latter are impossible to
document in the field without camera surveillance. However,
one should expect a close correlation between the incidence
of successful and unsuccessful predation attempts. Female
predation risk was calculated as the island-specific proportion
of killed nesting females (number of killed females divided by
the number of breeding attempts). Island-specific nest predation
risk was calculated based on hatching success information (see
above). The number of successful (i.e., hatched) nests at the
final nest fate census was divided by the number of nests on
the island for whose fate (success or failure) was known (326
known nest fates out of 355 monitored nests; 91.8% of known
nest fates; mean number of nests per island ± SD = 31 ± 17
nests). The main reason for nest failure was depredation (136
out of the 155 failed nests; 87.7%) and the low number of
non-depredated but failed nests could be explained by females
incubating infertile or unviable eggs. Thus, island-specific nest
predation was calculated as: 1-island-specific proportion of
successful nests. Both island-specific female and nest predation
risk varied considerably between islands (female predation risk:
mean± SD = 0.03± 0.04, min = 0.00, max = 0.10; nest predation
risk: mean ± SD = 0.42 ± 0.20, min = 0.00, max = 0.86,
N = 17 islands).

Statistical Analyses
All statistical analyses were conducted in R 3.6.1. (R Core Team,
2018). We used linear mixed models (LMMs) (R function “lme,”
nlme package; Pinheiro et al., 2019) and generalized linear
mixed models (GLMMs) (R function “glmer,” lme4 package;
Bates et al., 2015) to investigate variation in baseline prolactin
and corticosterone levels, reproductive success and duckling
body condition, in relation to the aforementioned individual
and environmental explanatory variables. We checked that all
models met the assumptions of normality and homoscedasticity
of residuals. Consequently, baseline corticosterone levels were
log-transformed as ln(x + 1) to meet model assumptions. Model
selection was performed using a stepwise backward elimination
method in which non-significant terms (P > 0.05) were
eliminated at each step. We preferred a stepwise model selection
approach due to its ease of interpretation and presentation, but
acknowledge its potential limitations (Smith, 2018). To verify
the robustness of our model selection procedure, we therefore
also performed conditional model averaging across best-ranked
models (1AICc < 2) for the dependent variables, using the
function “dredge” in the R-package MuMIn (Barton, 2020). This
robustness check confirmed that we had correctly identified
the final models and significance of each included explanatory
variable for nearly all analyses in this paper. The only exception
was the analysis of female body condition at hatching; here, the
association with adult predation risk was only a trend when
performing model averaging (see Results below). For each model,
we relied on the variance inflation factor (VIF) to look for
multicollinearity among candidate variables. We did not detect

any multicollinearity among the candidate variables of selected
models (all VIF < 2.5; Allison, 2012).

Physiological Responses
To study the variation in female physiology in relation to proxies
of individual quality, maternal investment and predation risk,
we constructed two sets of LMMs, where baseline prolactin and
corticosterone levels were included as the dependent variable,
respectively. The explanatory individual state variables were
body condition at trapping, breeding experience, incubation
stage, radius-ulna length, and incubation-stage corrected clutch
weight. Baseline corticosterone was also included in the models
investigating baseline prolactin variation to assess the potential
effect of corticosterone on prolactin levels (Angelier and Chastel,
2009; Angelier et al., 2009; Vleck and Vleck, 2011). Furthermore,
the following predation risk related explanatory variables were
included in the models: nest cover, nest predation risk and
female predation risk. One extremely high baseline prolactin
value (value = 343.82 ng/mL, mean ± SD = 149.56 ± 43.81
ng/mL, min = 57.56 ng/mL, max = 343.82 ng/mL) was removed
from statistical analyses. To account for the potential non-
independence of physiological responses of individuals breeding
on the same island, island identity was added to all models as
a random effect.

