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Adaptation to different environments can result in reproductive isolation between
populations and the formation of new species. Food resources are among the most
important environmental factors shaping local adaptation. The chemosensory system,
the most ubiquitous sensory channel in the animal kingdom, not only detects food
resources and their chemical composition, but also mediates sexual communication
and reproductive isolation in many taxa. Chemosensory divergence may thus play a
crucial role in resource-mediated adaptation and speciation. Understanding how the
chemosensory system can facilitate resource-mediated ecological speciation requires
integrating mechanistic studies of the chemosensory system with ecological studies, to
link the genetics and physiology of chemosensory properties to divergent adaptation. In
this review, we use examples of insect research to present seven key questions that can
be used to understand how the chemosensory system can facilitate resource-mediated
ecological speciation in consumer populations.
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INTRODUCTION

Ecological speciation has been recognized as a major mechanism in generating biodiversity
(Rundle and Nosil, 2005; Schluter, 2009; Nosil, 2012). Populations occurring in heterogeneous
environments may experience divergent selection, resulting in reduced gene flow, which may
eventually lead to the evolution of distinct species (Rundle and Nosil, 2005; Schluter, 2009; Nosil,
2012). Classical examples of ecological speciation in animals include the Darwin’s finches on the
Galapagos islands, three-spined sticklebacks in limnetic or benthic habitats and host-plant races
in herbivorous insects (reviewed in Schluter, 2009; Nosil, 2012). All animals rely on their sensory
systems to sense and respond to their local environments. Among the different environmental
factors, food resources are among the most important ones shaping local adaptation. The
chemosensory system used to find food resources and avoid toxic substances are important targets
of divergent selection (Smadja and Butlin, 2009; Hansson and Stensmyr, 2011; Stevens, 2013). Here,
we present seven key questions that can be used to understand how the chemosensory system
can facilitate resource-mediated ecological speciation in consumer populations (Figure 1). We
specifically focus on insects, as they provide several model systems at the forefront of ecological
speciation research and present striking evidence of speciation driven by host plant heterogeneity
(Matsubayashi et al., 2010). In addition, the insect chemosensory system has been explored using
state-of-the-art methods in the Drosophila genus for several decades, providing valuable examples
on how insects adapt to their chemical environment.
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FIGURE 1 | An overview of seven key questions that can be used to explore the processes leading up to resource-mediated ecological speciation, with methods at
the bottom that can be used to study each question. To dissect resource-mediated ecological speciation, we first need to understand the different forms of food
resource heterogeneity which could be variation in spatial location, temporal availability, and chemical composition of different food resources like the yellow and red
fruits (Question 1). Then, it is important to identify which aspects of the food resources exert selection on consumers (Question 2). It could be because of the toxicity
of the food resources. For example, flies which feed on yellow fruit but do not tolerate the associated toxins will die. To understand how consumers interact with food
resources, it is necessary to explore how consumers detect (Question 3), exploit (Question 4), and adapt to heterogeneous resources (Question 5). Consumers can
detect food resources by food odors (represented by yellow dots), exploit food resources by tolerating defensive compounds (represented by yellow proboscis) and
adapt to food resources by the coupling of detection and digestion (represented by yellow odor dots and abdomen). Apart from genetic variation, phenotypic
plasticity also modulates consumers’ exploitation of a resource (Question 6). Phenotypic plasticity determines whether successful exploitation can be learned and
modified during an individual’s lifetime (represented by life cycles of flies). Finally, we come to the mechanisms preventing gene flow between individuals that
specialized on alternative resources and those that did not (Question 7). When mating takes place at a specific food resource, while alternative resources are
available, assortative mating can emerge as a by-product of divergence in foraging behavior. For example, the yellow flies are isolated from red flies. The approaches
presented by the color at the bottom of each panel from left to right are: field observation (navy blue), analytical chemistry (light blue), toxicology experiment (light
green), behavioral analysis (dark red), neurogenetics (pink), chemosensory analysis (dark blue), population genetics (yellow), experimental evolution (dark green), and
developmental biology (ochre).

We start by identifying which aspects of food resources are
heterogeneous in a given environment (Question 1), as this is
the starting point of divergent selection. We then discuss which
aspects of food exert selection on consumers (Question 2), and
explore how consumers detect (Question 3), exploit (Question
4) and adapt to these resources (Question 5) to understand how
local adaptation proceeds. Finally, we discuss whether successful
exploitation of new food resources is genetically inherited or
acquired during an individual’s lifetime (Question 6) and review
the mechanisms that reduce gene flow between individuals
that specialized on alternative resources (Question 7). Rather
than providing a comprehensive review, we aim to show how
answering these seven questions can explain chemosensory-
mediated speciation, by integrating approaches traditionally
employed by different scientific disciplines, such as chemical
ecology, evolutionary biology, and neurobiology.

QUESTION 1: WHICH ASPECTS OF THE
FOOD RESOURCE ARE
HETEROGENEOUS?

