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BEYOND VOCAL COMMUNICATION

Within mammalian bioacoustics, vocal communication has received much attention. Efforts to
understand sound production often focus on sounds generated via apparatuses that specifically
evolved to phonate, such as the larynx. However, while mammals mostly perceive sounds via
one organ, the ear, they can produce sounds via limbs, tails, flippers, tools, and several other
mechanisms which, at first, may not seem to have primarily evolved for sonation (Tyack andMiller,
2002; Frankel, 2009; Clark, 2016). For example, kangaroo rats drum their foot to communicate
(Randall, 1984), while non-human primates drum using artificial tools (Remedios et al., 2009),
resonant surfaces (Ravignani et al., 2013), and their hands (e.g., Dufour et al., 2015). Also
aquatic mammals can produce a variety of non-vocal sounds (such as whistles, snorts, and
others; Tyack and Miller, 2002). These sound production modes may enable communication even
when laryngeal phonation is ineffective or impaired (Munoz and Blumstein, 2012; Partan, 2017).
Research on sound production beyond phonation is key to properly characterise the richness of
animal communication.

Recent exploratory work (Hocking et al., 2020) provides an example of non-vocal sound
production in a pinniped: grey seals (Halichoerus grypus) clapping their fore flippers underwater,
a signalling behaviour previously attributed to vocalising. While Hocking et al.’s observation
is limited to few events, it is reminiscent of previous, seemingly unrelated work reporting
water-slapping behaviour in other species, including a close relative, the harbour seal (Phoca
vitulina) (Venables and Venables, 1957; Newby, 1973; Hanlan, 1998; Hayes et al., 2004; see also
humpback whales: Dunlop et al., 2010). The preliminary data reported by Hocking et al. naturally
invite a host of questions, whose answers rely on a characterisation of when, how often, and
under what circumstances these claps occur. Are they a frequent or seasonal phenomenon? Are
they modulated by social context? Furthermore, the mechanism of knock production should
be considered: while clapping the fore flippers can generate loud knock-like sounds, other
mechanisms have also been proposed (e.g., in walruses: teeth clacking, tongue movement, or
suction; Sjare and Stirling, 1981; Sjare et al., 2003; Reichmuth et al., 2009; Larsen and Reichmuth,
2012). This is a good starting place for future research, though, clearly, more observations
are required to answer these questions. In particular, the field should perform more empirical,
foundational work. This should (1) provide robust observations and descriptions in addition to
anecdotes, (2) evaluate context, timing and seasonality in the production of percussive sounds,
(3) determine which sex produces these signals and potential sexually dimorphic characteristics,
and (4) design rigorous experiments that test potential function of percussive sounds. Once
these absolutely necessary foundations are established, we suggest exploring more complex topics
related to bioenergetics, signal evolution, multimodality, and rhythm production/perception.
In this Opinion piece, we discuss these more hypothetical research directions, which however
can only be performed after more thorough biological descriptions of the basic phenomena.
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MECHANISMS FOR (DIS)HONEST

SIGNALLING?

If replicated, this research may encourage to re-evaluate previous
evidence. Could previously recorded “vocalisations [which]
sounded like a loud piercing clap” (pg. 61, McCulloch, 2000)
and “knocks” (pg. 2213, Asselin et al., 1993) in grey seals have
been actual underwater claps? A hypothetical reassessment of the
production mechanism underlying a sound would entail several
implications. Awareness of the sound source could be helpful to
test potential sound-body allometric links.

One testable hypothesis is that claps may be a partly dishonest
signal as they give away limited information about body size
while their source level is surprisingly high, especially compared
to captive individuals (Wahlberg et al., 2002). This hypothesis
dovetails with some empirical evidence of water claps functioning
as aggressive and territorial behaviours in harbour seals (Hayes
et al., 2004), since claps have been so far observed mostly in males
and in presence of other seals (for example in Weddell seals:
Russell et al., 2016). Furthermore, limited underwater visibility,
as reported by Hocking et al. (2020), would promote a signalling
strategy concealing body size. To test whether clapping is a
dishonest signal, field studies should investigate the conditions
under which underwater claps take place (e.g., water visibility,
social context).

Conversely, claps could be honest signals, since the
strength of the animal or the size of its flipper may
determine the intensity of the clap and the perceived
loudness. This second hypothesis would comply with
allometric scaling (e.g. Garcia et al., 2017): if sound-
producing structures scale with body size, honest signalling
ensues (Garcia and Ravignani, 2020). Larger individuals
should also be able to produce stronger or (visually)
larger claps (Partan, 2013). Anatomical observations
in, and tests of allometry across, individuals producing
underwater claps might contribute to disentangling these
contrasting hypotheses.

