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Kairomones are chemical signals that mediate interspecific interactions beneficial to

organisms that detect the cues. These attractants can be individual compounds or

mixtures of herbivore-induced plant volatiles (HIPVs) or herbivore chemicals such as

pheromones, i.e., chemicals mediating intraspecific communication between herbivores.

Natural enemies eavesdrop on kairomones during their foraging behaviour, i.e., location

of oviposition sites and feeding resources in nature. Kairomone mixtures are likely

to elicit stronger olfactory responses in natural enemies than single kairomones.

Kairomone-based lures are used to enhance biological control strategies via the

attraction and retention of natural enemies to reduce insect pest populations and

crop damage in an environmentally friendly way. In this review, we focus on ways to

improve the efficiency of kairomone use in crop fields. First, we highlight kairomone

sources in tri-trophic systems and discuss how these attractants are used by natural

enemies searching for hosts or prey. Then we summarise examples of field application

of kairomones (pheromones vs. HIPVs) in recruiting natural enemies. We highlight the

need for future field studies to focus on the application of kairomone blends rather

than single kairomones which currently dominate the literature on field attractants for

natural enemies. We further discuss ways for improving kairomone use through attract

and reward technique, olfactory associative learning, and optimisation of kairomone lure

formulations. Finally, we discuss why the effectiveness of kairomone use for enhancing

biological control strategies should move from demonstration of increase in the number

of attracted natural enemies, to reducing pest populations and crop damage below

economic threshold levels and increasing crop yield.
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INTRODUCTION

The foraging behaviour of a parasitoid or predator is a process
by which it searches for oviposition sites and feeding resources
for its survival, growth, and reproductive success [reviewed in
Kramer (2001)]. Natural enemies (used hereafter in reference to
both parasitoids and predators) play a key role in the biological
control of chewing, sucking, and gall-feeding herbivores (Vidal
and Murphy, 2018). Understanding the foraging behaviour of
natural enemies is crucial for improving the biological control
of herbivorous pests (e.g., Mills and Wajnberg, 2008; Gunton
and Pöyry, 2016; Mills and Heimpel, 2018). Parasitoids have long
served as an insect model in the study of foraging behaviour
for oviposition sites, which has often been viewed as a three-
sequence process: habitat location, host location, and host
selection (Vinson, 1998; Fatouros et al., 2008). However, this
behavioural process can also be applied to predatory insects
searching for prey (Fellowes et al., 2007; Pervez and Yadav,
2018). During each of these foraging behavioural sequences,
natural enemies rely on a combination of environmental stimuli
to find their host and prey (hereafter jointly referred to
as herbivores). Although kairomones and visual signals are
exploited by natural enemies, the former is well-known to play
an important role in their foraging behaviour (Colazza and
Wanjberg, 2013; Lim and Ben-Yakir, 2020). Kairomones are
individual semiochemical molecules or mixtures that mediate
interspecific interactions between living organisms (Dicke and
Sabelis, 1988; Kost, 2008), while serving as long-range, short-
range, and contact cues during herbivore location by natural
enemies (Afsheen et al., 2008; Heil and Ton, 2008). Kairomones
exploited by natural enemies are either plant volatiles or
herbivore-associated chemicals such as pheromones (Afsheen
et al., 2008; Kaplan, 2012a; Kaiser et al., 2017; Peñaflor,
2019).

Herbivory-induced plant volatiles (HIPVs) and oviposition-
induced plant volatiles (OIPVs) are the reliable plant volatile
compounds that serve as long-range kairomones enabling
natural enemies to locate herbivore-infested plants (e.g., Dicke
and van Loon, 2000; Mumm and Dicke, 2010; Hilker and
Fatouros, 2015; Turlings and Erb, 2018). The use of HIPVs
and OIPVs to attract natural enemies has been pointed out
as a novel avenue to achieve successful biological control
(Kaplan, 2012a; Kelly et al., 2014; Murali-Baskaran et al.,
2018; Peri et al., 2018). For example, (E)-4,8-dimethyl-1,3,7-
non-atriene (DMNT), an elm plant (Ulmus minor Mill
[Ulmaceae]) OIPV induced by Xanthogaleruca luteola (Müller)
(Coleoptera: Chrysomelidae), attracted the parasitoid Oomyzus
gallerucae (Fonscolombe) (Hymenoptera: Eulophidae) in the
field (Büchel et al., 2011). In addition to HIPVs and OIPVs,
kairomones include chemicals emitted from different herbivore
stages (eggs, larvae/nymphs, pupae, adults), herbivore by-
products (e.g., frass, honeydew, exuviae, mandibular gland
secretions, defence secretions, etc.) which are exploited
by natural enemies in their selection of oviposition and
feeding sites [reviewed in Afsheen et al. (2008)]. For instance,
application of hydrocarbons, e.g., tricosane identified in
extracts of Heliothis zea (Boddie) (Lepidoptera: Noctuidae)

moth scales, increased the efficiency of host location by the
parasitoids Trichogramma achaeae Nagaraja and Nagarkatti
(Hymenoptera: Trichogrammatidae) and Microplitis croceipes
(Cresson) (Hymenoptera: Braconidae), thereby increasing the
parasitisation rate in the field (Gross et al., 1975; Lewis et al.,
1975).

Pheromones are highly species-specific in mediating
intraspecific interactions between the emitter and its conspecifics
(Dicke and Sabelis, 1988; Kost, 2008). They can be grouped into
the following categories: (i) sex pheromones, (ii) aggregation
pheromones, (iii) marking pheromones, and (iv) alarm
pheromones (Kost, 2008; Ruther, 2013). Eavesdropping is
a well-known phenomenon among natural enemies which
use pheromones of herbivorous insects as kairomones to
detect them (Aukema and Raffa, 2005). A typical example
is reported by Kpongbe et al. (2019) who demonstrated
that isopentyl-butanoate—the aggregation pheromone of
Clavigralla tomentosicollis Stål (Hemiptera: Coreidae)—
strongly attracts Gryon sp. (Hymenoptera: Scelionidae), the
parasitoid of Clavigralla species. However, not only herbivore
pheromones play a role in the attraction of herbivore enemies,
i.e., pheromones released by natural enemies also attract
conspecific individuals seeking for mates (Ruther, 2013),
and may modulate their responses to HIPVs (Cabello et al.,
2017). For example, pheromones from males of the predator
Nabis pseudoferus Remane (Hemiptera: Nabidae) attracted
conspecific females and enhanced their responses to HIPVs from
Rhopalosiphum padi (L.) (Hemiptera: Aphididae)-infested wheat
plants, whereas pheromones from males of the mirid predator
Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) attracted
conspecific females but were found to reduce their attraction to
the HIPVs (Cabello et al., 2017).

Kairomone-based lures are deployed in crop plants of which
the background odours shape the location of herbivores by
natural enemies (e.g., Schröder and Hilker, 2008; Randlkofer
et al., 2010). In this review, we focus on how to optimise field
applications of kairomones for improving biological control
of insect pests. First, we present sources of kairomones in
tri-trophic systems and discuss how these kairomones are
exploited by natural enemies foraging for hosts or prey. Then
we provide examples of kairomone field applications, and we
stress how the attraction of natural enemies into crop fields
might be more efficient when using pheromones rather than
HIPVs. Finally, we highlight potential ways to improve the
use of kairomone-based lures for attracting enough natural
enemies to reduce pest populations and crop damage below
economic threshold levels while increasing crop yields in
the field.

CHEMICAL INTERACTIONS IN
TRI-TROPHIC SYSTEMS

Chemically mediated multitrophic interactions occur both below
and above ground between a diversity of organisms among
four trophic levels in agro-ecosystems (Aartsma et al., 2019;
Stelinski et al., 2019). Research on chemical interactions aiming
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at controlling insect pests are, however, usually focused on tri-
trophic systems typically composed of plants, herbivores and
natural enemies (Price et al., 1980; Kaplan, 2012b; Mbaluto
et al., 2020), and in this section we summarise these tri-
trophic chemically mediated interactions at above ground level
(Figure 1). Organisms at each trophic level emit chemical
cues (emitters) to mediate intraspecific and/or interspecific
interactions with other organisms that detect the cues (receivers).
These interactions can be direct or indirect (Wootton, 1994).
A direct interaction occurs between two organisms without an
intermediary, whereas an indirect interaction necessitates the
presence of, or occurs through, at least one intermediary which
is usually a third species (Figure 1) (Wootton, 1994). Plants
(emitters) emit volatile organic compounds (VOCs) which are
exploited by herbivores (receivers) to locate host plants (direct
interactions) (Bruce and Pickett, 2011). Plants (emitters) also
release HIPVs and OIPVs to attract natural enemies (receivers)
for controlling herbivores (intermediary) (indirect interactions;
Figure 1) (Hilker and Fatouros, 2015; Turlings and Erb, 2018).
In addition to HIPVs and OIPVs that mediate the indirect plant
defences, the role of zoophytophagous-induced plant volatiles
(ZIPVs) in plant-insect chemical communication has recently
gained attention (Figure 1) (Pappas et al., 2015; Pérez-Hedo
et al., 2015). Zoophytophagous insects are sap sucking predators
which can feed on plants and consequently induce the release
of volatiles that attract conspecific and heterospecific predators,
as well as parasitoids (Pérez-Hedo et al., 2015; Rim et al.,
2018). This effect is like that induced by herbivores feeding
on plants. Compared to volatiles of unexposed tomato plant
(Solanum lycopersicum L. [Solanaceae]), ZIPVs from tomato
plant volatiles induced by the mirid predator Nesidiocoris tenus
(Reuter) (Hemiptera: Miridae) were found to attract conspecific
males and females (Rim et al., 2018) and the parasitoid Encarsia
formosa Gahan (Hymenoptera: Aphelinidae) (Pérez-Hedo et al.,
2015). Undamaged plants can also perceive HIPVs, OIPVs,
ZIPVs, and herbivore pheromones as signals to mount defences
against herbivores to the benefit of the host plant community
(known as plant priming defences) (Figure 1) (Dicke and Bruin,
2001; Frost et al., 2008, Pérez-Hedo et al., 2015), but the priming
defence is not observed in all plant species as reported for cotton
plants exposed to pheromones (Magalhães et al., 2019) and tea
plants exposed to the HIPV (E)-4,8-dimethyl-1,3,7-nonatriene
(Jing et al., 2020).