In nature, several aspects of a food resource can be heterogeneous
at the same time and induce divergent selection. For example,
spatial and temporal variation in food availability may influence

the chances of finding mates (Singer and Parmesan, 2010; Fei
et al., 2014; Kambach et al., 2016), chemical composition may
affect resource perception and feeding (Caillaud and Via, 2000;
Webster and Cardé, 2017), and variation in nutritional quality
may lead to changes in growth, survival, and reproduction
(Wetzel et al., 2016; Moreau et al., 2017; Verschut and
Hambäck, 2018). An example in which several forms of resource
heterogeneity simultaneously act on consumers can be found
in the desert fly, Drosophila mojavensis (Diptera: Drosophilidae)
(Figure 2), which exploits spatially heterogeneous host cacti.
These cacti occur in the Sonoran Desert of North America
and are distributed along isolated sites including the Baja
California Peninsula, the mainland Sonoran Desert, the Mojave
Desert, and the Santa Catalina Island (Heed, 1978). They are
susceptible to microbe-induced necroses, which serve as food
sources for D. mojavensis (Fogleman and Danielson, 2001).
Different necroses from these cacti occur at different times of
the year and last for periods of variable duration (Breitmeyer
and Markow, 1998), constituting a temporal heterogeneous food
resource. An additional, but temporally overlooked form of
resource heterogeneity, is microbe-induced heterogeneity. The
microbes associated with cacti fermentate the carbohydrates
in the cactus and produce specific volatile profiles which are
important cues for host detection and exploitation (Becher et al.,
2012; Date et al., 2013). These microbes also metabolize the
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FIGURE 2 | Phylogenetic tree of several Drosophila species with their hosts and the key host volatiles. Drosophila sechellia can tolerate the octanoic acid emitted by
its host Morinda citrifolia. The seasonal specialist Drosophila erecta is attracted to its host Pandanus by the volatile 3-methyl-2-butenyl acetate. Drosophila
mojavensis is attracted by the propyl propionate emitted from its host cactus. Drosophila images are from Nicolas Gompel; host images were taken from
https://pixabay.com/.

cactus tissues and affect the cactus secondary metabolites which
are mainly toxins including triterpene glycosides, medium chain
fatty acids, alkaloids, and sterols diols, increasing or decreasing
the toxicity of the cactus and thus changing the availability of
the nutrients (Fogleman and Danielson, 2001). Together, these
different sources of heterogeneity including spatial, temporal,
and microbe-induced heterogeneity impose divergent selection
on D. mojavensis, targeting the flies’ abilities to recognize the
odors of its native host, locate the resource and tolerate its
secondary metabolites.

Apart from natural variation, human-mediated resource
manipulation has become a major driver of consumer adaptation
by dramatically changing resource abundance and distribution.
A classic example is the introduction and domestication of apple
varieties in North America in the mid-1800s. As a result, the local
apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae),
which originally fed on hawthorn, started to feed on apples and
rapidly spread through North America (Bush, 1969; Feder et al.,
1994; Feder and Filchak, 1999). The subsequent introduction of
sweeter and earlier ripening apples contributed to a larger diet
breadth and longer developmental time for the flies, leading to
the formation of a specialized apple race (Feder and Filchak, 1999;
Filchak et al., 2000; Hood et al., 2020). An even more recent
example is the spread of the spotted wing Drosophila, Drosophila
suzukii (Diptera: Drosophilidae) on commercially grown soft
fruits like cherries, blueberries, raspberries, and grapes. Because
this species is attracted to ripening fruit odors and is equipped
with an enlarged ovipositor for piercing ripening fruits (Keesey
et al., 2015; Revadi et al., 2015; Karageorgi et al., 2017), it
utilizes resources at a much earlier stage than other Drosophilids
and rapidly invaded North America and Europe from Japan
(Lee et al., 2011; Cloonan et al., 2018). Food and beverages
for human consumption resulting from yeast fermentation
like beer, wine and bread also offer novel food resources
for many Drosophila species that naturally feed on yeast and
enable them to expand their niches to breweries, wineries, and
bakeries (Günther and Goddard, 2019). Consequently, feeding

on human-mediated resources may cause consumer populations
to become morphologically and genetically distinct from their
ancestors, potentially leading to ecological speciation (Capy et al.,
2000; Haerty et al., 2003).

QUESTION 2: WHICH ASPECTS OF THE
FOOD RESOURCE EXERT SELECTION
ON CONSUMERS?

To understand how resource heterogeneity underlies divergent
selection and speciation in consumer organisms, it is necessary
to identify which aspect of the resource is actually exerting
selection. This is not trivial, as several aspects of a resource
may be heterogeneous at the same time, while adaptation
may be primarily driven by one critical factor. For example,
the phenology of introduced apple varieties is the trait that
initially generated selection on the apple maggot fly to shift
their developmental and diapause times (Bush, 1969; Feder and
Filchak, 1999; Filchak et al., 2000). Subsequently, the apple
race became allochronically isolated from the hawthorn race
(Filchak et al., 2000). Among the aspects of the food resource
exerting selection on consumers, the chemical composition
is most obvious because different nutritional compounds or
toxins require different adaptive responses in consumers. For
example, because of differences in the chemical composition of
pea aphid’s Acyrthosiphon pisum (Homoptera: Aphididae) host
plants, clover and alfalfa, different host plant races of pea aphid
reject their alternative host plant and mainly feed and mate on
their native plants (Caillaud and Via, 2000; Campo et al., 2003).
Similarly, differences in volatile profile and secondary metabolites
between cactus species are responsible for host specialization
and population differentiation among D. mojavensis populations
(Fogleman and Danielson, 2001).

