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Confronting Missing Ecological Data
in the Age of Pandemic Lockdown
Thomas J. Hossie*†, Jenilee Gobin† and Dennis L. Murray†

Department of Biology, Trent University, Peterborough, ON, Canada

The COVID-19 pandemic profoundly affected research in ecology and evolution, with
lockdowns resulting in the suspension of most research programs and creating gaps
in many ecological datasets. Likewise, monitoring efforts directed either at tracking
trends in natural systems or documenting the environmental impacts of anthropogenic
activities were largely curtailed. In addition, lockdowns have affected human activity in
natural environments in ways that impact the systems under investigation, rendering
many widely used approaches for handling missing data (e.g., available case analysis,
mean substitution) inadequate. Failure to properly address missing data will lead to bias
and weak inference. Researchers and environmental monitors must ensure that lost
data are handled robustly by diagnosing patterns and mechanisms of missingness and
applying appropriate tools like multiple imputation, full-information maximum likelihood,
or Bayesian approaches. The pandemic has altered many aspects of society and it is
timely that we critically reassess how we treat missing data in ecological research and
environmental monitoring, and plan future data collection to ensure robust inference
when faced with missing data. These efforts will help ensure the integrity of inference
derived from datasets spanning the COVID-19 lockdown and beyond.

Keywords: data missingness, data analysis, imputation, missingness mechanisms, data gap, full information
maximum likelihood, Bayesian, COVID-19

INTRODUCTION

In ecology and environmental monitoring, studies conducted on free-living organisms or natural
environments often span multiple field seasons. While lockdowns related to the COVID-19
pandemic have been necessary to ensure public safety, studies worldwide are now punctuated
with missing data due to travel restrictions, laboratory closures, or suspended authorizations
(Pennisi, 2020). Likewise, standard environmental monitoring programs relevant to public health
and tracking impacts of industrial activity also have been curtailed or suspended (McIntosh, 2020;
Patterson et al., 2020; Viglione, 2020; Conservation International, 2021). Restrictions on data
collection in ecology have spanned more than a year and may continue to impact data collection
for some time. Data have been (and continue to be) lost due to the pandemic. These losses will be
globally pervasive, affecting an array of species, systems, and research or monitoring objectives. The
community of data collectors and analysts have a responsibility to ensure that datasets with missing
data are handled correctly to maintain the integrity of inferences derived from them. In practical
terms, this requires improved commitment to employ appropriate statistical tools for dealing with
data gaps, while also ensuring that future studies and data collections are robust to missing data.
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CHALLENGES IMPOSED BY MISSING
DATA

Generally, data gaps affect estimated values, sample variability,
detectable effect size, and statistical power, thereby challenging
our ability to make robust inferences (Maxwell et al., 2008;
Button et al., 2013a,b). In the context of the COVID-19
pandemic, the unexpectedness, extent, and synchronicity of data
loss among ecology data sets is unprecedented. For example,
studies tracking population size of endangered species will
be missing critical data on population status, productivity,
and survival. Cohorts or individuals being tracked through
time will suffer from interrupted timelines. Active field
experiments or studies requiring time-sensitive comparisons
(e.g., Before-After-Control-Impact studies) will lack response
measurements. Environmental monitoring programs could miss
critical early warnings of contamination or industrial exceedance
of approved standards. Long-term monitoring programs aimed
at documenting trends or variability in species abundance or
contaminant levels through time will be faced with uncertainty
in their assessments and forecasts. Harvest quotas may need to
be set without key data required to establish reliable sustainable
yield targets. Beyond the sheer extent of data lost, lockdowns
have also affected many of the systems under investigation,
thereby impacting how data gaps should be addressed. The
current and future extent of analytical challenges imposed by
the pandemic therefore presents an important opportunity for
statistical development and awareness.