Hatching Success and Duckling Quality
As reproductive success followed a binomial distribution (0:
failure, 1: success), we built GLMMs with a binomial error
distribution, with reproductive success as the dependent variable
and baseline prolactin and corticosterone levels, individual
characteristics (body condition at hatching, breeding experience,
radius-ulna length, and clutch weight) and environmental factors
(nest cover, island-specific nest and female predation risk)
as explanatory variables. As the probability of a nest being
depredated is likely to decrease as it gets closer to hatching (due
to a shorter time left for the predator to detect the nest), we
also included incubation stage (i.e., the number of days since egg
laying) as an explanatory variable. Island identity was included
as a random effect to account for the potential pseudoreplication
arising from repeated observations from each island.

We used LMMs to study the association between female
baseline prolactin and corticosterone levels (explanatory
variables) and duckling body condition (dependent variable), a
proxy of offspring quality. As ducklings belonging to the same
clutch are not independent from each other, and as we expect
non-independence between the body conditions of ducklings
hatching on the same islands, clutch and island identity were
added as random effects in these models.

Body Condition at Hatching
Covariation between individual quality and reproductive success
may influence the observed relationship between maternal
hormone profiles and parental investment, e.g., if early breeding
failure disproportionately affects poor-quality individuals. To
assess whether such selective disappearance may occur, we
analyzed variation in female body condition, a proxy of female
quality, in relation to female attributes and predation risk.
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In these LMMs, female body condition at hatching was the
dependent variable and breeding experience, nest predation risk
and female predation risk were explanatory variables. Island
identity was included as a random effect to account for the
non-independence of body conditions of females nesting on
the same island.

RESULTS

Baseline Prolactin in Relation to
Individual and Environmental
Characteristics
The final model explaining variation in baseline prolactin levels
only included nest predation risk (Table 1). Thus, baseline
prolactin levels showed a significant positive association with
increasing nest predation risk (nest predation risk effect,
parameter estimate ± standard error: E ± SE = 45.41 ± 21.24;
Table 1 and Figure 1A), but showed no significant association
with female predation risk. Likewise, the final model explaining
variation in baseline prolactin did not show a significant
association between baseline prolactin levels and breeding
experience, structural size, condition at trapping, clutch
weight, or nest cover.

Baseline Corticosterone in Relation to
Individual and Environmental
Characteristics
The final model explaining variation in baseline corticosterone
levels included breeding experience, clutch weight and nest
predation risk (Table 1). Baseline corticosterone levels were
significantly higher in experienced birds compared to first-time
breeders (baseline corticosterone concentration: inexperienced
females: mean ± SE = 9.87 ± 0.71 ng/mL; experienced females:
mean ± SE = 17.06 ± 1.25; Table 1 and Figure 2). Baseline
corticosterone also showed a significantly positive relationship
with clutch weight (E ± SE = 0.0013 ± 0.0005; Table 1 and

TABLE 1 | Final LMMs and GLMM explaining baseline prolactin variation, baseline
corticosterone variation, hatching success or body condition of incubating female
eiders in relation to individual and environmental explanatory variables after
stepwise backward elimination.

Dependent variable Explanatory variable χ2 P-value

Baseline prolactin concentration Nest predation risk 4.570 0.033

Baseline corticosterone concentration Breeding experience 14.359 < 0.001

Clutch weight 7.094 0.008

Nest predation risk 6.153 0.013

Hatching success Baseline prolactin 5.333 0.021

Radius-ulna length 3.101 0.078

Female predation risk 4.278 0.039

Nest predation risk 12.984 < 0.001

Female body condition at hatching Breeding experience 8.738 0.003

Female predation risk 4.506 0.034

Island identity was included as a random effect.

Figure 2). In contrast, female structural size, body condition
or nest cover were not related to baseline corticosterone
concentrations. With respect to our predation indices, increasing
island-specific nest predation risk had a significant negative
association with corticosterone levels (E ± SE = −0.97 ± 0.39;
Table 1 and Figure 1B), whereas female predation risk did not
explain variation in baseline corticosterone levels.