Toxins are a major driver of food specialization for many
herbivorous and frugivorous insects as species that tolerate
these toxins can escape competition (Karageorgi et al., 2019;
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Auer et al., 2020). For example, the noni fruit, Morinda citrifolia
(L.) (Rubiaceae), produces hexanoic and octanoic acids that
are toxic to most insects (Legal et al., 1994; Amlou et al.,
1998). However, Drosophila sechellia (Diptera: Drosophilidae),
a species endemic to the Seychelles islands, tolerates and even
prefers it for feeding and oviposition (R’Kha et al., 1991; Legal
et al., 1992; Matsuo et al., 2007; Figure 2). The precursor 3,4-
dihydroxyphenylalanine (l-DOPA) in the noni fruit increases
female fertility and egg volume in D. sechellia, facilitating
the egg survival in the toxic environment, enhancing the
fitness of adults and offspring to develop on noni fruit and
helping D. sechellia escape competition with its co-occurring
sibling species Drosophila simulans (Diptera: Drosophilidae)
(Lavista-Llanos et al., 2014). Similarly, the monarch butterfly,
Danaus plexippus (Lepidoptera: Nymphalidae) feeds on various
glycoside-containing milkweeds of the Apocynaceae family
that are toxic and repel other insect species. The larvae and
adults of the monarch butterfly are physiologically insensitive
to the glycoside that otherwise affect an insect’s cardiac
physiology and functioning (Holzinger et al., 1992; Karageorgi
et al., 2019). To study how different aspects of the food
resource exert selection on consumer organisms, integration
between toxicology, analytical chemistry, and neurogenetics
is needed to identify the toxic effects (Legal et al., 1992),
to find chemical cues influencing behavior (Legal et al.,
1994), and to test the organisms’ behavioral, neurological, and
physiological responses, for example by using sensory mutants
(Auer et al., 2020).

QUESTION 3: HOW ARE CONSUMER
CHEMOSENSORY SYSTEMS TUNED TO
DETECT AND IDENTIFY A NOVEL FOOD
RESOURCE?

The chemosensory system and its associated neurons generally
form the first line of contact between consumers and their
food resources (Dicke, 2000; Bruce et al., 2005; Missbach
et al., 2014). The ability to detect novel stimuli is pivotal
to accessing new resources and changing foraging habits,
making the mechanism of resource localization a critical
step in resource-mediated ecological speciation. In insects,
the chemosensory receptors involved in these processes are
distributed in three principal families that have distinct
functions in resource detection: the gustatory receptors (GRs)
for taste and contact cues (Montell, 2013; Scott, 2018), the
odorant receptors (ORs) for olfaction (Vosshall et al., 1999;
Liang and Luo, 2010; Joseph and Carlson, 2015), and the
ionotropic receptors (IRs) for olfaction, taste, thermosensation,
and hygrosensation (Benton, 2008; Silbering and Benton,
2010; Enjin et al., 2016; Rimal and Lee, 2018). Genes
encoding classical olfactory receptors and their associated
sensory neurons are subject to divergent selection in the
Drosophila genus (Anholt, 2020). For example, the central
African Drosophila erecta (Diptera: Drosophilidae) locates the
fruits of Pandanus candelabrum (P. Beauv.) (Pandanaceae) via

an increased number of olfactory sensory neurons that respond
to 3-methyl-2-butenyl acetate (Rio et al., 1983; Linz et al.,
2013; Figure 2). Wild African Drosophila melanogaster detects
and uses its host marula fruit Sclerocarya birrea (A. Rich.)
(Anacardiaceae) through the strong response of its Or22a-
expressing neurons to the marula volatile ethyl isovalerate
(Mansourian et al., 2018). Likewise, the preference of D. suzukii
for ripening fruits correlates with the duplication of an OR
gene and positive selection for ORs tuned to fresh fruit
aromas (Revadi et al., 2015; Ramasamy et al., 2016). The leaf-
mining fruit fly, Scaptomyza flava (Diptera: Drosophilidae),
has receptors tuned to volatiles from Brassicaceae leaves rather
than yeasts (Goldman-Huertas et al., 2015; Matsunaga et al.,
2019). In the mosquito Aedes aegypti (Diptera: Culicidae),
the transition from forest mammal to human hosts in urban
centers coincided with an increased expression of its OR
AegOr4, which detects the human body odorant sulcatone
(McBride et al., 2014).

Of all Drosophila species, the mechanisms by which
chemosensory genes contribute to resource adaptation have
been especially well characterized for D. sechellia. The olfactory
response of D. sechellia to noni fruits maps to one distinct
glomerulus in the antennal lobes (AL) (Figure 3), the first
olfactory processing center in the brain, receiving input from
Or22a, specific to methyl esters (a noni fruit volatile) (Dekker
et al., 2006; Auer et al., 2020). Sequence comparison and
functional tests showed that the higher attraction of D. sechellia
to methyl esters compared to that of D. simulans and
D. melanogaster is determined by three amino acids in the
N-terminus of Or22a, exemplifying that a molecular difference
in Or22a orthologs can contribute to species–specific olfactory
behaviors. Olfactory receptor genes are, however, not the only
chemosensory genes contributing to adaptation of D. sechellia
to noni fruits. A single amino acid change in the ionotropical
receptor gene Ir75b is sufficient to provoke the attraction
of D. sechellia to hexanoic acid (Prieto-Godino et al., 2017).
Another change in the chemoreceptor repertoire of D. sechellia
(compared to its sibling species) involves the odorant-binding
proteins (OBPs) Obp57d and Obp57e (Matsuo et al., 2007).
OBPs are located in the lymph of sensilla (Larter et al.,
2016) and are hypothesized to bind and transfer odorants to
the OSNs (Vogt et al., 1991; Leal, 2013; Pelosi et al., 2014;
Figure 3). A mutation in the promoter region of D. sechellia’s
Obp57e gene prevents its expression, removing taste avoidance
toward hexanoic and octanoic acid and reducing repulsion
toward noni fruit (Matsuo et al., 2007; Tomioka et al., 2012).
When Obp57e and Obp57d were deleted in D. melanogaster, or
when hybrids between the sibling species were produced, the
behavioral repulsion to the acids also changed (Matsuo et al.,
2007), showing that molecular differences in OBP orthologs can
contribute to the species-specific olfactory behaviors underlying
ecological differences.