Natural enemies release pheromones that directly mediate
interactions with their respective conspecifics (Ruther, 2013).
While herbivores release pheromones to communicate with
conspecific individuals to their benefit, their natural enemies
eavesdrop on these communication cues to locate them to their
disadvantage (Aukema and Raffa, 2005). Herbivores and their
by-products such as larval frass, larval mandibular secretions,
and honeydew also release chemical compounds that serve as
kairomones for natural enemies in locating herbivores (Afsheen
et al., 2008). Understanding chemical interactions between
plants, herbivores, and natural enemies (Figure 1) is key to
designing and implementing kairomone-based biological control
measures in agro-ecosystems. In the following sections, we focus

on above-ground chemical interactions in which natural enemies
are receivers of pheromones and kairomones involved (Figure 1).

HOST PLANT AND HERBIVORE LOCATION
BY NATURAL ENEMIES WITHIN THE
ODOUR LANDSCAPE

Natural enemies foraging for herbivores locate infested host
plants within the heterogeneous plant community using
a sequence of behaviours (Figure 2). This is a tedious
task since host plants are embedded in a semiochemically
heterogeneous environment composed of diverse plant species
and multiherbivore communities whose signals influence the
detection of reliable kairomones during host or prey location
(e.g., Schröder and Hilker, 2008; Randlkofer et al., 2010). This
complex dynamic sensory environment has been described as an
“odour landscape” which is composed of different odour plumes
(an odour plume is a blend of volatile compounds carried by
the wind) (Atema, 1996). How insects track relevant or resource-
indicating odour plumes within the odour landscape has recently
been reviewed (Beyaert and Hilker, 2014). Foraging insects can
follow a single or several relevant odour plumes during which
they shift from one odour plume to another if this conveys a
more reliable signal (or indicates a more suitable resource), and
they continue this behaviour until they find the target host plant
(Beyaert and Hilker, 2014). During foraging, natural enemies rely
on a diversity of resource-indicating odours to first locate the host
plant within the plant community (section Role of Herbivore-
Induced Plant Volatiles in long-Range Location of Host Plants),
then find the potential infesting herbivores (section Herbivore
Volatiles for Host or Prey Location), and finally select and accept
the target host or prey upon landing on the host plant (section
Herbivore Contact Kairomones for Host/Prey Recognition and
Acceptance) (Figure 2).

Role of Herbivore-Induced Plant Volatiles
in Long-Range Location of Host Plants
Plants emit VOCs while undamaged, known as constitutive
VOCs, and herbivory or oviposition usually results in an
increase in the constitutive VOCs and/or release of specific
herbivore-induced volatiles, known as inducible VOCs (e.g.,
HIPVs andOIPVs). Although natural enemiesmay sometimes be
attracted by odour plumes of constitutive VOCs, evidences have
culminated in the literature that the odour plumes of HIPVs and
OIPVs are those that play the key role in the foraging behaviour,
serving as long-range signals that natural enemies exploit to
locate plants infested by their hosts or prey within the plant
community (Figure 2) (e.g., Kessler and Baldwin, 2001; Heil
and Ton, 2008; Kaplan, 2012a; Beyaert and Hilker, 2014). Plants
are usually infested by several herbivore species that are hosts
or non-hosts for natural enemies (Vos et al., 2001). Infesting
herbivore species may induce the same or different plant defence
pathways (i.e., Salicylic Acid inducer [SA-inducer] and Jasmonic
Acid-inducer [JA-inducer]), each affecting the composition of
volatiles produced (Danner et al., 2018). The attraction of
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FIGURE 1 | Typical examples of above ground chemical interactions in a tri-trophic system. Solid and dotted lines represent kairomone-based direct and indirect

interactions, respectively, in which the arrow bearing the kairomone is directed from the emitter to the receiver. The solid curves indicate pheromone-based direct

interactions in which male and female individuals can be an emitter and/or a receiver. HIPVs, herbivory-induced plant volatiles; OIPVs, oviposition-induced plant

volatiles; ZIPVs, zoophytophagous-induced plant volatiles; VOCs, volatile organic compounds; pPhr, prey pheromone; hPhr, host pheromone; pdPhr, predator

pheromone; prPhr, parasitoid pheromone; pcues, prey-associated chemical cues; hcues, host-associated chemical cues.

natural enemies to infested plants depends on factors such
as the infesting herbivores, i.e., single or multiple species; the
suitability of the herbivores, i.e., hosts or non-hosts; the infesting
herbivore density; and the activated plant defence pathways, i.e.,
SA and/or JA. For example, the parasitoid Cotesia marginiventris
(Cresson) (Hymenoptera: Braconidae) was reported to be more
attracted to volatiles of maize plants infested by only Spodoptera
littoralis (Boisduval) (Lepidoptera: Noctuidae), a JA-inducer,
than plants infested by both S. littoralis and Euscelidius variegatus
(Kirschbaum) (Hemiptera: Cicadellidae), an SA-inducer (Erb
et al., 2010). In multi-herbivore systems, the location of target
herbivore-infested plants by natural enemies may be disrupted
by the co-infestation of non-target herbivores (Takabayashi
et al., 2006). The parasitoid Cotesia plutellae (Kurdjumov)

(Hymenoptera: Braconidae) were less attracted to volatile blends
from cabbage plants simultaneously infested by caterpillars of
both host (Plutella xylostella [L.] [Lepidoptera: Plutellidae])
and non-host (Pieris rapae [L.] [Lepidoptera: Pieridae]) species
compared to volatiles released from host P. xylostella-infested
plants (Shiojiri et al., 2001). However, this is not always the
case, as illustrated by the fact that the larval parasitoid Cotesia
glomerata (L.) (Hymenoptera: Braconidae) was more attracted
to plants damaged by larvae of both host P. rapae and non-host
P. xylostella compared to plants damaged by host P. rapae alone
(Shiojiri et al., 2001). The herbivore-infestation level also affects
the response of natural enemies to infested plants. The parasitoids
C. glomerata and Cotesia vestalis (Haliday) (Hymenoptera:
Braconidae) were more attracted to volatiles of cabbage plants
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FIGURE 2 | Schematic description of the use of kairomones during foraging behavioural sequences involved in host/prey searching by parasitoids and predators.

VOCs, volatile organic compounds; tHIPVs, target herbivore-induced plant volatiles; ntHIPVs, non-target herbivore-induced plant volatiles; OIPVs =

oviposition-induced plant volatiles. Plant community composed of (A) infested non-host plants; (B) infested host plants; (C) uninfested non-host plants; and (D)

uninfested host plants.

with high levels of P. rapae and P. xylostella larval infestation than
those with low infestation levels (Shiojiri et al., 2010). Whereas,
relative to volatiles of healthy plants, the predator Harmonia
axyridis (Pallas) (Coleoptera: Coccinellidae) was reported to
prefer volatiles of cabbage plants infested by an intermediate
density ofMyzus persicae (Sulzer) (Hemiptera: Aphididae) adults,
but it showed no preference for plants infested with low and high
densities of M. persicae (Yoon et al., 2010). Therefore, natural
enemy species show different attraction responses to volatiles
of infested plants depending on the specificity and density of
infesting herbivores (De-Moraes et al., 1998; Shiojiri et al., 2010;
McCormick et al., 2012).