Hatching Success in Relation to
Physiology, Individual and Environmental
Characteristics
The final model predicting hatching success included baseline
prolactin, radius-ulna length, and female and nest predation
risk, as explanatory variables (Table 1). Hatching success showed
a significant negative relationship with increasing baseline
prolactin levels (E ± SE = −0.012 ± 0.005; Table 1 and
Figure 3A), while it did not significantly vary with baseline
corticosterone levels (Figure 3B). Hatching success tended
to increase with female structural size, although this effect
was not significant (Table 1). Other individual explanatory
variables (incubation stage, body condition at hatching and
breeding experience) were not selected in the final model.
We also did not find any significant association between
nest cover and hatching success. However, we also found
that hatching success was significantly negatively related to
nest predation risk (E ± SE = −8.85 ± 2.46; Table 1
and Figure 3C) and significantly positively associated with
female predation risk (E ± SE = 14.18 ± 6.86; Table 1 and
Figure 3D).

Female Body Condition in Relation to
Individual Attributes and Predation
Female body condition at hatching was related to individual and
environmental factors (Table 1). Body condition at hatching was
significantly higher in more experienced birds (body condition
at hatching: inexperienced females: mean ± SE = 0.16 ± 0.08;
experienced females: mean ± SE = 0.62 ± 0.08; Table 1
and Figure 4). Body condition at hatching also showed
a significant positive correlation with female predation
risk (E ± SE = 4.03 ± 1.90; Table 1 and Figure 4),
although this association was only marginally significant
(E ± SE = 0.15 ± 0.08; Z = 1.756, P = 0.079) when
performing conditional model averaging. In addition, female
body condition at hatching was not significantly related to
nest predation risk.

Offspring Body Condition and Maternal
Hormone Profiles
Duckling body condition was significantly positively
associated with maternal baseline prolactin concentrations
(E ± SE = 0.006 ± 0.003; χ2 = 4.481, P = 0.034; Figure 5A),
but showed no association with maternal baseline corticosterone
levels (χ2 = 4.481, P = 0.907; Figure 5B).
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FIGURE 1 | Relationship between baseline (A) prolactin and (B) log-transformed corticosterone levels of incubating female eiders and island-specific nest predation
risk. Black dots correspond to island-specific mean hormone levels and bars account for the standard error.

FIGURE 2 | Relationship between baseline log-transformed baseline corticosterone levels and incubation-stage corrected clutch weight of incubating female eiders
for experienced (in black) and inexperienced (in gray) breeders.

DISCUSSION

In this study, we investigated the role of baseline prolactin
and corticosterone levels, two hormonal correlates of parental
investment (e.g., Criscuolo et al., 2002, 2005; Ouyang et al., 2013,

in modulating incubation commitment of female eiders in
response to variable predation risk on themselves and their
offspring. Baseline prolactin levels were unrelated to direct
proxies of female quality (body condition and breeding
experience) or reproductive investment (clutch weight).
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FIGURE 3 | Relationship between hatching success of female eiders and (A) baseline prolactin levels, (B) baseline log-transformed corticosterone levels, (C)
island-specific nest predation risk, and (D) island-specific female predation risk.

FIGURE 4 | Relationship between the body condition index at hatching of female eiders and island-specific female predation risk for experienced (in black) and
inexperienced (in gray) breeders. Dots correspond to island-specific mean body condition indices at hatching for experienced (in black) and inexperienced (in white)
breeders, respectively, and bars account for the standard error.

However, elevated maternal prolactin levels were associated
with better duckling body condition (Figure 5A), suggesting a
positive association between female baseline prolactin levels and
female parental commitment. Surprisingly, and contrary to our
expectations, birds breeding on riskier islands (characterized by
higher nest predation risk) displayed higher baseline prolactin
levels. This unexpected finding may reflect an absence of low-
quality individuals, characterized here by low prolactin levels,
from risky nesting sites. In favor of this hypothesis, incubating
females exposed to a higher threat of predation on themselves

were, on average, in better body condition (i.e., presumably
of higher quality) than those nesting in less dangerous sites
(Figure 4), even though we did not detect any direct association
between female body condition and baseline prolactin levels.