Consistent with their role in mediating contact between
animals and their environment, the genes encoding
chemosensory proteins evolve fast (Arguello et al., 2016).
Selection operates on standing variation at chemosensory
loci. This variation may be particularly easy to maintain
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FIGURE 3 | A simplified overview showing how odors are detected by the
olfactory pathway. Odors are detected by hair-like sensilla on the antennae
and the maxillary palps. Panel (A) exemplifies how the antennae of Drosophila
are covered with the basiconic (blue), trichoid (magenta), and coeloconic
(green) sensilla types. These sensilla contain olfactory receptor neurons (ORN)
that express olfactory receptors (ORs) and ionotropic receptors (IRs). Panel
(B) exemplifies a trichoid sensilla in which the dendrite of the ORN (magenta)
is covered with ORs (purple). In Drosophila, the ORNs can express one to four

(Continued)

FIGURE 3 | Continued
olfactory receptors, but as a simplification only one is shown. The odorant
binding proteins (OBP) (blue) are secreted by the accessory cells (dark gray)
into the sensillar lymph and carry the odorants (orange) from the pores to the
dendrites. Panel (C) shows a simplified antennal lobe, found in the insect
brain, in which odors picked up by the ORN activate specific glomeruli
(magenta) that it converges into. The glomeruli that were not activated by the
odor are illustrated in dark gray.

because individual chemosensory proteins rarely have large
phenotypic effects. These chemosensory genes properties may
facilitate rapid evolutionary change when confronted with a new
ecological niche.

QUESTION 4: WHICH TRAIT ALLOWS
THE CONSUMER TO SUCCESSFULLY
EXPLOIT THE FOOD RESOURCE

While the detection and identification of resources are important
steps toward exploiting them, many food resources possess a wide
range of toxic defenses or antifeedant secondary metabolites to
protect their tissues (Kessler and Baldwin, 2001; Moraes et al.,
2001; Ballaré, 2011; Mithöfer and Boland, 2012). The interaction
between noni fruits and D. sechellia offers a good example of
a consumer that not only has chemosensory adaptations to
detect its resource but also possesses the ability to develop on
the resource. Genetic studies identified a chromosomal region
with strong effects on fatty acid octanoic acid (OA) tolerance
(Jones, 1998), which mapped to a 170 kb region on the third
chromosome, harboring several OBPs and Osiris genes (a family
of putative transmembrane proteins of unknown function)
(Hungate et al., 2013). To establish a causal relationship between
the genes identified by Hungate et al. (2013) and OA tolerance,
Andrade López et al. (2017) used RNAi in D. melanogaster to
knock down each of these 18 genes and test the phenotypic
effects. They observed that three genes in the Osiris family (Osi6,
Osi7, and Osi8) significantly influenced OA resistance. They also
found that Osi6 and Osi7 were expressed at significantly higher
levels in D. sechellia than in intolerant sibling species, indicating
that these two genes in particular affect OA resistance. Lanno
et al. (2017) subsequently implicated Osi6, but also identified
many other differentially expressed genes through RNA seq (104
genes in total). Thus, there is a complex genetic architecture
to tolerance, which also involves genetic loci not involved in
chemosensory perception.

Similar to D. sechellia, the leaf-mining fruit fly S. flava has a
specialized olfactory system alongside a tolerance to compounds
that are otherwise lethal to Drosophilids. This species stands
out from other Drosophilids by ovipositing and developing on
leaves of the Brassicaceae family (Goldman-Huertas et al., 2015;
Matsunaga et al., 2019). Gloss et al. (2019) suggested that the
shift from ancestral yeast feeding Drosophila to the herbivorous
Scaptomyza is the result of higher turnover rates of the heme-
binding cytochrome P450 monooxygenases (CYPs) enzymes that
are involved in the detoxification of harmful environmental
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chemicals. For two Cyp genes, cyp6g1 and GstE5-8, there is
an increase in the number of copies in the S. flava genome
compared to its ancestors. Cyp6g1 is involved in the evolution of
resistance in other insect species through cis-regularly mutations
and gene duplication events (Goff and Hilliou, 2017), and GstE5-
8 underlies the production of enzymes that detoxify mustard oils
(isothiocyanates). As mustard oils are the main toxic compound
in plants of the Brassicaceae family, the tolerance for these
toxins may have allowed ancestral Scaptomyza species to evade
competition for fruits and fungi with other Drosophila species
by adapting to a novel leaf mining niche. Interestingly, another
Cyp gene, Cyp6as, has been suggested to facilitate the shift
from carnivory to florivory in florivorous bees from the Apidae
family compared to carnivorous species from the Vespidae family,
by allowing the metabolism of flavonols in nectar and honey
(Johnson et al., 2018). Together, these patterns suggest that
detoxification genes can play a crucial role in the successful
exploitation of food resources.