The infesting herbivore species and its feeding mode (e.g.,
leaf chewing, leaf mining, phloem sap sucking, and cell content
feeding) determine the plant defence signalling pathways to be
activated (either SA or JA alone, or both). Emission of volatiles
is regulated by the biosynthesis pathway(s) activated, and
qualitative and quantitative differences are substantial between
plant volatiles from SA- vs. JA-herbivore inducers (Danner
et al., 2018). Chewing herbivores are known to activate the JA-
pathway (Danner et al., 2018), while leaf mining larvae likely
activate both JA- and SA-pathways (Yang et al., in press). For
sap sucking herbivores, however, some species like whiteflies are
known to induce a single pathway, i.e., SA (Zhang et al., 2013),
whereas others like stink bugs induce both JA- and SA-pathways
(Giacometti et al., 2016). A comparison of volatiles from tomato
plants infested by the leaf miner Tuta absoluta (Meyrick)
(Lepidoptera: Gelechiidae) larva, and the phloem sap sucking
feeder Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae)

adult, revealed that α- and β-copaene, as well as valencene,
were released in higher amounts from plants infested by the
sap sucking insect (Silva et al., 2017). Whereas (Z)-3-hexen-1-
ol, (E)-β-ocimene, methyl salicylate, and β-caryophyllene were
higher from plants infested by the leaf miner, in addition
to some novel compounds such as (Z)-jasmone and (Z)-3-
hexen-1-yl crotonate (Silva et al., 2017). Volatile compounds
released by single and dual herbivore-infested plants also differ
quantitatively and qualitatively. Infestation of tomato plants by
both T. absoluta and B. tabaci led to increased emission of β-
myrcene, limonene, γ-terpinene, and β-elemene than in plants
infested only by T. absoluta or B. tabaci, whereas α-pinene
emission increased in T. absoluta-infested plants (Silva et al.,
2018). Conversely, cotton plants simultaneously infested by the
leaf chewing larvae of Spodoptera exigua (Hübner) (Lepidoptera:
Noctuidae) and adults of B. tabaci emit lower amounts of HIPVs
than plants infested only by S. exigua larvae, as a result of
so-called “cross-talk” between SA- and JA-signalling pathways
(Rodriguez-Saona et al., 2003). Natural enemies rely on these
differences to find specific herbivore-infested plants (Mumm
and Dicke, 2010; Shiojiri et al., 2010). Herbivores can also
suppress the plant defence mechanisms and volatile emission
when feeding, which could be a strategy to deceive natural
enemies from locating herbivore-infested plants. The feeding
and extracts of oral secretion of the leaf chewing larvae of
Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) were
found to suppress the emission of HIPVs in maize plants (De-
Lange et al., 2020). Similarly, suppression of HIPV emission in
host plants was reported upon herbivory by cell content feeders
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(e.g., spider mites and thrips) (Schausberger, 2018) and phloem
sap sucking feeders (e.g., whiteflies and aphids) (Walling, 2008;
Zhang et al., 2013). Suppression of HIPV emission by herbivores
is known to occur through various mechanisms, but the front
line mechanism is reported to operate through inoculation of the
oral secretion-inhabiting bacteria during feeding, a phenomenon
that deceives the plant to incorrectly perceive and identify
the attacking herbivore, and to not activate the appropriate
signalling defence (Felton et al., 2014; Schausberger, 2018).
Unfortunately, volatile suppression, in general, is not found to
prevent natural enemies from locating herbivore-infested plants
(Sarmento et al., 2011; De-Lange et al., 2020), suggesting that the
release rates of the specific attractive compounds or the ratios
of the attractive compounds in the released HIPV blend are not
necessarily affected.

Volatile compounds attractive to natural enemies include
a subset of HIPV or OIPV compounds, from the same
or different chemical classes (D’Alessandro and Turlings,
2006; McCormick et al., 2012). These are often mixtures
of compounds in specific ratios (van Wijk et al., 2011),
but sometimes these attractants are single compounds (Wei
et al., 2008). For example, (R)-(+)-limonene released by
the Mongolian oak, Quercus mongolicus Fisch. ex. Turcz.
(Fagaceae) plants infested by the longhorned beetle, Massicus
raddei (Blessig) (Coleoptera: Cerambycidae) elicited strong
attraction in the predator Dastarcus helophoroides (Fairmaire)
(Coleoptera: Bothrideridae) (Wei et al., 2008). The predatory
mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae)
was more attracted to the mixture of five compounds β-
ocimene, (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-non-
atriene (DMNT), (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene
(TMTT) and methyl salicylate than to the individual compounds
or partial mixtures of these compounds identified from
Tetranychus urticae Koch (Acari: Tetranychidae)-infested lima
bean plants (vanWijk et al., 2011). The identification of attractant
compounds from HIPVs and OIPVs is mostly specific to the
tri-trophic system herbivore-plant-natural enemy and associated
chemical interactions indicated in Figure 1 (Mumm and Dicke,
2010; Kaplan, 2012b; McCormick et al., 2012).

Herbivore Volatiles for Host or Prey
Location
Natural enemies locate herbivores via their emitted kairomones
(Figure 2) (Vet and Dicke, 1992; Afsheen et al., 2008).
Volatile compounds emitted by herbivores are generally distinct
from plant field background odours and constitute the most
reliable sources of information for natural enemies (Vet and
Dicke, 1992; Rodriguez-Saona and Stelinski, 2009). Herbivore
pheromones are species-specific and usually serve as kairomones
for location of suitable herbivore species by natural enemies
(Aukema and Raffa, 2005). The egg parasitoid Trichogramma
chilonis Ishii (Hymenoptera: Trichogrammatidae) is highly
attracted to (Z)-11-hexadecenyl and (E)-12-tetradecenyl acetates
which are, respectively, components of the sex pheromones
of Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae) and
Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) (Boo and

Yang, 2000). Other natural enemy species are instead attracted
to a blend of pheromone components, as seen in the predatory
bug Orius laevigatus (Fieber) (Hemiptera: Anthocoridae), which
was only attracted to a mixture of 1:2.3 (R)-lavandulyl acetate
and neryl (S)-2-methylbutanoate, the major components of
Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)
aggregation pheromone (Vaello et al., 2017).

Apart from pheromones, natural enemies eavesdrop on
volatile compounds produced by herbivore by-products such as
honeydew (Leroy et al., 2012; Watanabe et al., 2016), larval frass
(Reddy et al., 2002; Wei et al., 2013), and glandular defensive
secretions of larvae or adults (Kopf et al., 1997; Zverava and Rank,
2004). A single component, i.e., phenyl acetaldehyde identified
from honeydew excreted by the aphid, Aphis gossypii Glover
(Hemiptera: Aphididae), attracted the predator Aphidoletes
aphidimyza (Rondani) (Diptera: Cecidomyiidae) (Watanabe
et al., 2016). Reddy et al. (2002) reported that allyl isothiocyanate,
a volatile component of larval frass from P. xylostella-infested
cabbage plants, was highly attractive to P. xylostella natural
enemies, specifically the predator Chrysoperla carnea (Stepehens)
(Neuroptera: Chrysopidae) and the parasitoids C. plutellea and
T. chilonis. Moreover, the syrphid fly predator Parasyrphus
nigritarsis (Zetterstedt) (Diptera: Syrphidae) was highly attracted
to salicyl aldehyde, the main component of the larval secretion
of the prey leaf beetle, Phratora vitellinae (L.) (Coleoptera:
Chrysomelidae) (Kopf et al., 1997).

Herbivore Contact Kairomones for
Host/Prey Recognition and Acceptance
Upon landing on a host plant, natural enemies have to select
the target herbivore species and stages for oviposition or
feeding (Figure 2) (Jaenike, 1978; Scheirs and De Bruyn, 2002;
Gripenberg et al., 2010). This step of the foraging behaviour
is crucial as it defines the survival of the forager and its
offspring. Plants are usually infested by multiple herbivores,
which makes it challenging for natural enemies to select the
target species. Herbivore contact kairomones are often species-
specific, and therefore natural enemies generally rely on these
non-volatile signals, which are examined by antennating or
probing for recognition of hosts or prey (Vinson, 1998; Bénédet
et al., 2002). These cues originate from various sources such
as adult/larva/nymph body surfaces, larvae oral secretions,
egg coating, and wing scales (Afsheen et al., 2008; Kaiser
et al., 2017). A typical example of this is O-caffeoylserine
isolated from the body surface of Phenacoccus herreni Cox
& Williams (Homoptera: Pseudococcidae) and which elicited
strong drumming behaviour, thereby acting as a contact
host-recognition kairomone in the parasitoids Acerophagus
coccois Smith and Aenasius vexans Kerrich (both Hymenoptera:
Encyrtidae) (Calatayud et al., 2001). Moreover, α-amylase from
oral secretions of the hostChilo partellus (Swinhoe) (Lepidoptera:
Crambidae) larvae mediates oviposition in the parasitoid Cotesia
flavipes Cameron (Hymenoptera: Braconidae) (Bichang’a et al.,
2018). Hydrocarbons extracted from herbivores are also involved
in host acceptance by parasitoids, as seen in Trissolcus basalis
Wollaston (Hymenoptera: Scelionidae) which uses non-adecane,

Frontiers in Ecology and Evolution | www.frontiersin.org 6 April 2021 | Volume 9 | Article 641974

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Ayelo et al. Kairomone Use in Biological Control

a cuticular hydrocarbon from body extract of its stink bug host,
Nezaria viridula (L.) (Hemiptera: Pentatomidae), to discriminate
between male and female (Colazza et al., 2007) (see Kaiser
et al., 2017, for a recent review on parasitoids). Gomes-Lagôa
et al. (2019) further reported the crucial role of hydrocarbons
in the selection of preferred stink bug host species by their
parasitoids. These authors found that the parasitoid T. basalis
preferred the hydrocarbons from the footprint extract of its
preferred host, N. viridula, to those of Dichelops melacanthus
(Dallas) and Euschistus heros (Fab.) (Hemiptera: Pentatomidae),
and the parasitoid Telenomus podisi Ashmead (Hymenoptera:
Scelionidae) chose hydrocarbons of the footprint extract of
its preferred host, E. heros, to those of the other two stink
bug species. The selective responses of the parasitoids to
hydrocarbons of their preferred hosts could be explained by
differences in the composition of key hydrocarbons in the blend
extract (Gomes-Lagôa et al., 2019) and by the co-evolutionary
host-parasitoid interactions that have enabled parasitoids to
easily recognise and eavesdrop on chemical stimuli of their
suitable associated hosts (Peri et al., 2013).