Several widely used approaches for handling missing data
can introduce bias or fail to effectively leverage existing data
(Schafer and Graham, 2002; Nakagawa and Freckleton, 2008).
Such approaches include: (1) Ignoring data gaps through
listwise or pairwise deletion (i.e., complete-case and available-case
analysis); (2) replacing missing data with an average value (i.e.,
mean substitution); and (3) interpolating missing data through
loess regression or smoothing splines (McKnight et al., 2007;
Enders, 2010; Table 1 and Figure 1). These approaches can
compromise data integrity by exacerbating the effects of small
sample size on statistical power (listwise deletion), artificially
reducing sample variance (mean substitution, smoothing), biasing
parameter estimates (listwise and pairwise deletion, smoothing), or
synthesizing missing data based on spurious assumptions about
data structure or distribution (smoothing) (Schafer and Graham,
2002; Nakagawa and Freckleton, 2008; Little and Rubin, 2019).
Although such approaches may still have occasional utility (e.g.,
see Hughes et al., 2019), our goal is to motivate the uptake of more
robust alternatives, where appropriate.

MECHANISMS OF MISSINGNESS AND
THEIR IMPLICATIONS

It is tempting to assume that because a stochastic process led to
the COVID-19 pandemic, data missingness is only problematic
insofar as it reduces statistical power due to smaller sample
size. Yet, there is an important distinction between scenarios
where lockdowns are likely to have only affected data collection

vs. those where lockdowns not only prohibited data collection
but also directly or indirectly influenced the processes under
investigation. In fact, we have already seen several indications
that COVID-19 lockdowns altered human behavior in ways that
could translate to unforeseen responses in natural environments.
These include improvements in air quality, increased use of
urban areas by wildlife, as well as possible increases in wildlife
poaching and resource extraction (Buckley, 2020; Gardner,
2020; Haggert, 2020). Clearly, additional care must be taken to
treat data missingness appropriately when this coincides with
acute changes in the system of interest. For environmental
monitoring in particular, assuming that industry behavior was
unchanged during the lockdown when little/no monitoring and
oversight were undertaken seems unwise (Gray and Shimshack,
2011). More generally, failing to critically examine patterns of
missing data to infer mechanisms of missingness will promote
poor statistical treatment and thereby impact inferences drawn
from those datasets.

Statisticians recognize three “mechanisms of missingness”:
Missing completely at random, missing at random, and missing
not at random (McKnight et al., 2007; Enders, 2010; Little and
Rubin, 2019). The extent to which inadequate treatment of
missing data leads to faulty inference, and how these gaps may
be corrected, depends on the specific mechanism of missingness
that has resulted in the missing data. For example, listwise
deletion or complete-case analysis are only valid when data are
“missing completely at random” (MCAR), meaning that there
are no detectable patterns of missingness across any variables in
the dataset (McKnight et al., 2007; Nakagawa and Freckleton,
2008). Assuming that data are MCAR means that researchers
assume that data missingness is independent of both observed
and unobserved data. This assumption is rarely tested despite
this being relatively straightforward to do with current statistical
techniques (McKnight et al., 2007; Nakagawa and Freckleton,
2008). One approach for evaluating whether data are MCAR,
proposed by Little (1988), tests for differences between the
means of different missingness patterns across the entire dataset
and produces a single χ2 statistic (see also McKnight et al.,
2007; Enders, 2010). This test can be implemented using the
mcar_test function from the “naniar” package in R (Tierney
et al., 2021) but may be sensitive to departures from normality
and small sample size (Little, 1988). Researchers can also create
a binary dummy variable representing missing/not missing for
the variable of interest, then examine whether missingness is
related to the values of other variables in the dataset (McKnight
et al., 2007; Nakagawa, 2015). The R package “mice” also provides
tools for visualizing missing data to better understand patterns
(van Buuren and Groothuis-Oudshoorn, 2011).

MCAR is a very strong assumption and rarely valid for
empirical datasets, especially those derived from fieldwork in
ecology where observer error, natural variation, collinearity,
and serial autocorrelation can be substantive (Nakagawa and
Freckleton, 2008; Nakagawa, 2015; Little and Rubin, 2019).
Instead, data may be “missing at random” (MAR), where data
missingness depends on one or more observed variables. In
such cases, patterns of missingness within a specific dataset are
associated with other observed variables and do not depend on
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TABLE 1 | Methods used to treat missing data in ecology and evolution.