QUESTION 5: ARE EXPLOITATION AND
SENSORY DETECTION GENETICALLY
LINKED?

An organism can only successfully adapt to a novel food resource
when the ability to digest the food coincides with the ability to
detect it (or even the tendency to be attracted to it). This implies
that the genetic architecture of these traits, and how tightly
they are linked, strongly influence the likelihood and speed of
resource-mediated divergence. Specifically, a shared genetic basis
or a genetic correlation between detection and digestion would
greatly facilitate niche expansion, and possibly lead to ecological
speciation (Lande, 1979; Jaenike, 1990; Fry et al., 1996; Grosjean
et al., 2011; Janz, 2011). As reviewed above, both attraction
and tolerance have been extensively studied in D. sechellia. The
introgression lines between D. sechellia and D. simulans that
Hungate et al. (2013) used to map OA tolerance, were also used
to explore genetic linkage: flies were subjected to behavioral
tests to quantify both tolerance and preference. Contrary to
expectation, genotypes that scored high on tolerance did not
also express preference for noni fruit over control food. Thus,
the genetic region that confers tolerance does not include loci
influencing preference–in fact, other studies suggest that factors
influencing preference are located on another chromosome
(Yassin et al., 2016). A similar situation is observed in the
cactophilic D. mojavensis, which has evolved metabolic pathways
to detoxify the toxic compounds in cactus necroses. Different
populations express different detoxification genes to utilize their
own cactus hosts. For instance, Baja California flies express
high levels of the detoxification gene Cyp6g1 for detoxifying
Agria, while mainland Sonoran flies mostly depend on the
Ugt86Dd gene for Organ pipe detoxification (Matzkin, 2012).
The same goes for attraction preferences. All four geographically
isolated D. mojavensis populations use volatiles emitted from
fermenting cactus necroses to identify their host plant and differ
in preferences and sensitivity to the volatiles of these four cactus
species (Newby and Etges, 1998; Date et al., 2013; Crowley-Gall

et al., 2016). For example, the Mojave population which inhabits
Santa Catalina Island displays increased olfactory responses to
aromatics (Date et al., 2013), the main volatile of its host plant,
barrel cactus, and upregulates two chemosensory genes Or67b
and Or71a to detect aromatics (Crowley-Gall et al., 2016). Yet,
even though both gene families for attraction and detoxification
are paramount in cactus host adaptation, there is no direct genetic
linkage between attraction and detoxification (Matzkin et al.,
2013; Matzkin, 2014; Allan and Matzkin, 2019).

The evidence presented above, albeit coming from a limited
number of species, suggests that physical genetic linkage between
resource-specific digestive abilities (including toxin tolerance)
and sensory responses toward that same resource (i.e., detection
and attraction) does not actually dominate in nature. Instead, the
two traits tend to evolve sequentially. Successful exploitation of
a new resource may start with a single evolutionary innovation
(e.g., the ability to detect a particular chemical compound),
which is only maintained if it is quickly followed by the second
(e.g., the ability to tolerate an associated toxin). This raises
the question as to what comes first in general, tolerance or
preference? Island populations of Drosophila yakuba (Diptera:
Drosophilidae), which recently specialized on M. citrifolia as
well, carry the same genetic changes that underlie octanoic acid
tolerance in D. sechellia–while their preference for the toxic fruit
appears to be largely mediated by other loci (Yassin et al., 2016).
These findings suggest that attraction preceded tolerance. This
is because once one of the two innovations has evolved, the
second one is expected to emerge very rapidly by strong selection
on the existing genetic variation within the population. Given
that a substantial proportion of genetic variation will be shared
between the ancestral D. sechellia and the derived D. yakuba, this
leads to the rapid fixation of the same tolerance-conferring alleles
(Yassin et al., 2016). However, we need more data from other
species to see how consistent this novel food adaptation pattern
is, and whether genetic linkage between sensory detection and
exploitation is a major determiner of speciation dynamics.

QUESTION 6: HOW DOES PHENOTYPIC
PLASTICITY CONTRIBUTE TO THE
SUCCESSFUL EXPLOITATION OF A
NOVEL FOOD RESOURCE?

The previous sections illustrate that adaptation to a food
resource relies on a chemosensory system that is tuned to
locate the resource and on detoxifying enzymes that neutralize
toxic compounds (Scriber and Slansky, 1981; Gloss et al.,
2016; Webster and Cardé, 2017). The important role of
genetically encoded proteins that directly interact with the
food resource suggests that these traits may be hard wired
during early development. Evolution thus proceeds through
classical selection of alleles that confer adaptation. However,
some degree of plasticity may allow consumers to adjust
their responses through experience. Neural plasticity occurs
throughout the olfactory pathway, from olfactory receptor
neurons to higher-order neurons, undergoing experience-based
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changes in synaptic efficacy to neurogenesis and apoptosis
(Wilson et al., 2004; Gadenne et al., 2016). This plasticity
might promote niche expansion, exposing organisms to new
selective pressures that actually favor specialization. On the other
hand, olfactory plasticity may interfere with the evolution of
resource specialization: if plasticity allows successful detection
and exploitation of a (novel) resource, then there is no selective
advantage for alleles conferring certain specialist abilities or
for assortative mating (i.e., individuals mating more often with
individuals possessing similar phenotypes). Understanding how
preference for certain resources and the ability to exploit it
develop, is thus critical to understanding how divergent resource
specialization evolves.