Unlike in parasitoids, contact kairomones involved in prey
recognition and acceptance by predatory insects have been
explored in few species and little attention has been paid to
the identification of the chemical cues involved. However, the
predator Cerceris fumipennis Say (Hymenoptera: Crabronidae)
was reported to exploit methyl-branch hydrocarbons from
the cuticle of Buprestidae beetles to recognise prey from
non-prey Chrysomelidae beetles (Rutledge et al., 2014). The
author reported that washed buprestid prey that had been
treated with their crude cuticular extract were accepted by the
predator, whereas those treated with crude cuticular extract of
non-prey beetles were rejected, suggesting that the predator uses
cuticular hydrocarbons as contact kairomone to discriminate
prey from non-prey.

USE OF KAIROMONES IN BIOLOGICAL
CONTROL STRATEGIES

Biological control is a pest management method where natural
enemies are used to reduce populations and damages of pest
organisms (Eilenberg et al., 2001). There are three main forms
of biological control: classical, augmentation, and conservation
(Bale et al., 2008). Classical biological control aims at introducing
and releasing a co-evolved exotic natural enemy—generally
a parasitoid—of an invasive herbivore into invaded areas
for permanent long-term control of the invasive herbivore
(Eilenberg et al., 2001; Bale et al., 2008). Augmentation
biological control involves periodical releases of a natural
enemy when environmental conditions tend to limit its survival,
reproduction, and establishment (van Lenteren, 2000; Collier
and van Steenwyk, 2004). On the other hand, conservation
biological control requires no release, but habitat manipulation
or improvement of control practises are implemented to
provide resources to maintain and enhance survival, fitness, and
reproductive success of natural enemies (Gurr et al., 2000; Zhu
et al., 2014). Biological control is one of the most promising
alternatives to synthetic chemical insecticides, which are widely

applied for the control of herbivores but unsustainable due to the
development of herbivore resistance and associated with negative
impacts on the environment and human health (Gay, 2012).

Cases of successful implementation of biological control have
been documented (e.g., Beddington et al., 1978; Collier and
van Steenwyk, 2004). The parasitoid Aphytis melinus DeBach
(Hymenoptera: Aphelinidae) was used in an augmentation
biological control and successfully controlled the red scale insect
Aonidiella aurantii Maskell (Homoptera: Diaspididae) in citrus
orchards (Moreno and Luck, 1992). However, many cases of
failures in the biological control of insect pests have been
observed (Lynch and Thomas, 2000; Collier and van Steenwyk,
2004). The main issues that cause failures include an insufficient
population level of natural enemies in the target crop and the
emigration or dispersal of natural enemies from cropping sites,
limiting the control of insect pests in the target crops (Heimpel
and Asplen, 2011). In this line, recent studies have highlighted
the use of kairomone-based lures as a sound solution for limiting
emigration of natural enemies and increasing their populations
in target crops, in turn enhancing the efficacy of natural enemies
for satisfactory control of insect pests (Kelly et al., 2014; Peri et al.,
2018).

The effectiveness of kairomones in attracting natural
enemies to enhance biological control of insect pests has been
demonstrated in crop field conditions. The use of HIPVs/OIPVs
in crop fields has generally led to a lower ratio of attracted natural
enemies in kairomone-treated plots relative to control plots,
than when pheromones are used (Tables 1, 2). Unlike HIPVs
or OIPVs, pheromones are species-specific (Aukema and Raffa,
2005; Ruther, 2013), and in most cases they are generally distinct
from plant background odours and therefore reliable indicators
for natural enemies searching for herbivorous insects (Vet and
Dicke, 1992; Rodriguez-Saona and Stelinski, 2009). Insects are
likely to detect and react to blends of odourant compounds in
nature (Thomas-Danguin et al., 2014; Conchou et al., 2019), but
reported studies have mainly focused on field applications of
single kairomonal compounds (Kaplan, 2012a; Tables 1, 2). The
studies published in the last two decades documenting the use
of HIPVs, OIPVs, and pheromones, whereby natural enemies
have been reported to be more attracted to kairomone-baited
plots compared to control plots are summarised in the following
subsections.

Field Applications of Herbivore-Induced
Plant Volatiles
The use of HIPVs and OIPVs as kairomones for the recruitment
of natural enemies against insect pests in crop fields has
been reported (e.g., Kaplan, 2012a; Peñaflor and Bento, 2013).
Applications of methyl salicylate (MeSA) through dispensers in
cranberry and soybean fields attracted more natural enemies
and resulted in increased predation and parasitism rates,
associated with a reduced number of herbivores on plants
(e.g., Mallinger et al., 2011; Rodriguez-Saona et al., 2011).
A pioneer review has addressed the role of (Z)-3-hexenol
in attracting natural enemies into herbivore-infested field
plants (Arabidopsis thaliana, Nicotiana spp., and Phazeolus
spp.) (Wei et al., 2011). A typical example was reported in
a study conducted by Kessler and Baldwin (2001), where
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TABLE 1 | Summary of some synthetic herbivore-induced plant volatiles applied in fields to attract natural enemies.

Kairomone Natural enemy Type, ordera, and family of

natural enemy

Host/prey

species

inducing

release of the

compound

Field crop species Amount of kairomone Ratiob of natural

enemies caught

between treated

plot and control

Is the crop yield

improved in the

treated plot

relative to control?

Referencesc

Methyl salicylate Chrysopa nigricornis Predator (Neu.: Chrysopidae) Not specified Vitis vinifera 2mL of neat compound 6 nd James, 2003a

5 g of neat compound 2 nd James and Price,

2004

Geocoris pallens Predator (Hem.: Geocoridae) Not specified Vitis vinifera 1mL of neat compound 7 nd James, 2003b

Orius tristicolor Predator (Hem.: Anthocoridae) Not specified Vitis vinifera 5g of neat compound 7 nd James and Price,

2004

Chrysopa oculata Predator (Neu.: Chrysopidae) Tetranychus

urticae

Vitis vinifera 1mL of neat compound 6 nd James, 2006

Stethorus punctum

picipes

Predator (Col.: Coccinellidae) Not specified Vitis vinifera 5g of neat compound 57 nd James and Price,

2004

1mL of 1.5 µL/mL 2 nd Maeda et al., 2015

Coccinella

septempunctata

Predator (Col.: Coccinellidae) Aphis glycines Glycine max 100mg of neat compound 3 nd Zhu and Park, 2005

Predatory beetles and

parasitoidsd
– Not specified Triticum aestivum 120mg of neat compound 2 Improved Wang et al., 2011

Toxomerus sp. & Orius

insidiosus

Predators (Dip: Syrphidae) &

(Hem.: Anthocoridae)

Not specified Phaseolus vulgaris 3mL of neat compound 7 & 2 Not improved Salamanca et al.,

2018

Mixture of Methyl

salicylate,

(Z)-3-hexenol and

(Z)-3- hexenyl

acetate

Stethorus punctum

picipes

Predator (Col.: Coccinellidae) Not specified Vitis vinifera 1mL of 1.5 µL/mL each

(1:1:1 ratio)

2 nd Maeda et al., 2015

(Z)-3-hexenyl

acetate

Orius tristicolor Predator (Hem.: Anthocoridae) Not specified Vitis vinifera 1mL of neat compound 5 nd James, 2003b

Coccinella

septempunctata

Predator (Col.: Coccinellidae) Not specified Gossypium hirsutum 1mL of 10 mg/mL 9 nd Yu et al., 2008

Orius similes Predator (Hem.: Anthocoridae) Not specified Gossypium hirsutum 1mL of 10 mg/mL 4 nd Yu et al., 2008

Anaphes iole Parasitoid (Hym.: Mymaridae) Lygus lineolaris Gossypium hirsutum 2mL of neat compound 3++ nd Williams et al., 2008

2-Phenylethanol Chrysoperla carnea Predator (Neu.: Chrysopidae) Aphis glycines Glycine max 100mg of neat compound 5 nd Zhu and Park, 2005

Eupeodes volucris or

Eupeodes fumipennis

Predators (Dip: Syrphidae) Not specified Apple trees 1mL of neat compound 8 nd Jones et al., 2016

(Continued)
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TABLE 1 | Continued

Kairomone Natural enemy Type, ordera, and family of

natural enemy

Host/prey

species

inducing

release of the

compound

Field crop species Amount of kairomone Ratiob of natural

enemies caught

between treated

plot and control

Is the crop yield

improved in the

treated plot

relative to control?

