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Energy infrastructure, particularly for wind power, is rapidly expanding in Africa,
creating the potential for conflict with at-risk wildlife populations. Raptor populations
are especially susceptible to negative impacts of fatalities from wind energy because
individuals tend to be long-lived and reproduce slowly. A major determinant of risk of
collision between flying birds and wind turbines is the altitude above ground at which
a bird flies. We examine 18,710 observations of flying raptors recorded in southern
Africa and we evaluate, for 49 species, the frequency with which they were observed
to fly at the general height of a wind turbine rotor-swept zone (50–150 m). Threatened
species, especially vultures, were more likely to be observed at turbine height than were
other species, suggesting that these raptors are most likely to be affected by wind
power development across southern Africa. Our results highlight that threatened raptor
species, particularly vultures, might be especially impacted by expanded wind energy
infrastructure across southern Africa.
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INTRODUCTION

Globally, wind energy has expanded substantially in past decades (Wiser et al., 2011; Energy
Information Agency, 2020; Global Wind Energy Council, 2020). Particularly in Africa, the quantity
of energy generated from wind power has increased, with potential for expansion across the
continent (Mentis et al., 2015; Mas’ud et al., 2017; Kazimierczuk, 2019). The Global Wind Energy
Council (2020) predicted that wind energy production in Africa will more than double over the
period from 2018 to 2023.

There are considerable ecological challenges to the expansion of wind energy (Katzner et al.,
2019). Among the most prominent of these is wildlife fatality from collisions with turbines (Arnett
et al., 2008; Smallwood and Thelander, 2008; Loss et al., 2013). Even if animals can avoid collision
by adjusting their use of space, such avoidance of turbines results in a functional loss of habitat
(Larsen and Guillemette, 2007; Diehl, 2013; Marques et al., 2020).

Raptors (Iriarte et al., 2019; McClure et al., 2019) are of particular conservation concern because
they are more threatened and declining than other groups of birds (McClure and Rolek, 2020).
Unfortunately, compared to other bird taxa, raptors are especially susceptible to negative impacts
of wind energy because they are often victims of fatal collisions (Thaxter et al., 2017). These birds
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tend to be long-lived and reproduce slowly (Newton, 1998;
Madders and Whitfield, 2006; Smith and Dwyer, 2016; Watson
et al., 2018), thus survival rates tend to drive population
trajectories (Newton, 1979; Sæther and Bakke, 2000). Indeed,
collision at wind turbines creates population-level risk for species
as diverse as Egyptian Vultures (Carrete et al., 2009) and Red
Kites (Schaub, 2012).

Africa is a hotspot of threatened and declining raptors
(McClure et al., 2018b). Accipitrid vultures are among the
most threatened groups of birds on the planet (Buechley and
Şekercioğlu, 2016; Ogada et al., 2016; McClure and Rolek,
2020), but there are also a suite of other declining species
throughout Africa (McClure et al., 2018b). Within South Africa,
diurnal raptors in the families Accipitriformes and Falconiformes
are the group of birds most often killed by wind turbines
(Perold et al., 2020).

Whether a given turbine affects a flying animal depends
on that animal’s use of three dimensional space. Indeed, flight
altitude is an important determinant of collision risk (Band
et al., 2007; Furness et al., 2013; Khosravifard et al., 2020).
For example, Poessel et al. (2018) demonstrated that Critically
Endangered California Condors (Gymnogyps californianus) more
frequently flew at altitudes of wind turbine blades at specific times
of the day and the year. Thus their flight behavior modulates
their risk of collision with wind turbines (Poessel et al., 2018).
Examining flight altitude is frequently used to lend inference
into risk of collision with wind turbines (Katzner et al., 2012;
Johnston A. et al., 2014; Ainley et al., 2015; Péron et al., 2017;
Tikkanen et al., 2018).