In the example of D. sechellia, chemosensory genes are
obviously important for the attraction to noni fruit, but they
do not solely account for the behavioral differences with its
sibling species D. simulans. First, while D. sechellia develops twice
as many Or22a-expressing neurons during pupal development
compared to its sibling species, this higher number of neurons
is not sufficient to explain host attraction. Auer et al. (2020)
showed that substituting D. sechellia’s Or22a receptors with those
from D. melanogaster, while maintaining their higher number of
neurons, does not result in the same level of attraction to noni
fruit as wild-type flies. Second, additional differences are found
in D. sechellia’s lateral horn, a higher-order brain region that
processes innate responses to olfactory cues (Jefferis et al., 2007),
in which projection neurons connecting to Or22a-expressing
neurons have a prominent branch innervating an area that is
not targeted by the homologous neurons in its sibling species
(Auer et al., 2020). These differences in projection neuron axon
innervations suggest that changes in central-circuit connectivity
also allowed for the adaptation to noni fruit. These examples
illustrate that although chemosensory gene families evolve fast,
additional traits shaping detoxifying enzymes, central-circuit
connectivity and projection neuron innervations also account for
the evolution of resource detection.

For many insects, resource detection and exploitation are
subject to behavioral plasticity resulting from feeding and mating.
Hunger generally increases sensitivity toward food odors and
decreases sexual receptivity in many insect species (Edgecomb
et al., 1994; Lightle et al., 2010; Luo et al., 2013; Ko et al.,
2015; Lebreton et al., 2017). In fruit flies, this is controlled
through the release of insulin, which leads to sensitization of OR
neurons tuned to juvenile food sources like yeasts (Ribeiro and
Dickson, 2010; Root et al., 2011). The increased sensitivity to
yeast may, in turn, increase the sexual receptivity of these mated
females, leading them to remate at the juvenile food resources
(Gorter et al., 2016). In addition, feeding status and food-
derived odors influence female responses to male pheromones
(Lebreton et al., 2015; Das et al., 2017). Thus, food-induced
behavioral changes may indirectly affect mating opportunities.
Many species also show behavioral plasticity after mating. The
so-called “post-mating switch” lowers responses to pheromones,
while increasing responses to host odors or oviposition sites
(Anderson and Anton, 2014; Gadenne et al., 2016). For example,
mated female fruit flies show a strong preference for yeast
(Ribeiro and Dickson, 2010) and need to locate yeast that
allows for the development of their offspring (Becher et al.,

2012). Hussain et al. (2016) showed that mated females show
an increased expression in the olfactory system of a receptor
of myoinhibitory peptides, resulting in a higher sensitivity to
the smell of polyamines, which are indicative of substrates that
enhance larval development. Both sexes of the cotton leafworm
Spodoptera littoralis (Lepidoptera: Noctuidae) also exhibit a post-
mating response to sex pheromones and host odors. In males,
the post-mating switch results in reduced responses to sex
pheromones and host leaf odors signaling mating sites, but not
diminished attraction to odors signaling adult food (Kromann
et al., 2015). In females, mating abolishes attraction to lilac
flowers Syringa vulgaris (L.) (Oleaceae), but causes attraction
to green-leaf odor of the larval host plant cotton, Gossypium
hirsutum (L.) (Malvaceae) (Saveer et al., 2012). Thus, behavioral
plasticity enables consumers to interact with food resources in a
way that matches their physiological states and needs.

QUESTION 7: HOW DO INDIVIDUALS
THAT ADAPTED TO AN ALTERNATIVE
FOOD RESOURCE BECOME
REPRODUCTIVELY ISOLATED?

A critical step in any ecological speciation scenario is the
evolution of some level of reproductive isolation, which can be
mediated by various evolutionary mechanisms (Kirkpatrick and
Ravigné, 2002). In some of these scenarios divergent adaptation
immediately causes reproductive isolation as a by-product. More
specifically, when mating takes place at a specific resource,
while alternative resources are available, assortative mating can
emerge as a by-product of divergence in foraging behavior.
This is one of the most straightforward routes to reproductive
isolation, as it does not require the evolution of additional
changes in traits involved in mate selection (Kirkpatrick and
Ravigné, 2002; Servedio and Boughman, 2017; Hood et al.,
2020). This mechanism contributed to the origin of the apple
maggot fly, where colonization of apple trees reduced gene
flow through spatiotemporal segregation from the ancestral
population (Bush, 1969; Dambroski et al., 2005; Hood et al.,
2020). Similar spatial or temporal segregation occurs in many
other species, including several of the examples mentioned in
the sections above, making it one of the major drivers of species
diversity in insects (Matsubayashi et al., 2010). Establishing the
contribution of spatiotemporal isolation to speciation requires
quantifying the degree of overlap in resource distribution, as well
as behavioral studies into the dispersal tendencies and abilities of
the consumer organism.