Referencesc

(E,E)-α-Farnesene Anaphes iole Parasitoid (Hym.: Mymaridae) Lygus lineolaris Gossypium hirsutum 2mL of neat compound 4++ nd Williams et al., 2008

Tetrastichus asparagi &

Paralispe infernalis

Parasitoids (Hym.: Eulophidae) Crioceris

asparagi

Phaseolus vulgaris 0.75mL of neat

compound

2 nd Ingrao et al., 2019

cis-α-Bergamotene Geocoris punctipes Predator (Hem.: Lygaeidae) Manduca sexta Nicotiana attenuata 40 µL of 0.1 nmol 4++ nd Halitschke et al.,

2008

Octanal Deraeocoris punctulatus Predator (Hem.: Miridae) Not specified Gossypium hirsutum 1mL of 10 mg/mL 8 nd
Yu et al., 2008

Nonanal Harmonia axyridis Predator (Col.: Coccinellidae) Not specified Sophora japonica 150 µL of 10 or 100

mg/mL

8 & 15 nd Xiu et al., 2019a

3,7-Dimethyl-1,3,6-

octatriene

Orius similes Predator (Hem.: Anthocoridae) Not specified Gossypium hirsutum 1mL of 10 mg/mL 3 nd Yu et al., 2008

Isopropanol Chrysopa quadripunctata Predator (Neu.: Chrysopidae) Cotinis nitida Malus domestica 125mL of 45% dilution 100* nd Pszczolkowski and

Johnson, 2011

Squalene Chrysopa nigricornis Predator (Neu.: Chrysopidae) Not specified Apple trees 2mL of neat compound 5 nd Jones et al., 2011

Iridodial Chrysopa nigricornis Predator (Neu.: Chrysopidae) Not specified Apple trees 4mg of neat compound 3 nd Jones et al., 2011

Mixture of methyl

salicylate and

Iridodial

Chrysopa oculata & C.

nigricornis

Predators (Neu.: Chrysopidae) Not specified Apple trees 2 mL: 4mg ratio of neat

compound

100* & 10 nd Jones et al., 2011

Benzaldehyde Chrysoperla plorabunda Predator (Neu.: Chrysopidae) Not specified Apple trees 0.5mL of neat compound 80 nd Jones et al., 2011

Mixture of

phenylacetonitrile,

2-phenylethanol and

acetic acid

Chrysoperla plorabunda Predator (Neu.: Chrysopidae) Pandemis

pyrusana

Apple trees 100 mg: 100 mg: 3mL

amounts of neat

compounds

100* nd El-Sayed et al., 2018

Dimethyl disulfide Aleochara bilineata & A.

bipustulata

Predators (Col.: Staphilinidae) Delia radicum Brassica oleracea 500 µL neat compound:

paraffin oil (1:250 ratio)

6 & 2 Not improved Ferry et al., 2009

Indole Propylaea japonica Predator (Col.: Coccinillidae) Not specified Gossypium hirsutum 1mL of 10 mg/mL) 3 nd Yu et al., 2017

Linalool Propylaea japonica Predator (Col.: Coccinillidae) Not specified Gossypium hirsutum 1mL of 10 mg/mL 4 nd Yu et al., 2017

α-Pinene Chrysoperla sinica Predator (Neu.: Chrysopidae) Not specified Gossypium hirsutum 1mL of 10 mg/mL 4 nd Yu et al., 2017

Harmonia axyridis Predator (Col.: Coccinellidae) Aphis gossypii Gossipium hirsitum 150 µL of 10 or 100

mg/mL

19 & 53 nd Xiu et al., 2019b

(Continued)
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plots of natural population of Nicotiana attenuata Torrey ex
S. Watson (Solanaceae) plants with (Z)-3-hexenol applied in
lanolin paste resulted in an 8-fold increase in eggs and larvae
mortality thanks to the attractiveness of the predator Geocoris
pallens Stål (Heteroptera: Geocoridae), which preyed on a
high number of eggs and larvae of Manduca quinquemaculata
(Haworth) (Lepidoptera: Sphingidae), Dicyphus minimus Uhler
(Heteroptera: Miridae), and Epitrix hirtipennis (Melsheimer)
(Coleoptera: Chrysomelidae). Table 1 provides some additional
examples of field-based applications of herbivore-induced plant
volatiles that resulted in significant increase in the number of
attracted natural enemies in semiochemical-field plots compared
to control plots.

Use of Pheromones as Field Attractants for
Natural Enemies
The application of pheromones in agricultural crop fields to
enhance host location behaviour by natural enemies for the
control of insect pests has been the focus of great attention
(Aukema and Raffa, 2005; Pfammatter et al., 2015). Pheromones
(e.g., sex, aggregation, marking, alarm-pheromones) are
environmentally safe for use in crop protection. Aggregation
pheromones in bark beetle species are diversified, composed
of mono or pluri-chemical compounds (ipsenol, ipsdienol,
cis-verbenol, trans-verbenol, frontalin, exo-brevicomin, endo-
brevicomin, etc.) (Symonds and Gitau-Clarke, 2016), some of
which have shown kairomonal activity in attracting predators
in crop fields. For example, high numbers of the predators
Thanasimus dubius (Fabricius) (Coleoptera: Cleridae) and
Platysoma cylindrica (Paykull) (Coleoptera: Histeridae) were
attracted to 50%-ipsdienol-baited traps in red pine, Pinus
resinosa Ait. (Pinaceae), plantations (Aukema and Raffa, 2005).
Although many studies have focused on the role of herbivore
pheromones in field recruitment of natural enemies, sex or
aggregation pheromones of natural enemies can also be used as
field attractants to manipulate the behaviour of conspecifics (Wu
et al., 2019), thereby increasing the natural enemy population
level which could indirectly be beneficial for the control of
insect pests. Table 2 presents some additional studies on the
use of pheromones as field attractants for natural enemies.
However, some insect pheromone components appeared to be
plant volatile compounds (Tittiger and Blomquist, 2016). Such
compounds were not considered in this analysis as they likely
exert the same attraction effect as applied HIPVs/OIPVs under
field conditions. For example, like HIPVs or OIPVs (Table 1),
field application of the aphid-alarm pheromone (E)-β-farnesene,
also known to be a plant compound, generally led to 2- to 3-fold
more catches of aphid natural enemies in pheromone-treated
plots relative to untreated plots (Vosteen et al., 2016, and
reference therein).

AVENUE OF RESEARCH FOR IMPROVING
KAIROMONE EFFICIENCIES AND THEIR
ASSESSMENT IN BIOLOGICAL CONTROL

Applications of synthetic kairomone-based lures in biological
control of insect pests continue to gain attention in the field
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TABLE 2 | Summary of some pheromones applied in the field to attract natural enemies.

Kairomone Natural enemy Type, ordera,

and family of

natural enemy

Host/prey species

releasing the

compound

Field crop

species

Compound and

its composition

(amount)

Type of

pheromone

(sex of the

emitter)

Ratiob of

insects caught

between

treated plot

and control

Is the crop

yield improved

in the treated

plot relative to

control?

Referencesc

Methyl (2E,4Z)-decadienoate Gymnoclytia

occidentalis

Parasitoid (Dip.:

Tachinidae)

Euschistus

conspersus

Apple trees 200 µL of neat

compound

Aggregation

(male)

19 nd Krupke and Brunner,

2003

(2E,5R,6E,8E)-5,7-dimethyl-

2,6,8-decatrien-4-one

Hemerobius

stigmaterus

Predator (Neu:

Hemerobiidae)

Matsucoccus josephi Pinus resinosa 50 µg of neat

compound

Sex (female) 100* nd Mendel et al., 2004

Elatophilus hebraicus Predator (Het.:

Anthocoridae)

Matsucoccus josephi Pinus resinosa 220 µg of neat

compound

Sex (female) 100* nd Mendel et al., 2004

(2E, 4E)-4,6,10,12- Tetramethyl-

2,4-tridecadien-7-one

Hemerobius stigma Predator (Neu:

Hemerobiidae)

Matsucoccus

matsumurae

Pinus spp. 600 µg of neat

compound

Sex (female) 100* nd Mendel et al., 2004;

Branco et al., 2006

(3S,7R,8E, l0E)-3,7,9-trimethyl-

8,10-dodecadien-6-one

Elatophilus nigricornis Predator (Het.:

Anthocoridae)

Matsucoccus

feytaudi

Pinus resinosa 220 µg of neat

compound

Sex (female 100* nd Mendel et al., 2004

Elatophilus

crassicornis

Predator (Het.:

Anthocoridae)

Matsucoccus

feytaudi

Pinus pinaster 220 µg of neat

compound

Sex (female) 100* nd Branco et al., 2006

(R)-(C)-Y-decalactone Elater ferrugineus Predator (Col.:

Elateridae)

Osmoderma eremita Quercus robur 400 µL of neat

compound

Sex (male) 20 nd Svensson et al., 2004

(6Z,9Z,11S,12S)-11,12-

Epoxyhenicosa-6,9-diene

Telenomus euproctidis Parasitoid

(Hym.:

Scelionidae)

Orgyia postica Hibiscus spp. 200 µL of 2.5

µg/µL

Sex (female) 44 nd Arakaki et al., 2011

Mixture of trans-Verbenol and

Exo-brevicomin

Thanasimus dubius Predator (Col.:

Cleridae)

Dendroctonus

ponderosae

Pinus resinosa 150mg of neat

compound

Aggregation

(male)

47 nd Pfammatter et al.,

2015

Cyclolavandulyl butyrate Anagyrus subalbipe Parasitoid

(Hym:

Encyrtidae)

Planococcus

kraunhia

Persimmon

and apple

10 µL of 0.16

µg/µL

Sex (-) nd+ nd Sugawara and Ueno,

2020

α-Terpineol** Podisus maculiventris Predator (Het:

Pentatomidae)

Self Solanum

tuberosum

Not quantified Aggregation

(male)

nd+ nd Aldrich and Cantelo,

1999

Blend of (E)-2-octenal and

(E)-2,7-octadienal

Orius sauteri Predator (Het:

Anthocoridae)

Self grasses 1mg of neat

compound each

(1:1 ratio)

Sex (female) 4 nd Uehara et al., 2019

Blend of (E)-2-Hexenal, Benzyl

alcohol, (E)-2-Hexen-1-ol and

Benzaldehyde

Arma chinensis Predator (Hem:

Pentatomidae)

Self Poplar trees 130 µL of neat

compound in

5:5:2:1 ratio

Aggregation

(male)

100* nd Wu et al., 2019

aOrders abbreviated as Dip., Diptera; Hem., Hemiptera; Col., Coleoptera; Neu., Neuroptera; Hym., Hymenoptera; bRatio as directly reported in the studies or expressed from the length of plots displaying the number of insects caught.
cwe included only studies conducted within nearby the two last decades and in which the number of the attracted natural enemy was reported to be significantly greater in pheromone-baited plots than in control plots, and where the

attracted natural enemy has been identified to species level. *nearly zero insects caught in the control plots; **live insects producing the pheromone were used in the experiments; nd, not determined; nd+, not determined because there

were no control plots in the experiments; self, the natural enemy itself is the pheromone emitter.
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of chemical ecology (Kaplan, 2012a; Kelly et al., 2014; Murali-
Baskaran et al., 2018; Peri et al., 2018; Blassioli-Moraes et al.,
2019; Peñaflor, 2019). Several questions will have to be addressed
in future research to improve kairomone use and thereby to
efficiently benefit biological control (Kaplan, 2012b; Gish et al.,
2015). Here, we present some strategies and discuss gaps for
consideration when designing a kairomone-oriented control
strategy for the protection of field crops. This is particularly
important because many previous applications of synthetic
kairomones have not considered the direct benefits for plants,
especially the reduction in pest populations and crop damage,
and the increase in crop yields (Hiltpold and Turlings, 2012;
Kaplan, 2012a; Tables 1, 2 of this review). It is therefore
opportune to examine how kairomones have been implemented
in the field and assess possible options to optimise their use.

An Optimised Attract and Reward
Technique
The attract and reward technique consists of the combined use of
an attractant—usually a kairomone—and a reward component
such as flowering companion plants (Simpson et al., 2011). The
technique has gained considerable attention since it promotes
early establishment of natural enemies in crop fields and reduces
their subsequent emigration from these cropping sites (Simpson
et al., 2011; Parolin et al., 2012). The attract component stimulates
the foraging behaviour and maintenance of natural enemies in
target crops, whereas the reward component offers alternative
foods such as nectar and pollen which supplement the diet
of natural enemies. Consumption of nectar, which is source
of carbohydrates, has proved to increase the longevity and
fecundity of natural enemies (Araj and Wratten, 2015, and
references therein). Apart from supplying extra-floral nectars and
pollen, the reward component can also offer additional benefits
such as shelter and supply of alternative hosts and prey to
natural enemies.

The attract and reward combination significantly increases
natural enemy populations in crop fields over the application
of either of these components alone (Simpson et al., 2011;
Salamanca et al., 2018). The combination of MeSA as
attractant and buckwheat Fagopyrum esculentum Möench
(Polygonaceae) as reward plant boosted the abundance of
Scelonidae wasps on broccoli plants, and that of Eulophidae
wasps on sweetcorn plants (Simpson et al., 2011). Salamanca
et al. (2018) reported that the combination of MeSA and
coriander plants also led to an increased abundance of
the predatory thrips Franklinotrips vespiformis (Crawford)
(Thysanoptera: Aeolothripidae), predatory bugs Orius insidiosus
(Say) (Hemiptera: Anthocoridae), and hoverflies, Toxomerus sp.
(Diptera: Syrphidae), on bean plants, but no increase was found
in the abundance of earwigsDoru sp. (Dermaptera: Forficulidae).
However, the spatial arrangement of the attract and reward
components influences the abundance of natural enemies and the
control level of insect pests. For example, an increased abundance
of the predator Propylea japonica (Thunberg) (Coleoptera:
Coccinellidae) and a decreased population of the aphid Aphis
citricola van der Goot (Hemiptera: Aphididae) were noted when

MeSA was placed inside and Calendula officinalis L. (Asteraceae)
reward was placed at the edge of apple tree orchards compared
to the opposite arrangement (reward inside and MeSA at the
edge) and the control (no MeSA, no reward) (Jaworski et al.,
2019). The efficacy of the spatial arrangement supports the design
of the push-pull technique which promotes intercropping of
companion plants, one placed inside the crop field for repelling
herbivores, i.e., “push,” and another placed at the edge of the crop
field for attracting them, i.e., “pull” (Cook et al., 2007; Khan et al.,
2010). Although the push-push itself increases the abundance
of natural enemies compared to mono-cropping (Khan et al.,
2008; Leslie et al., 2020), the combination of push-pull with the
deployment of synthetic kairomone attractive to natural enemies
could further increase the natural enemy population to a level
required to reduce the insect pest density and crop damage to
below economic threshold levels, which could be assessed in
future studies.

Apart from increasing the abundance of natural enemies,
the combination of attract and reward has a long-lasting
effect, whereby more natural enemies can be sustained over
time in a crop field with reward than those without reward.
Simpson et al. (2011) used MeSA as attractant and buckwheat
as reward and recorded an increase in populations of parasitoids;
e.g., Dolichogenidae tasmanica (Cameron), Micropiltis demolitor
Wilkinson (both Hymenoptera: Braconidae), Trichogramma
pretiosum Riley (Hymenoptera: Trichogrammatidae), Diadegma
semiclausum (Hellen) (Hymenoptera: Ichneumonidae), and
predators of Tachinidae family in crop fields with the reward
compared to those without reward, especially as time elapsed.
Jaworski et al. (2019) also recorded more predator P. japonica
persisting in apple tree orchards bearing MeSA and the reward,
C. officinalis plant, which resulted in long-term control of the pest
A. citricola compared to control orchards.

Successful implementation of the attract and reward
technique has some limitations, e.g., attraction of non-target
organisms. Herbivores and hyper-parasitoids/predators can also
be attracted into crop fields because most field-tested HIPVs are
commonly emitted volatiles with broad-scale attraction effects,
and the reward plants can also serve as habitat for herbivores
(Simpson et al., 2011; Orre-Gordon et al., 2013; Sarkar et al.,
2018). Methyl salicylate is a common plant volatile compound
used to attract natural enemies. However, it was found to be
attractive to untargeted insect species such as herbivorous
insect pests (e.g., P. rapae, P. xylostella, Scaptomyza flava)
and hyper-parasitoids (e.g., Baryscapus galactopus (Ratzeburg)
(Hymenoptera: Eulophidae), Anacharis zealandica Ashmead
(Hymenoptera: Figitidae), and Diplazon laetatorius Fab.
(Hymenoptera: Ichneumonidae) (Orre-Gordon et al., 2013).
Buckwheat is a rewarding plant that is commonly used in an
attract and reward technique. However, it was also reported
to harbour herbivorous thrips such as Thrips tabaci Lindeman
(Thysanoptera: Thripidae) and aphids (Orre-Gordon et al., 2013;
Sarkar et al., 2018). Despite such unwanted effects, the attract
and reward combination could potentially enhance conservation
biological control through the recruitment of natural enemies
and their retention into the vicinity of target crops (Orre-Gordon
et al., 2013; Peñaflor and Bento, 2013). Ways to improve its
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implementation and overcome such negative impacts could
include the selection of HIPVs that are attractive to a narrow
range of natural enemies but not to their hosts or prey (Ferry
et al., 2009), the use of natural enemy pheromone as the
attractant (Ruther, 2013), reward plants which are non-hosts
to the target insect pest(s) (Sarkar et al., 2018), an appropriate
spatial arrangement of the attractant and reward (Jaworski et al.,
2019), and the introduction of a herbivore-repellent component
into the system (Cook et al., 2007; Xu et al., 2017a; Pålsson,
2019). Future studies are needed to investigate the integration
of these tactics for an improved attract and reward technique to
enhance biological control in agro-ecosystems.

Incorporating Olfactory Associative
Learning to Improve the Efficiency of
Foraging Behaviour by Natural Enemies
Olfactory associative learning is a training process that involves
conditioning an insect to learn and recognise to associate a
particular odour with the presence of a reward (Arthur, 1971;
Turlings et al., 1993). This process tends to modify the insect’s
innate host preference (Weiss, 1997), which is established during
larval development (Hopkins, 1917; Barron, 2001) or shortly after
adult emergence (Jaenike, 1983; Barron, 2001). It is likely that
insect foragers learn and use odour stimuli that increase their
chances of finding suitable hosts (Jaenike, 1983; Vet et al., 1995;
Scheirs and De Bruyn, 2002). In conditioned insects, olfactory
associative learning develops their ability to exhibit a strong
response upon perception of the learned odour (Vet and Papaj,
1992; Faber et al., 1999). Therefore, odour learning has emerged
as a strategy to enhance foraging success and to consequently
minimise interference of environmental background odours (Vet
and Papaj, 1992; Arenas et al., 2007).