In addition, we found that baseline corticosterone levels
increased along with clutch weight, our proxy of energetic
investment in reproduction, and was higher in experienced
females than in inexperienced breeders. These two findings
are in favor of the corticosterone-adaptation hypothesis and
support the idea that elevated baseline corticosterone levels may
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FIGURE 5 | Relationship between the duckling body condition index and maternal baseline concentrations of (A) prolactin and (B) corticosterone (log-transformed)
in eiders.

promote parental investment (Bonier et al., 2009). Accordingly,
we found that birds breeding on islands with a high risk of
nest predation displayed lower circulating corticosterone levels.
Consequently, high nest predation risk and low prospects of
successful hatching may lead females nesting in these risky areas
to reduce their incubation commitment in the current clutch,
through a lower allocation of resources to reproduction, mediated
by lower baseline corticosterone levels.

Prolactin, Individual Quality, and
Predation Risk
Contrary to our expectations, we found no influence of body
condition at trapping, a proxy of individual quality, on baseline
prolactin levels. This result suggests that, in incubating eiders,
baseline prolactin levels are not directly affected by individual
body condition. Although this result is not in line with the results
from other studies (Criscuolo et al., 2002, 2003, 2006; Angelier
and Chastel, 2009; Schmid et al., 2011), it could be explained
by the non-linear link between prolactin and body condition
in capital breeders (Drent and Daan, 1980). In such species,
prolactin levels only decrease when individuals reach a very low
threshold of body mass (Cherel et al., 1988). In our study, all
individuals were above this threshold, which is around 1.10 kg for
eiders (Korschgen, 1977). Accordingly, this lack of relationship
between baseline prolactin levels and body condition has been
highlighted in other capital-breeding birds with large amount
of body reserves (Angelier et al., 2006; Verreault et al., 2008;
Angelier and Chastel, 2009).

Likewise, and contrary to previous studies (Angelier et al.,
2006, 2007b; Christensen and Vleck, 2008; Angelier and Chastel,
2009; Riechert et al., 2012; Smiley and Adkins-Regan, 2016),
we did not find any significant increase in baseline prolactin
levels with breeding experience, a proxy of individual quality in
female eiders (Jaatinen and Öst, 2011). This discrepancy may
result from the time of sampling: we caught all eiders toward
the end of the incubation period, when a substantial fraction of
the inexperienced breeders with low prolactin levels may already
have failed. Overall, we did not find any direct evidence of a
significant positive association between baseline prolactin levels
and proxies of female quality (body condition and experience).

Higher prolactin levels were also not related to clutch weight (a
proxy of energetic investment in reproduction), but they were
positively associated with duckling body condition at hatching.
This finding is noteworthy because the survival and recruitment
of female eiders is related to their relative body condition
as ducklings (Christensen, 1999), and thus the production of
heavy offspring may have positive effects on maternal fitness.
Altogether, these results suggest that maternal baseline prolactin
levels may be positively associated with some but not all aspects
of parental quality.

Baseline prolactin levels were positively associated with
nest predation risk, but unrelated to adult predation risk
and nest cover. This result is not in line with most studies
evidencing lower prolactin levels in individuals subject to nest
predation risk (Angelier et al., 2016). However, we showed
that baseline prolactin levels were positively associated with
duckling body condition, an indirect proxy of female quality,
and this finding could indicate that only high-quality females
were found on islands where nest predation risk was high. In
line with this idea, we found that female body condition, a
proxy of individual quality (Lehikoinen et al., 2010), increased
along with adult predation risk. Two mutually non-exclusive
explanations are possible. First, only high-quality females with
high prolactin levels may opt to breed at risky sites in this species
frequently exhibiting intermittent breeding (the reproductive
suppression model; Wasser and Barash, 1983). Supporting
this idea, a long-term analysis of female body condition at
Tvärminne shows that body condition has been increasing
over the past 15 years, concomitantly with a steeply increasing
trend in white-tailed eagle numbers and in nest predation risk
(Öst et al., 2018).