Answers to many of the questions outlined in this review
exemplify that divergent adaptation to alternative resources
often involves changes in chemosensory perception. Given
the importance of chemical signals in sexual communication,
such changes may also affect mating probabilities between
individuals exploiting different resources. This can constitute
another fairly direct route to reproductive isolation, but it
requires alignment between the sensory adaptations involved in
resource detection, identification and processing, together with
adaptations in sexual communication. For several insect species,
such alignment occurs when dietary compounds influence the
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cuticular hydrocarbons (CHC) involved in mate recognition
(Etges et al., 2006; Smadja and Butlin, 2009; Sharon et al., 2010;
Fedina et al., 2012). When these changes in CHC profiles coincide
with changes in mate selection, resource-based assortative
mating can evolve, as seen for the cactophilic D. mojavensis
(Etges, 1992; Brazner and Etges, 1993; Khallaf et al., 2020).
Additionally, gut microbiota obtained by fruit flies through
feeding can strongly affect their mate choice, as they select
individuals harboring specific microbiota (Sharon et al., 2010,
2011; Brucker and Bordenstein, 2012; Engel and Moran, 2013;
Shropshire and Bordenstein, 2016). Consequently, selection for
microbiota can be expected to lead to the divergence of host
lineages that feed on different substrates, ultimately leading to
speciation. It is important to note, however, that these changes
are often phenotypically plastic, which modulates their impact on
reproductive isolation and species divergence (Otte et al., 2018).

Another caveat concerns the association between signal
divergence and mate selection, as changes in chemical signals
must align with changes in mating preferences in order to
generate reproductive isolation. This is easily achieved when
mating depends on the similarity of chemical signals [i.e., “self-
referent phenotype matching” (Weddle et al., 2013)], but when
mate selection targets specific trait values, assortative mating
requires that preferences change in accordance with the chemical
signals. This is not always the case, and several examples of
chemical mismatches have been documented in Drosophila (e.g.,
Kwan and Rundle, 2010; Xue et al., 2018). Even without changes
in chemical signals themselves, the combination with different
food odors might modulate sexual communication. As discussed
above, female responses to male pheromones can be affected by
food-derived odors (e.g., Das et al., 2017). To establish whether
such effects could impact the extent of assortative mating, future
research should explore whether synergistic effects of food-
derived and fly-derived compounds are resource-specific.

In the absence of direct effects of divergent adaptation on
sexual communication, assortative mating may evolve as a
consequence of selection for local adaptation. A special case
concerns “reinforcement,” where assortative mating between
individuals with the same adaptations evolves to avoid the
production of maladapted hybrids (Craig et al., 1997; Caillaud
and Via, 2000). In addition to reducing net gene flow, this
generates selection for mechanisms that increase the probability
of assortative mating, as observed for several Drosophilids
(Yukilevich, 2012). For example, pre-mating isolation in several
Drosophila sibling species is based on male responses to female
CHC profiles (Coyne et al., 1994; Billeter et al., 2009; Seeholzer
et al., 2018; Shahandeh et al., 2018). Based on quantitative trait
locus (QTL) studies dissecting female CHC profiles (Gleason
et al., 2005, 2009) and male courtship preferences (Shahandeh
et al., 2018; Shahandeh and Turner, 2020), the most parsimonious
scenario is that female CHC profiles diverged due to differences
in microclimatic conditions, followed by divergence in male
courtship preferences to avoid costly interspecific courtship and
mating (Rundle and Dyer, 2015; Shahandeh and Turner, 2020).

Adaptation-assortative mating may also result from mating
preferences for traits reflecting the adaptation of prospective
mates to the local circumstances. In the most straightforward

case, individuals prefer to mate with partners in good physical
condition–thereby selecting those individuals that are best
adapted. Somewhat more complex is the evolution of novel
mate preferences, targeting traits that specifically reflect local
performance. Sexual preferences for mates in good conditions is
a well-documented phenomenon in behavioral ecology (Davies
et al., 2012). In insects, chemical signals play a role in mate choice
for unrelated or older mates (Kuo et al., 2012), but in the context
of host race formation evidence for the contribution of sexual
selection for local adaptation during divergence is scarce. Rundle
et al. (2009) observed that experimental selection of Drosophila
serrata (Diptera: Drosophilidae) on different food resources
generated changes in both CHC profiles and CHC-based mating
preferences, but failed to accelerate divergent adaptation through
sexual selection. Currently, it seems unclear whether chemically
mediated preference for locally adapted mating partners is an
important contributor to assortative mating during resource-
driven speciation in insects (Rundle et al., 2009).