The use of olfactory associative learning in natural enemies
to improve biological control has recently been a focus of
great interest, especially by training or conditioning them
on kairomones during the mass rearing process before their
release in fields [reviewed in Giunti et al. (2015), Kruidhof
et al. (2019)]. Exposure of parasitoid Hyssopus pallidus (Askew)
(Hymenoptera: Eulophidae) larvae to the apple fruit extract
odour led to an adult preference for apple fruit extract, whereas
unexposed individuals did not show any preference (Gandolf
et al., 2003). Unlike naïve individuals of the predator Anthocoris
nemoralis (Fab.) (Hemiptera: Anthocoridae), individuals that
had experience on MeSA-treated prey showed a pronounced
preference for the volatile (Drukker et al., 2000). Interestingly,
Meiners et al. (2003) showed that parasitoids that had learned
to recognise a mixture of compounds could also respond to the
individual blend compounds.

The efficiency of olfactory associative learning has also been
reported for improving host location behaviour by natural
enemies in crop fields. Females of the parasitoids C. glomerata
and D. semiclausum with previous experience on HIPVs from
Brassicaceae plants infested by P. brassicae and P. xylostella
successfully oriented towards host-infested plants even in
the presence of surrounding non-host and alternative host
plant vegetation, whereas unexperienced parasitoids failed

to preferentially locate the host-infested plants (Tibor et al.,
2007; Kruidhof et al., 2015). Moreover, Hare et al. (1997)
reported that the parasitoid A. melinus previously trained
on O-caffeoyltyrosine during rearing achieved greater egg
parasitisation on field populations of A. aurantii than naïve
parasitoids. Similarly, the predators Cycloneda sanguinea (L.)
(Coleoptera: Coccinellidae), Ceraeochrysa cubana (Hagen)
(Neuroptera: Chrysopidae), and Podisus nigrispinus (Dallas)
(Heteroptera: Pentatomidae) trained on mint oil, a commercial
volatile blend predominantly consisting of menthol, menthone,
(+)-menthyl acetate, menthofuran, isomenthone, limonene, and
1,8-cineole, consumed more eggs of Thyrinteina leucoceraea
(Rindge) (Lepidoptera: Geometridae) and Diatraea saccharalis
(Fab.) (Lepidoptera: Pyralidae) in field plots bearing the mint oil
than in control plots (Janssen et al., 2014).

Although olfactory associative learning enhances host finding
success by natural enemies, it remains unknown how long the
learned odour could persist in the insect’s memory. Natural
enemy species differ in their intrinsic capacity to conserve
information over time (short-term, mid-term, and long-term
memories) (Vet and Dicke, 1992; Hoedjes et al., 2011; Mery,
2013). Moreover, it is worth considering to what extent acquired
information could be conserved under natural conditions,
knowing that environmental variation has been reported as
one of the major factors underlying variation in learning and
memory retention (Mery, 2013; Smid and Vet, 2016). Future
studies should therefore be focused on investigating how to fine-
tune odour learning in natural enemies for long-term memory
consolidation to the benefit of their foraging success. However,
periodic releases of natural enemies trained on kairomones
during rearing could provide an efficient control of insect pests in
crop fields (Hare et al., 1997; Giunti et al., 2015; Kruidhof et al.,
2019).

Applying Volatile Kairomones Based on
Field Background Odour of Target Crop
Plant field background odour is one factor that could mask
the relevance of kairomone-based lures to natural enemies in
agricultural fields (Schröder and Hilker, 2008; Cai et al., 2017; Xu
et al., 2017b). SomeHIPVs andOIPVs are common in the volatile
profiles of host plants, but they are often released in different
ratios between plant species. Plants therefore have different
potentials for shaping the attraction of natural enemies to field
applied synthetic HIPVs/OIPVs. Braasch et al. (2012) evaluated
the effects of target crop species on parasitoid attraction to MeSA
and found that more hymenopteran parasitoids were attracted to
MeSA-baited traps in field soybean plants than in corn plants.
Similarly, when (E)-β-farnesene and (E)-β-caryophyllene were
deployed in beet, bean, and wheat crops, predatory hoverflies
of the Syrphidae family were significantly attracted to (E)-β-
caryophyllene-baited traps only in beet crops, and to (E)-β-
farnesene-baited traps only in bean crops compared to unbaited
controls (Heuskin et al., 2012).

Field HIPV-based lures are usually applied in crops which also
release the HIPV of interest, and this may increase interference
with the successful location of lures by natural enemies. Flint
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et al. (1979) found that the attraction of the green predatory
lacewing, C. carnea, to synthetic caryophyllene applied on cotton
plants reduced as the plants grew and released the compound,
and detection of the lure thereby waned. Caryophyllene was,
however, not attractive to C. carnea in wheat plants (Dean and
Satasook, 1983) for which it is one of the most abundant volatile
compounds (Jiménez-Martínez et al., 2004). In such cases, the
use of concentrations beyond that of the target HIPV in the plant
field background odour or in specific blends could help pinpoint
the relevant concentration or blend composition that would best
attract natural enemies to kairomone-based lures (Szendrei and
Rodriguez-Saona, 2010; Xu et al., 2017b). Field application of a
synthetic volatile blend composed of ocimene, limonene, (Z)-3-
hexenol, and (Z)-3-hexenyl acetate attracted tea leafhoppers in
autumn when the tea field background odour contained very
low quantity of these compounds, yet the blend was unattractive
to the insects in summer when the individual compounds were
present in much higher concentrations in the background odour
(Xu et al., 2017b).

An alternative strategy for reducing this interplay between the
kairomone-based lure and volatile emission by the target field
crops could be to use an attractant HIPV in crop fields where it
is not released or only released in very low quantity to enhance
the detection of the lure within the crop background odour.
Field traps baited with phenylacetaldehyde attracted 10–100-fold
more predator C. carnea than unbaited traps when deployed
in cherry and peach orchards (Tóth et al., 2006). Interestingly,
the volatile profiles of cherry and peach plants contain minor
amounts or no phenylacetaldehyde (Najar-Rodriguez et al., 2013;
Bandeira-Reidel et al., 2017; Ye et al., 2017;Maatallah et al., 2020).
Therefore, unlike caryophyllene, it is likely that the predator
C. carnea would be attracted to phenylacetaldehyde on cotton
and wheat plants of which the headspace volatiles lack this
compound (Thompson et al., 1971; Rodriguez-Saona et al., 2001;
Jiménez-Martínez et al., 2004; Starr et al., 2015). Two synthetic
blends which differed in their benzaldehyde and ethyl benzoate
content attracted tea leafhoppers in the laboratory, but the results
differed when they were deployed in tea field plantations. The
blend that contained ethyl benzoate that was absent in the tea
field background odour attracted more tea leafhoppers in field
experiments compared to a paraffin oil control solvent (Cai et al.,
2017). The blend that contained benzaldehyde, a compound
which dominated the tea background odour, was no longer
attractive to tea leafhoppers in crop fields (Cai et al., 2017).

Standardising Kairomone-Based Field
Implementation Design to Be Able to Draw
Generic Conclusions
Kairomones have been validated for the recruitment of natural
enemies in crop fields across diverse agro-ecosystems (James and
Price, 2004; Tóth et al., 2009; Jones et al., 2016; Cai et al., 2017;
Peñaflor, 2019). However, the approaches used in these studies
varied, and this may lead to some discrepancies. Although abiotic
factors are hardly standardised across landscapes (Almekinders
et al., 1995), a number of biotic factors and kairomone
implementation practises could be made uniform in studies to

strengthen the conclusions drawn from the findings of spatial and
temporal studies. There is a need to improve how kairomones
have been applied and assessed regarding their effectiveness with
the aim of enhancing biological control strategies.

Firstly, there is a need to optimise the concentrations,
compositions, and release rates of kairomones under field
conditions. Since natural enemies display concentration-
dependent responses in nature (James, 2006; Ferry et al., 2007;
Kaplan, 2012a), conclusions drawn from studies considering only
one concentration of the test kairomone are to be interpreted
with caution. Field studies have demonstrated that population
levels of attracted natural enemies differed according to the
kairomone concentrations (Tables 1, 2). Therefore, it is crucial
to test a range of concentrations to better assess the effectiveness
of kairomone-based lures and their possible optimisation for
field application. Using MeSA-baited yellow sticky cards in
vineyards, James (2006) recorded more than 2-fold increase in
green predatory lacewing Chrysopa oculata Say (Neuroptera:
Chrysopidae) populations in plots baited with 99% MeSA
compared to plots baited with 10 and 1% MeSA, while both
of the latter did not differ from the control. Similarly, field
application of different dimethyl disulfide concentrations (0.1,
1, 10, and 100% v/v dimethyl sulphide/paraffin oil) revealed
that a 10% dilution caught the highest number of predators,
Aleochara bipustulata (L.) and Aleochara bilineata Gyllenhal
(both Coleoptera: Staphilinidae). Whereas more predatory
carabid beetles were caught with a 1% concentration compared
with a 100% concentration and the control (Ferry et al., 2007). It
is also important that future studies focus on the use of odourant
mixtures as field attractants for the recruitment of natural
enemies. In a simulated model, Chan et al. (2018) showed that
odourant mixtures elicit faster olfactory processing responses
in insects (e.g., honeybees) and are more reliable for insect
olfaction than single odourants. Insects are likely to exploit
blend of odourants when foraging in nature (Thomas-Danguin
et al., 2014; Conchou et al., 2019). Jones et al. (2011) reported
high numbers of the predators C. nigricornis and C. oculata
in apple orchard plots with traps baited with the blend of
MeSA and iridodial compared to plots with traps baited with
either compound alone. The release rate of kairomone-based
lures should also be taken into consideration, as it can provide
insight on their diffusion and the frequency of lure replacement
during the study period. The solvent used to formulate the
lure, the dispenser used to deliver it, and some abiotic factors
(e.g., temperature and relative humidity) affect the release
rate of kairomone and consequently its long-lasting effect and
effectiveness in attracting natural enemies in crop fields (Jones
et al., 2011; Heuskin et al., 2012; Kaplan, 2012a; Xu et al., 2017b).
James (2006) used a 99% MeSA lure replaced at weekly intervals
over a 5-week period and observed that the number of captured
C. oculata was 5–8-fold higher in MeSA-treated plots than in the
controls during the first 3 weeks, but then the captures declined
to a low level in the final 2 weeks. Likewise, more predatory
ladybeetle and hoverfly adults were recorded on wheat plants
when the applied pheromone (E)-β-farnesene-based lure was
formulated in paraffin oil compared with an alginate bead-based
formulation (Xu et al., 2017b). The observed difference was