EXAPTATION AND REPURPOSING OF

BIOMECHANICAL PROCESSES

This research underlines the process of evolutionary exaptations
for communicative purposes (Gould and Lewontin, 1979; Buss
et al., 1998). Seal clapping “may be a ritualised version of
a swimming stroke” (pg. 1, Hocking et al., 2020). In other
words, a movement evolved for essential in-water displacement
(Fish, 2000; Kuhn and Frey, 2012) may have been repurposed
for acoustic communication (see also Clark, 2016). As a
parallel, the tree drumming of woodpeckers is now a purely
communicative signal, probably repurposed fromwhat originally
was a simpler foraging behaviour (Dodenhoff et al., 2001;
Miles et al., 2018, 2020; Garcia et al., 2020). Both seals
and woodpeckers may provide fascinating examples of the
evolution and repurposing of biomechanical processes. At what
point in pinniped phylogeny may swimming strokes have
been recruited for communication, and did this happen in

multiple pinniped species? Communicative non-vocal sounds
have been observed in several pinnipeds (Schusterman and
Van Parijs, 2003; Russell et al., 20161); more specifically,
claps have been reported, to our knowledge, in grey seals
(e.g., Hocking et al., 2020), harbour seals (Venables and
Venables, 1957; Newby, 1973; Hanlan, 1998; Hayes et al.,
2004), and walruses (e.g., Reichmuth et al., 2009). Underwater
recordings of similar non-vocal sounds in other pinnipeds might
contribute to answering this question. With limited evidence it
is difficult and unwise to generalise to all pinnipeds. However,
one may hypothesise that the swimming style of phocids,
propelled by their hindflippers, may free up their foreflippers
for communicative purposes, while the swimming style of
otariids, using their foreflippers to “fly” underwater, may have
hindered their exaptation for communication (Kuhn and Frey,
2012).

MULTIMODALITY AND ENERGETICS

Most work mentioned above advocates multimodal approaches
to communication. Multimodality is sometimes neglected,
with some research programs only focusing on one production
and one perception channel (Slocombe et al., 2011). Grey
seals exhibit a communicative behaviour that is motorically
produced (bypassing specialised laryngeal neurons) and
might be perceived acoustically at long ranges and visually
at short ranges (Wahlberg et al., 2002; Ravignani et al.,
2016; Hocking et al., 2020). As the larynx is hidden from
sight, the act of mammalian vocalisation is invisible to the
receiver (cf. Fitch and Reby, 2001; Higham and Hebets, 2013;
Nowak, 2020). A clap, instead, could potentially reach the
receiver visually, acoustically, or haptically, also allowing for
multisensory integration.

Multimodality also entails energetic considerations. While
laryngeal phonation is relatively cheap, other modes of controlled
sound production may be more energy-expensive. Indeed,
research on the energetic costs of communication generally
assumes higher expenditure for multi-modal as compared
to uni-modal interactions (Partan, 2013). For example, in
sympatric wolf spiders, multi-modal displays (as in Schizocosa
ocreata) require higher energy levels than unimodal displays
(as in S. Rovneri) (Cady et al., 2011). Rather than being
disadvantageous, such a costly display might serve as an
honest signal indicating a male’s good condition (Zahavi,
1975; Byers et al., 2010; Mitoyen et al., 2019). Yet, questions
concerning the relative costs and benefits of pinniped sound
production via clapping and slapping (Beier and Wartzok,
1979; Wahlberg et al., 2002; Gillooly and Ophir, 2010)
remain open, as well as their function (e.g., territorial,
reproductive, etc.; Russell et al., 2016). If they indeed relate
to mating, one may expect a variation in clapping/slapping
abilities due to ontogeny (Rado et al., 1991), an increase
at puberty onset, a cyclical variation entrained with mating
seasonality or a decline due to senescence (Soulsbury and

1We are here referring to jaw claps, which the authors originally grouped as

vocalisations for methodological reasons.
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Halsey, 2018). The reliable evidence of such seasonal and
developmental trends in the vocal displays of seals (e.g., Van
Parijs et al., 1999; Galimberti et al., 2008; Reichmuth and
Schusterman, 2009) may invite comparisons with non-vocal
displays and facilitate the understanding of their function. By
combining quantitative techniques (e.g., Gillooly and Ophir,
2010), allometric considerations (Garcia and Ravignani, 2020),
and field observations (Hocking et al., 2020), some of these
questions may be addressed.