Perhaps the most accurate method of determining flight
altitude is via high-resolution global positioning system (GPS;
Schaub et al., 2020) or barometric altimeters (Cleasby et al.,
2015; but see Péron et al., 2020). However, a more commonly
used method to determine flight altitude, especially in relation to
turbine height, is visual estimation by human observers (Osborn
et al., 1998; Larsen and Guillemette, 2007; Rothery et al., 2009;
Smallwood et al., 2009; Dahl et al., 2013; Johnston A. et al.,
2014; Johnston N. et al., 2014; Ainley et al., 2015). In fact,
a recent review demonstrated that; of methods to discern bird
flight altitude, visual methods were by far the most often used
(Largey et al., 2021).

Here, we analyze thousands of observations of raptors flying in
southern Africa. We calculate the proportion of observations in
which each species was seen at the height of a typical wind turbine
and evaluate which taxa are more often observed at turbine
height. We also test whether threatened species are more often
observed at turbine height than non-threatened species, and if
scavenging vultures were more often observed at turbine height
than were other raptors.

MATERIALS AND METHODS

We evaluated flight altitudes from observation records stored in
the Global Raptor Impact Network (GRIN) database (sourced
2 September, 2020). GRIN is a collaborative information
platform designed to support raptor ecology and conservation

by collecting, storing, analyzing, and distributing information
about raptors (McClure et al., 2021a).1 The majority of the
data within the GRIN database were collected using one of two
smartphone applications [hereafter, apps; either the GRIN mobile
app (2020–present), or its deprecated predecessor the African
Raptor Observations app (2012–2020)]. These apps allow users
to record georeferenced observations of raptors including the
species, whether the bird is flying, and at what estimated altitude.
Most of the users of these apps are raptor biologists.

Altitude above ground was recorded by users of the GRIN
and African Raptor Observations apps into categories of 0, 1–
20, 20–50, 50–150, 150–500, and >500 m. Users were given
references for each altitude category as ground level, low tree,
tall tree, turbine risk, low altitude, and high altitude, respectively.
We assumed that using such categories lessens some of the error
associated with estimating altitude.

Users can log their confidence in each species identification
on a scale of 0–100%; for this analysis, we only analyzed
observations with 100% confidence in identification. We also
only considered observations of raptors flying. We considered
data from all seasons for each species for which there were ≥25
flight observations within southern (≤−17.5◦ latitude) Africa.
For each of those species, we calculated the category in which they
were most often observed (i.e., the mode) and the proportion of
observations at turbine height (50–150 m).

We used logistic regression to test whether the proportion
of observations approximately at the height of the rotor-
swept zone of modern turbines (50–150 m) was greater
for species designated as threatened with extinction on the
International Union for the Conservation of Nature’s (IUCN)
Red List of Threatened Species (BirdLife International, 2021).
We categorized species as threatened when listed by IUCN
as Vulnerable, Endangered, or Critically Endangered (IUCN
Standards and Petitions Subcommittee, 2019). The response
variable for this regression included two vectors, one containing
the number of observations at turbine height and the other
containing the number of observations outside of turbine
height. The explanatory variable was binary with 1 indicating
a threatened species and 0 indicating a non-threatened species.
To analyze whether vultures were observed more at turbine
height than other raptors, we performed another similar logistic
regression where we coded the explanatory variable as 1 when
the species was a vulture and a 0 otherwise. We performed
analysis using the glm() function in R (R Core Team, 2019) with
a binomial distribution.

RESULTS

Within our study area, there were 111,024 observations of
raptors; 62,911 observations were collected using the apps; and
19,061 were of flying raptors. Of these, we analyzed the 18,710
observations that had 100% confidence in identification and were
of the 49 species with ≥25 observations (Figures 1,2). These
were collected by 73 users, although one (author AB) collected

1www.globalraptors.org
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FIGURE 1 | Locations of observations of flying raptors (orange points) in
southern Africa within the Global Raptor Impact Network database.

a plurality of the data (39%). Proportions of observations at
turbine height ranged from 0.49 for the Lappet-faced Vulture
(Torgos tracheliotos) to 0.02 for the Barn Owl (Tyto alba; Figure 2
and Supplementary Tables 1,2). Nine (18%) species, including
five vulture and three eagle species, had the mode of their
observations at turbine height, and one species had a mode above
turbine height (Figure 2 and Supplementary Tables 1,2).