Frontiers in Ecology and Evolution | www.frontiersin.org 14 April 2021 | Volume 9 | Article 641974

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Ayelo et al. Kairomone Use in Biological Control

explained by the effect of the experimental conditions whereby
the diffusion of (E)-β-farnesene from alginate beads was limited
by the high relative humidity that prevailed, as reported by
Heuskin et al. (2012).

Secondly, there is need for an implementation design that
enables a uniform distribution of the attracted natural enemies
within the semiochemical-treated field. Studies investigating the
effects of semiochemical-based lures have been implemented
in diverse crop fields, but little attention has been paid to the
distribution of natural enemies within the target field, which
is nevertheless a key factor with regard to herbivorous insect
pest control (Rodriguez-Saona et al., 2011; Braasch and Kaplan,
2012; Lim and Mainali, 2013; Vidal and Murphy, 2018). A
simulated model conducted by Kaplan and Lewis (2014) revealed
that the size of the kairomone field had a marked effect on
the number and distribution of attracted predators, with more
predators attracted to small fields compared to large fields,
and with abundance of attracted predators within the target
field decreasing with increasing distance from the field edge. In
these scenarios, the core of the target field becomes an enemy-
free space, and therefore an unprotected zone where herbivore
outbreaks could occur. Apart from the field size, the density
of kairomone-release points and the distance over which the
formulated lure can be effective also affect also the distribution
of attracted natural enemies for successful control of insect pests.
By tracking the abundance of natural enemies over a gradient
of distances from the HIPV lure-releasing point, 90d Predalure
(AgBio Inc. Westminstewr, CO, USA), a commercially available
MeSA lure, was reported to be active over a small spatial scale
of 1.5 to 2.5m (i.e., increased abundance only in a localised area
surrounding the emission source) in soybean and cranberries
crop fields (Mallinger et al., 2011; Rodriguez-Saona et al., 2011).
A 40d Predalure was active over a broad spatial scale of 8–10m
(i.e., increased abundance both at the immediate emission source
as well as in neighbouring areas) in tomato crop fields (Kelly
et al., 2014). Similarly, phenylethyl alcohol and an induced maize
volatile blend were also active at a broad spatial scale of 8–10m
in soybean and maize crop fields (Ockroy et al., 2001; Braasch
and Kaplan, 2012). The bioactive attraction range of a formulated
kairomone could generate insight on the experimental field size
and the adequate lure density (i.e., number of lure sources per
unit area), both of which have a profound effect on the abundance
of natural enemies and the insect pest control level. For example,
over a transect distance of 36m from pheromone releasing-
points, Lim and Mainali (2013) recorded high abundance of the
parasitoids Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae)
and Gryon japonicum (Ashmead) (Hymenoptera: Scelionidae)
associated with a high parasitism rate up to 18m in soybean
fields baited with the pheromone [blend of (E)-2-hexenyl (E)-
2-hexenoate and (E)-2-hexenyl (Z)-3-hexenoate] identified from
the host, Riptortus pedestris (Fab.) (Hemiptera: Alydidae). Using
MeSA in hop yards and vineyards, abundance of predators
increased with less lure density (James and Price, 2004), but such
relationship may depend on the attracted natural enemy species
and family (Gadino et al., 2012). Under field conditions, the
odour concentration decreases with increasing distance from its
source (Beyaert and Hilker, 2014). Therefore, when designing

a kairomone-based lure field experiment, it is also important
to create enough space between kairomone and kairomone-free
zones to prevent interference of odours and emigration of natural
enemies between both zones. Although there is no rule on how
to define the space of such interzone (buffer zone), we suggest a
minimum of 2-fold the distance over which the kairomone-based
lure is bioactive. However, future studies are needed to be able to
draw evidence-based recommendations.

Thirdly, when used to enhance conservation biological control
strategies, a kairomone should not only show effectiveness in
attracting natural enemies, but its application should also lead
to reduction in pest populations and crop damage through
increased parasitism and predation rates, and to an increase
in crop yields (Kaplan, 2012a; Salamanca et al., 2018). This
may require assessment of kairomone effectiveness shifting
from simply looking at natural enemy catches to direct field
observation when possible, or at least a combination of the
two methods. The field application of synthetic HIPVs is
known to prime HIPV production in neighbouring undamaged
plants, hence triggering indirect defences against herbivores
(Engelberth et al., 2004; von Mérey et al., 2011). James and
Price (2004) reported that canopy shake samples from hop
yards resulted in a 7- and 57-fold increase in Orius tristicolor
(White) (Hemiptera: Anthocoridae) and Stethorus punctum
picipes (Casey) (Coleoptera: Coccinellidae), respectively, in
MeSA-baited compared to unbaited plots. Although it is widely
acknowledged that kairomones increase the abundance of natural
enemies in crop fields, it is debatable whether their increase
leads to a reduction in crop damage by pests, and a subsequent
increase in crop yields. In a 2-year study, Wang et al. (2011)
recorded an increase in the abundance of predatory lady beetles
(C. septempunctata, H. axyridis, and P. japonica) associated with
a reduced density of the grain aphid, Sitobion avenae (Fab.)
(Hemiptera: Aphididae), and increases in the parasitism rate and
wheat yield in MeSA-baited wheat plots compared to unbaited
plots. Although, Salamanca et al. (2018) reported an increased
abundance of biocontrol agents (Toxomerus sp. andO. insidiosus)
with a reduced spider mite damage to bean plants, the yield of
beans was not improved by the application of MeSA compared
to control plots. Application of MeSA also did not reduce pest
populations or increase strawberry and grapevine yields (Lee,
2010; Simpson et al., 2011). We speculate that, in the latter
studies, the population levels of the attracted natural enemies
may not have been enough to cause a reduction of crop damage
to under the economic threshold level, or the attracted natural
enemies may not have been those of the primary insect pests of
the target crops. The application of kairomone-based lures may
sometimes lead to sex-biased recruitment of natural enemies,
whereby one sex (male or female) predominantly responds to
the lure, which affects the mating status and may influence
natural enemy population dynamics in the target field (Jones
et al., 2011; Kaplan, 2012a). One way of dealing with this
would be to combine sex-specific attractants to target both sexes
of natural enemies. Although the use of semiochemicals has
evolved as a novel tool for environmentally friendly pest control,
farmers who are the end-users continue to primarily rely on
the use of chemical insecticides for crop protection. We suggest
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that future studies investigate the effectiveness of applying
semiochemical-based lures vs. use of chemical insecticides in
terms of the reduction of herbivore populations and damage, the
improvement of crop yield, and cost-benefit analysis. Above all,
the use of semiochemical-based lures offers great potentials for
reducing crop damage by pests and improving crop productivity,
and the effectiveness of their application could be further
improved by taking into account the different aspects discussed
earlier in this section.

CONCLUDING REMARKS

Over the last two decades, application of kairomones in
crop fields has evolved as a novel approach to enhance
biological control strategies through the attraction and retention
of natural enemies on crops. To date, effective application
measures and more effective lures are needed to increase
kairomone implementation and boost its effectiveness under
field conditions. The efficiency of kairomone-based lures
under field conditions could be improved on the basis of
the formulation, concentration, ratio, and release rate of the
kairomone. Moreover, kairomone detection by natural enemies
could be facilitated by taking into consideration the kairomone
concentration and the crop field background odour. The control
of insect pests by natural enemies could be further enhanced
with the use of kairomone-based lures, the release of odour-based
experienced natural enemies, and the combination of kairomone
with reward plants set up in an appropriate spatial arrangement.
Several field experiments have tested the use of single kairomonal
compounds, and it is important that future studies assess the use
of compound blends in recruiting natural enemies in crop fields.
In addition to the attraction of natural enemies, future studies
should be focused on evaluating the reduction of pest populations
and crop damage when using kairomones compared to pesticide
application, as well as the increase in crop yields, so as to be

able to address and take full advantage of kairomone-based field
pest control.
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