Second, higher baseline prolactin levels on risky islands could
be explained by the early breeding failure of low-quality females
on these sites. In our study, females were trapped toward the end
of the incubation period and high prolactin levels and incubation
commitment may be required to reach this stage of breeding on
risky sites, whereas less committed females may reach this stage
on safer islands. Indeed, prolactin is known to play a role in nest
attendance and high prolactin levels are associated with lower
tendency to abandon the nest (Spée et al., 2010; Angelier et al.,
2016; Smiley and Adkins-Regan, 2018) and a shorter latency to
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return to the nest after a disturbance (Angelier et al., 2009; Hope
et al., 2020).

In addition, and contrary to both our a priori expectations
and the previous literature (Angelier et al., 2007b, 2009, 2016;
Ouyang et al., 2011; Riechert et al., 2014a), females displaying
higher levels of baseline prolactin were less rather than more
successful than those with lower levels. However, this result
is consistent with the observed positive relationship between
female prolactin levels and nest predation risk, likely arising
from the selective disappearance of low-quality females with low
baseline prolactin levels from the breeding pool on high-risk
islands. Consequently, a putative link between high prolactin
levels and high nest predation risk may lead to an indirect
negative relationship between prolactin levels and reproductive
success. In further support of this conclusion, there was a
positive correlation between reproductive success and predation
risk on adult females. This finding is consistent with the view
that only high-quality females with high baseline prolactin
levels opt to breed, or, alternatively, have nests that survive
until the late incubation stage under high threat of predation.
A positive correlation between female body condition at hatching
and female predation risk (Figure 3D) is also consistent with
this explanation. Summing up this evidence, we conclude that
high-quality breeders characterized by high prolactin levels are
likely to be overrepresented on risky sites at the end of the
incubation period.

Corticosterone, Reproductive
Investment, and Predation Risk
As for prolactin, we did not find any significant relationship
between baseline corticosterone levels and female body
condition. Such a lack of association between baseline
corticosterone and body condition or body mass has also
been shown in other eider populations (Bourgeon and
Raclot, 2006; Criscuolo et al., 2006; D’Alba et al., 2011),
and, more generally, in other capital breeders (Angelier et al.,
2006; Groscolas et al., 2008). As for prolactin, this lack of
a relationship could result from the fact that incubating
female eiders have not reached a low threshold in body mass
(Cherel et al., 1988) at the time of capture. However, we
found that experienced breeders displayed higher baseline
corticosterone levels than inexperienced breeders, a result in
favor of the corticosterone-adaptation hypothesis (Bonier et al.,
2009). Accordingly, some studies have found that circulating
corticosterone levels increase with age and breeding experience
in capital breeders with extended fasting periods (Angelier
et al., 2006). In such species, elevated baseline corticosterone
levels may be associated with an increased investment in
reproduction, especially when individuals have not reached a
lower threshold in body condition (Cherel et al., 1988), as is the
case in our study.

In further support of the corticosterone-adaptation
hypothesis, we found that baseline corticosterone levels
were positively associated with clutch weight. Despite the
possible occurrence of partial clutch predation (Erikstad et al.,
1993; Öst et al., 2008) and conspecific nest parasitism, the

frequency of which is low in our population (ca 6% of eggs;
Waldeck et al., 2004), clutch weight or size can be used as a
reasonable proxy for female initial energetic investment in
reproduction in eiders (Hanssen et al., 2003; Jaatinen et al.,
2013). Overall, corticosterone may promote energy mobilization
(Romero, 2002; Breuner, 2011) and incubation effort (Breuner,
2011; DuRant et al., 2013), and moderately elevated baseline
corticosterone levels could be a proxy for increased incubation
commitment in our study system. Accordingly, other studies
have shown that increased baseline corticosterone levels do not
trigger nest abandonment in eiders (Criscuolo et al., 2005), nor
do they induce nest failure unless corticosterone levels reach
very high values (D’Alba et al., 2011), a result consistent with
the hormetic dose response framework (Costantini et al., 2010;
Costantini, 2014). The positive association between baseline
corticosterone levels and both clutch weight and maternal
experience may thus indicate that incubating females increase
their investment in a current reproductive event when its value
is elevated (i.e., heavy clutch), and when the prospect of future
reproduction diminish (the restraint hypothesis, Curio, 1983;
Heidinger et al., 2006).