Of the 49 species, 11 met our criteria for ‘threatened’; five of
these were vultures. The nine species with the highest proportions
of observations at turbine height also had modes at turbine
height and six of these species were threatened (Figure 2
and Supplementary Tables 1,2). Threatened species (β = 0.97,
SE = 0.03, p < 0.01) and vultures (β = 1.08, SE = 0.03, p < 0.01)
were observed proportionally more at turbine height than non-
threatened species and non-vultures, respectively.

DISCUSSION

Our results provide initial insight into the set of raptor species
that may be affected by wind power development within southern
Africa. However, if the two-dimensional distribution of birds
and turbines do not overlap, then collision risk is essentially
zero. Some studies have identified areas of potential conflict
and for potential prioritization for conservation by examining
the spatial overlap of potential wind power development with
two-dimensional species ranges (Santangeli et al., 2018, 2019).
That said, within a species distribution, collisions with wind
turbines occur in three-dimensions such that a bird must be
within both the horizontal and vertical planes of a rotor-swept
zone. We therefore interpret our results under the assumption
that species seen more often at rotor-swept zone height are
at increased risk of collision. Our results thus add perspective
to two-dimensional distributional studies by highlighting which
species behavior might influence their demographic risk from
wind power development within their southern African range.

Populations of vultures are declining drastically across Africa
(Ogada et al., 2016), and these species were among those for
which the greatest proportion of observations were at turbine
height. When African vultures are evaluated for conservation
purposes, wind energy is only rarely considered a threat (BirdLife
International, 2021). In fact, of the 11 threatened species we

considered, the IUCN Red List (BirdLife International, 2021)
identifies renewable energy as a threat for only one vulture
and two eagles (Cape Vulture Gyps coprotheres, Steppe Eagle
Aquila nipalensis, and Crowned Eagle Stephanoaetus coronatus).
However, the Multi-species Action Plan to Conserve African-
Eurasian Vultures (Botha et al., 2017), prominently lists collisions
with wind turbines as a threat to vultures. It is possible that the
Red List underestimates the threat wind power poses to raptors in
Africa (Santangeli et al., 2018), or it is possible that wind energy
is such a novel threat that it has not yet been incorporated into
these assessments.

The number of existing wind power facilities across Africa
is unlikely to be large enough to be threatening most raptor
populations at a large scale. That said, despite the lack of a current
threat from existing wind turbines, our approach is useful because
it identifies species that might be at risk if such infrastructure
expands into their habitat. Horizon scanning—i.e., systematically
searching for potential threats and opportunities—is important
(Sutherland and Woodroof, 2009) and our evaluation of flight
altitude adds to prior work on this subject (Santangeli et al.,
2018, 2019). The fact that threatened species were observed more
often at turbine height suggests that expansion of wind power
across southern Africa might expose more of these African raptor
species to increased mortality.

Many factors determine the flight altitude of a bird at any given
moment. Such factors include topography, vegetation, weather,
wind conditions, and time of day or year (Lanzone et al., 2012;
Poessel et al., 2018; Tikkanen et al., 2018; Duerr et al., 2019).
Despite its utility as a first analysis of risk, our analyses ignore
many of these factors. Future research, therefore, could discern
other patterns in our dataset that would provide further inference
into raptor flight behavior.

Site-specific factors also influence a bird’s risk of collision
within a wind power facility (de Lucas et al., 2008). Indeed,
certain turbines present more collision risk than others (McClure
et al., 2021b), even under low bird densities (de Lucas et al.,
2012). Weak relationships between pre-construction abundance
and post-construction mortality at wind power facilities make
it difficult to predict where collision risk will be greatest (Ferrer
et al., 2012). The flight paths of Griffon Vultures through a wind
power facility in Spain matched predominant wind flows (de
Lucas et al., 2012). Thus, flight altitude is but one factor of the
many that determine the collision risk of birds with wind turbines
(Marques et al., 2014).