Method Approach Comments References

Listwise deletion Ignore missing
data

Also called complete-case analysis. Excludes all cases with missing
data from at least one of the selected variables. May give unbiased
results under some conditions, and may be suitable when amount of
missing data is small (∼5%). Estimates relate only to observed data.
Generally, underestimates sample variability and produces biased
results when data are MAR or MNAR. Loss of statistical power from
reduced sample size.

McKnight et al., 2007, Ch. 7;
Enders, 2010, Ch. 2; Dong and
Peng, 2013; Jakobsen et al., 2017;
Hughes et al., 2019; Little and
Rubin, 2019, Ch. 3

Pairwise deletion Ignore missing
data

Correlation coefficients in the same correlation matrix are created using
different subsets of subjects. This may cause problems when data are
not MCAR or if the amount of missing data is large (>5%). Analyses
such as multiple regression require a positive-definite correlation matrix,
and this approach may produce correlations matrices that are not
positive-definite, requiring additional ad hoc modifications.

Enders, 2010, Ch. 2; Little and
Rubin, 2019, Ch. 3

Mean imputation Imputation Also called mean substitution. Uses conditional or unconditional mean
to fill in data gaps. Can considerably change value of correlations
among variables in a dataset. Underestimates sample variability and
inappropriately narrows CI around parameter estimates. Decreases in
variation are proportional to amount of missing data (i.e., bias worsens
with more missing data).

Enders, 2010, Ch. 2; Little and
Rubin, 2019, Ch. 4

Neighbor
interpolation, loess
regression, and
related approaches

Imputation Uses neighboring data points on each side of missing data to estimate
missing value. Preserves local nature of time series data when the
number of neighbors used is small. Neighbor interpolation provides a
better estimate than cubic spline interpolation when multiple values are
missing. Methods tend to underestimate natural variability.

Enders, 2010, Ch. 2

Smoothing spline
(e.g., cubic spline
interpolation)

Imputation A form of interpolation used for longitudinal data where a piecewise
continuous curve is fitted to the entire dataset. Can be used to adjust
outliers or fill in missing values. Neighbor interpolation provides a better
estimate when missing multiple values. Method underestimates natural
variability and is sensitive to missing data at the end of a time series.

Daniels and Hogan, 2008, Ch. 2;
He et al., 2011; Lepot et al., 2017

Weighting Methods
(e.g., inverse
probability
weighting)

Reweighting Complete cases are weighted by the inverse of the probability of being
a complete case. Weighting the analysis is an attempt to make
complete cases representative of all cases. Useful under MAR, and can
be superior to multiple imputation when misspecification of an
imputation model is likely. Extensions to this approach have been
developed, including augmented inverse probability weighting.

Tsiatis, 2006; Li et al., 2013;
Seaman and White, 2013;
Mansournia and Altman, 2016;
Perkins et al., 2018; Hughes et al.,
2019; Little and Rubin, 2019, Ch. 3

Resampling Resampling/
imputation

A variety of approaches that use resampling of the observed data (e.g.,
via bootstrap or jackknife) to account for uncertainty resulting from
missing data. Imputation and analysis of several versions of the
resampled dataset can help identify uncertainty of point estimates
resulting from missing data. Assumes large sample size. Fails to
account for patterns in dataset. May not address bias in parameter
estimates which arise as a result of missing data (i.e., under MAR or
MNAR).

Little and Rubin, 2019, Ch. 5

Single imputation Imputation Various approaches that fill-in gaps with draws based on a predictive
distribution or based on explicit models. Use of a single imputed value
fails to account for uncertainty in imputed values, meaning that all single
imputation methods underestimate standard errors.

McKnight et al., 2007, Ch. 9; Little
and Rubin, 2019, Ch. 4

Multiple imputation Imputation Simple to use and can accommodate categorical variables.
Appropriately captures uncertainty in parameter estimates, and avoids
systematic bias in parameter estimates. May be susceptible to high
levels of missingness and the number of imputations employed. Valid
results depend on careful construction of the imputation model.