DISCUSSION

In this review, we presented seven questions to explore the
processes leading up to resource-mediated ecological speciation,
with a particular focus on chemosensory interactions in insects.
For each of the seven questions, major insights have been
generated using various taxa and approaches, documenting the
critical resource properties that drive chemosensory adaptations
in consumers, the molecular basis of these adaptations and the
characterization of the behavioral responses that contribute to
reproductive isolation. Our analysis also revealed important gaps
in our knowledge. Notably, different approaches are needed for
different questions: we need field ecology and chemical analyses
to characterize environmental heterogeneity and its effects on
consumer populations, neurobiology and physiology to examine
how individuals detect and exploit food resources, developmental
biology and genetics to assess the molecular basis of these traits,
behavioral observation to document mechanisms underlying
reproductive isolation, and evolutionary biology to link selective
regimes to evolutionary change. There is rarely one model system
in which all seven questions have been thoroughly answered;
different organisms are generally employed to answer different
questions. For example, D. mojavensis is used to explore resource
heterogeneity and population differentiation, while laboratory
strains of D. melanogaster are used to study receptors, olfactory
pathways, neutral circuits, and genes involved in resource
detection and exploitation. Niche specialists such as D. sechellia
and D. mojavensis are used to examine host specialization and
its underlying molecular determinants, while pea aphids and
apple maggot flies are used to study the evolutionary ecology
of incipient sympatric speciation. In order to extrapolate and
generalize, it will be important to incorporate insights from
one model system into studies of others. Certainly, all “model
organism” and methods have their limitations. Drosophila has
proven to be a powerful model in neurogenetics and evolutionary
genetics because of its unique genetic tools (Bellen et al., 2010;
Kazama, 2015; Castillo and Barbash, 2017). These tools however
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require the use of genetically homogenous or inbred strains so
that the control and experimental groups only differ at the level of
the mechanism studied, limiting “noise” coming from individual
genetic variation. This is essential for data interpretation.
However, these inbred Drosophila laboratory strains do not
represent the diversity and complexity that ecologists aim to
explain (Zuk et al., 2014) because ecological speciation relies on
the existence of natural genetic variation between individuals,
which can then be selected from. It is therefore important to
combine the mechanistic insights acquired from the laboratory
inbred strains with the study of the natural variants found in
nature (Alfred and Baldwin, 2015).

One major knowledge gap concerns the nature of the
heterogeneity that exerts divergent selection (Question 1).
Environments are heterogeneous in many ways, but it is often not
clear what kind of heterogeneity, or which aspect of a particular
resource, will generate divergence in consumers. This restricts
our predictive ability and hampers our understanding of the
relative importance of intrinsic and extrinsic factors in speciation.
As noted above, chemosensory genes evolve relatively fast, and
this may be true for other sensory genes as well (Stevens, 2013).
This may be explained by their specific genomic architectures
and functioning, leading to high levels of redundancy and little
evolutionary constraint. We may speculate that it is because
of these properties that ecological speciation often involves
divergence in sensory traits, which would suggest a major
role for intrinsic organismal factors in explaining patterns of
speciation. Alternatively, it is primarily the environment that
governs the likelihood of speciation, and the nature and extent
of environmental heterogeneity that determine the strength
of divergent selection. Of course, both are important, but a
major challenge for speciation research is to establish whether
there are general rules across taxa in the contributions of
specific intrinsic and extrinsic factors to explaining variation in
speciation propensity.

Obviously, additional questions can be formulated. For
instance, while we provided several examples of how the
adaptation to a food resource relies on a chemosensory system
that is tuned to specific substances, the incapacity to detect
compounds that are repellent to closely related species may
also be coupled to niche specialization (Bernays, 2001). It is
also important to explore what happens after speciation has
been initiated and some level of reproductive isolation has
been achieved. The long-term persistence of new species will
depend on the maintenance of environmental heterogeneity,
the geographic setting, the dimension of selection and the
genetic changes involved in divergence. Generally, in plant-insect
interactions, the diversity and abundance of plants directly affect
speciation and extinction in associated insect taxa (Nyman et al.,
2012). For instance, the collapse of the host plants drives the
extinction of specialized insect species (Wagner and Driesche,
2010). When host plants are segregated in space, persistence of
two new herbivore species will be easily maintained because of the
absence of gene flow (Nosil, 2012). In line with this, phylogenetic
analyses reveal that geographic isolation is more important than
host plant heterogeneity in maintaining new species (sawflies:
Nyman et al., 2010; aphids: Jousselin et al., 2013). In addition to

environmental heterogeneity itself, its dimensionality may affect
the maintenance of incipient species. Divergence in multiple
niche dimensions may not only promote diversification but
also the maintenance of differentiation (Nosil, 2012). Finally,
the genetic changes involved in divergence may influence the
long-term persistence of incipient species. For example, the
evolution of reproductive incompatibilities may take a long time
(Coyne and Orr, 2004) but once present, greatly facilitates species
persistence. It is still an open question whether the factors that
promote speciation are also involved in maintaining diversity
(Butlin et al., 2012).

One potentially important avenue for future research concerns
the role of the consumer gut microbes in resource-mediated
speciation. In addition to the microbes present in the substrate,
consumer gut microbes also play a role in resource-mediated
speciation by mediating resource exploitation ability (Brucker
and Bordenstein, 2012; Shropshire and Bordenstein, 2016). For
example, the elimination of an endosymbiont in natural Japanese
populations of pea aphid Acyrthosiphon pisum significantly
reduced populations’ exploitation of white clover Trifolium
repens (L.) (Fabaceae) (Tsuchida et al., 2004). Gut microbiota
may also influence mate choice of hosts. For example,
D. melanogaster that were reared on different media acquired
different microbiotas, which in turn influenced their cuticular
hydrocarbon compositions and led to assortative mating among
the flies reared on the same medium (Sharon et al., 2011;
Heys et al., 2018). Therefore, microbes in the gut could be a
promising direction for future research on resource-mediated
ecological speciation.

Theoretical and methodological advances in both speciation
biology and chemical ecology make today an exciting time
for multidisciplinary speciation research. Speciation biologists
have a wealth of methodological tools at their disposal that
are increasingly applicable to other taxa beyond the traditional
laboratory model organisms, making more taxa available for
future comparative studies. We hope that these tools, together
with a multidisciplinary perspective and the seven-question
framework presented here, will contribute to a more integrated
and complete understanding of resource-mediated speciation.
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