Any study is subject to some error, especially when using
human observers. Our methodology minimized errors by relying
to a large part on data collection by raptor biologists and by
classifying observations into broad altitudinal ranges. Human
ability to identify raptors declines with distance (McClure
et al., 2018a), but we avoid this problem to some extent by
only including data in which the user was 100% confident
in identification. Detection probability also decreases with
distance (Berthiaume et al., 2009; Nolte et al., 2016; McClure
et al., 2018a), meaning that many species probably spend more
time at greater altitudes than our results suggest. Importantly,
large birds are easier to detect than smaller ones at greater
distances (Nolte et al., 2016). Because threatened species were
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FIGURE 2 | (A) Proportion of observations of African raptor species that were flying at turbine height (50–150 m). Sample sizes are listed parenthetically. (B) The
flight altitude category in which each species was most recorded (mode). Vertical dashed line represents maximum of the range of turbine heights. Colors represent
the conservation status of each species. See Supplementary Table 1 for scientific names.

mostly vultures and eagles, which are relatively large, it is
possible that they are observed more often at turbine height
than other species because they are more detectable at that
altitude. Because of these constraints, we interpret our results
in the context of these limitations and for bird flight within

the range of human sight. Our work says little about high
altitude bird flight that is difficult for humans to observe
from the ground.

Despite these potential sources of error, our results match what
one would expect a priori based on the biology of many focal
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species. For example, kestrels and harriers are known to fly
or hover close to the ground, whereas vultures and eagles are
soaring birds that fly at greater altitude (Ferguson-Lees and
Christie, 2001). Barn Owls (Tyto alba) were observed the least
at turbine height and were most often observed flying at low
altitude (1–20 m). It is possible this is partly due to the inability
of observers to see far at night when owls are active. However,
Barn Owls most often forage by quartering low (1.5–4.5 m;
Marti et al., 2020) over open areas (König and Weick, 2008;
Marti et al., 2020). This species is also a frequent victim of
vehicle collision (Gomes et al., 2009; Boves and Belthoff, 2012;
Arnold et al., 2019), reflecting their low-flying behavior. We were
surprised that the Ovambo Sparrowhawk (Accipiter ovampensis),
a relatively small woodland-dwelling accipiter (Ferguson-Lees
and Christie, 2001), had the highest mode flight altitude.
However, this species sometimes forages by stooping from high
over the canopy (Kemp and Kemp, 1975; Kemp and Kirwan,
2020). Ferguson-Lees and Christie (2001, p. 576), state that
this species “stoops at prey from up to 150 m.” Thus, past
observations of these species support our results.

There is a paucity of quantitative work examining the flight
altitudes of our focal species. Indeed, we are aware of a single
study that we can use to quantitatively check our results. In
South Africa, Murgatroyd et al. (2021) used GPS tracking to
demonstrate that Verreaux’s Eagles (Aquila verreauxii) fly at
turbine height (defined as ≤200 m) 68 ± 4% of the time. This is
consistent with the data from GRIN, in which Verreaux’s Eagles
were seen flying at or below turbine height 73% of the time.
Thus, although error estimation by human observers is imprecise,
the data for this species are consistent with existing GPS data.
Given the prevalence of studies using visual estimation of flight
altitude (Largey et al., 2021), a fruitful avenue for future work
would therefore be to compare our observations with results
from GPS telemetry.

This is the first study to examine the flight altitudes of
so many species across such a large region. As the number
of users of the GRIN app rises, future work will expand the
current analysis to a global scale. Although Africa is certainly
a hotspot of raptor diversity and conservation need, other
areas including South America and South and Southeast Asia
are also priorities (McClure et al., 2018b). Study of flight
altitude of raptors in those understudied regions, whether via
the GRIN app or otherwise, would contribute to understanding
of the potential risk these birds may face from wind energy
development. This may be especially important given the height
of wind turbines is projected to grow with time, and already

some turbines have blades that extend above the 150 m we
considered here. Works such as this are an important component
of efforts to encourage compatibility of energy development with
conservation of biodiversity.
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