In addition, we showed that baseline corticosterone levels were
negatively related to nest predation risk, but unrelated to adult
predation risk and nest cover. These results are consistent with
the corticosterone-adaptation hypothesis, and lower baseline
corticosterone levels in risky nesting sites may therefore suggest
that female eiders reduce their investment in incubation in
the face of increased nest predation risk. This interpretation
is supported not only by the fact that baseline corticosterone
levels in this study were unrelated to hatching success and
offspring quality, but also by the positive effect of breeding
experience on both parental investment (Öst and Steele, 2010)
and corticosterone levels in eiders (this study). Interestingly,
similar effects of increasing nest predation risk on parental
investment have been demonstrated in other species (Doligez and
Clobert, 2003; Eggers et al., 2006; Zanette et al., 2011).

While baseline corticosterone levels can be seen as a proxy
of parental investment, they can also mirror the response to
prolonged exposure to chronic environmental perturbations,
such as predation risk (Scheuerlein et al., 2001; Clinchy
et al., 2004; Travers et al., 2010; Angelier and Wingfield,
2013). In that context, high baseline corticosterone levels
could also be related to high stress sensitivity. Under that
scenario, lower baseline corticosterone levels on risky sites
could result not only from individuals reducing their parental
investment under high predation threat, but also from the
selective disappearance of highly sensitive individuals from
these risky sites. Highly sensitive female eiders could either
have already abandoned their breeding attempts prior to
our trapping efforts on these sites, or they could have
failed their breeding attempt at the time of trapping, toward
the end of incubation. Females exhibiting higher baseline
corticosterone levels would thus be expected to skip breeding
more often and/or to be prone to abandon their nest
when nesting on sites with a high risk of nest predation
(Vitousek et al., 2014). Supporting this possibility, it has
been found in other species that incubating individuals
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displaying lower baseline corticosterone levels returned more
quickly to the nest following a disturbance (Angelier et al.,
2009; Edwards et al., 2013), or tended to abandon their nest
less often than more sensitive individuals (Spée et al., 2010;
Ouyang et al., 2012).

PERSPECTIVES

In this study, we investigated the role of baseline prolactin
and corticosterone levels in modulating parental investment
decisions under variable predation threat in incubating female
eiders. We showed that birds breeding on islands subject to
higher nest predation threat displayed higher baseline prolactin
levels, and that this could reflect an absence of low-quality
individuals with low prolactin levels at risky nesting sites. We
also found that birds breeding on riskier islands displayed
lower baseline corticosterone levels, and this may suggest that
females reduce their incubation commitment on islands where
predation risk on offspring is high (the corticosterone-adaptation
hypothesis). Although our findings allow a better understanding
of how predation risk may interact with hormonal regulation of
parental investment, the correlative nature of the study does not
allow us to draw causal relationships between hormone levels,
parental investment and predation risk, highlighting the need
for experimental studies to further clarify these relationships. In
addition, our results do not allow us to distinguish effects of
predation threat at the population level from effects of predation
risk at the individual level. Longitudinal individual-based studies
are now needed to disentangle within- and between-individual
variation in hormonal levels in relation to individual quality and
variable predation risk. This would allow us to distinguish natural
selection processes from individual plasticity in responding
to a changing environment. Such studies will eventually pave
the way for a better understanding of the ability of prey
to physiologically and behaviorally cope with environmental
perturbations and how this impacts their reproductive life-
history strategies.
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