COMMUNICATIVE RHYTHMS IN THE

MILLISECOND-SECOND RANGE

More observations on the clapping behaviour of grey seals,
their characteristics, and context of use are needed: Are these
sounds produced occasionally or routinely? Do they contain
rhythmic components? The presence of rhythmic features in
claps would allow to link Hocking et al.’s (2020) finding to
research on communicative rhythms and could spur a subfield of
ecologically-relevant percussive rhythms in mammals. Recently,
cross-species evidence has shown rhythmic capacities, sometimes
employed for communication, in pinnipeds (Cook et al., 2013;
Rouse et al., 2016; Mathevon et al., 2017; Ravignani, 2019).
“Rhythm” is not meant here in its circadian sense, studied for
instance in ecology, but instead as “temporal structure” at short
timescales (de Reus et al., 2020). When little information is
encoded in the frequency domain, as in seals’ claps and slaps
(Wahlberg et al., 2002; Hocking et al., 2020), this temporal
structure could emerge in sound signals and serve to encode
information. Within animal cognition and behaviour, evidence
for rhythm in pinnipeds is particularly interesting (Ravignani
et al., 2016; Wilson and Cook, 2016). In fact, pinnipeds constitute
a key taxon to test a cross-species hypothesis which links rhythm
and vocal learning capacities (Patel, 2006). Still, work on rhythm
in mammals is relatively limited, especially when compared
to the richness of rhythm production research, for instance,
in insects and frogs (Greenfield, 1994; Hartbauer and Römer,
2016). While these species can produce extremely fast rhythms,
the rate and complexity of non-vocal rhythms in mammals
may be hampered by the physical limitations occurring when
moving a limb (but see, for example, Randall, 1984 on the
foot drumming behaviour of kangaroo rats). Mammalogists
and comparative psychologists may still be inspired and benefit
from decades of work on rhythm and percussive behaviour in
arthropods and anurans (Ravignani et al., 2014). In particular,
since the 1960’s, entomologists and then herpetologists have been
measuring the communicative rhythms of their species with
almost millisecond accuracy (e.g., Buck and Buck, 1968). Avian
researchers followed, while mammalogists and primatologists
are slightly lagging behind (de Reus et al., 2020). Applying
concepts such as phase resetting and period correction, for
instance, to communicative rhythms in apes could also inform
the evolution of rhythmic capacities in our own species (cf.
Bittman, 2020).

CONCLUSIONS AND FUTURE WORK

Hocking et al.’s (2020) finding, albeit preliminary, can inspire at
least six hypothetical strands of future work. First, to establish
a base from psychophysics, propagation experiments could test
how far the sound of grey seals clapping carries underwater
(Wahlberg et al., 2002); this strand of research would help
disentangle the role of claps as either honest or dishonest signals,
as the latter may be more relevant at short distances (e.g., Tyack
and Miller, 2002). Second, biomechanics and metabolic work
could pinpoint the energetic costs and evolutionary benefits of
clapping (Fish, 2000; Kuhn and Frey, 2012); this research should
consider the context in which a signalling behaviour occurs
(e.g., occasional vs. prolonged use; environmental and social
conditions). Third, a larger dataset (McCulloch, 2000) would
allow onset-to-onset temporal measurements to investigate
whether claps may feature putative rhythmic structures, linking
either claps within a series (e.g., based on their inter-onset
intervals) or repeated series performed in succession. After
that, to test for homologies and analogies, comparative analyses
could be attempted with water slaps in harbour seals and
other pinniped percussive behaviour (Wahlberg et al., 2002).
Fourth, it would be important to test how nearby conspecifics
perceive claps. Therefore, connecting to recent work on pinniped
timing (Heinrich et al., 2016, 2020), one could explore how
grey seals perceive temporal information in sequences of claps.
Fifth, one could target the proximate and ultimate function of
clapping, and its potential role in sexual or natural selection.
Sixth, methodological advances in neuroimaging techniques
(e.g., Cook et al., 2021) may be employed to inform on the
neural underpinnings of cross-modality and their interface with
the physiological and physical constraints imposed on flippers by
their original function (i.e., swimming). All this work, we stress,
can only come once more fundamental research is performed
to tackle basic biological questions. For the time being, we
will keep looking for more percussive performances by these
fascinating mammals.
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