Allison, 2005; McKnight et al.,
2007, Ch. 10; Enders, 2010, Ch.
7–9; Dong and Peng, 2013;
Jakobsen et al., 2017; Little and
Rubin, 2019, Ch. 10; van Ginkel
et al., 2020

Data augmentation
(e.g., via markov
chain monte carlo)

Model-based Analogous to multiple imputation with more imputations and a feedback
process between missing data and parameter estimation. Whereas in
MI users see the replaced values, this process is internalized in data
augmentation. Appropriate under MAR. Suitable when sample size is
small. Can treat missing values in multilevel datasets appropriately, and
is preferrable to MI in such cases. Whereas multiple imputation can use
auxiliary variables when accounting for missing values, data
augmentation can only use variables included in the model, which may
limit its value in some cases.

Tanner and Wong, 1987; McKnight
et al., 2007, Ch. 8; Nakagawa and
Freckleton, 2008; Nakagawa, 2015;
Little and Rubin, 2019, Ch. 10

(Continued)
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TABLE 1 | Continued

Method Approach Comments References

Maximum Likelihood
methods (e.g., full
Information maximum
likelihood)

Model-based Various approaches based on statistical models and the associated
likelihood function. Yields narrow confidence intervals and high
statistical power. Can be used for hypothesis testing. Unbiased for MAR
or MCAR as long as multivariate normality assumption holds. Consider
data augmentation as an alternative when sample size is small.

Nakagawa and Freckleton, 2008;
Enders, 2010, Ch. 3–5; Dong and
Peng, 2013; Little and Rubin, 2019,
Ch. 6–9

Selection models and
PATTERN-mixture models

Model-based Both methods can be used under MNAR. Models are constructed
based on specific assumptions about the nature of (unobserved)
missing data. If assumptions are incorrect the model will perform poorly.
Alternatively, MAR approaches combined with best-case/worst-case
sensitivity analysis can help diagnose the impact of MNAR.

Allison, 2002; Molenberghs and
Kenward, 2007; Daniels and
Hogan, 2008, Ch. 5, 8, 9; Enders,
2010, Ch. 10; Little and Rubin,
2019, Ch. 15

Notably, multiple imputation and maximum likelihood methods are the most commonly used, but the larger list is provided for generality. Pattern of data missingness:
Missing completely at random (MCAR), missing not at random (MNAR) and missing at random (MAR).

FIGURE 1 | Simulated results from the analysis of a hypothetical dataset based on missing data from the pandemic lockdown. The annual time series has a simple
linear trend, where a single data point representing the year 2020 is missing (highlighted by the gray bar). Parameter estimates (slope), and measures of variance (SE)
and fit (R2) for the complete dataset are shown in the box for comparison. (A) Common approaches for dealing with missing data yield biased parameter estimates,
often underestimate variance, and overestimate fit, as can be seen by the comparison to the complete dataset. (B) For data that are missing at random (MAR) or
missing completely at random (MCAR), using multiple imputation (MI) or maximum likelihood-based approaches (e.g., full information maximum likelihood—FIML)
help minimize these issues by accounting for uncertainty in the missing data. (C) If data are missing not at random (MNAR), best/worst case sensitivity analyses
(e.g., via an evaluation using extreme values as depicted here) can be used to evaluate the effects that the full range of potential values might have on subsequent
analyses. Source code available here: https://github.com/JenileeGobin/confronting-missing-data.

the value of the missing observations themselves (Schafer and
Graham, 2002; Dong and Peng, 2013). If pandemic restrictions
only limited data collection, and were unlikely to affect the
system itself, such data would be MAR so long as missingness
in the response variable depends on other explanatory variables
that were observed/recorded. A third possibility is that data
are “missing not at random” (MNAR), which occurs when the

probability of missingness depends on the value of the missing
observation, or on an unobserved variable (Schafer and Graham,
2002; Nakagawa and Freckleton, 2008; Dong and Peng, 2013).
Specifically, if missing data resulting from a lockdown coincides
with acute changes in the system under investigation and/or
prohibited the collection of suitable auxiliary data, such data
would be MNAR. These acute changes would include those
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imposed by the researcher (e.g., as part of a Before-After Control-
Impact experiment), or those arising as a direct/indirect effect of
the lockdowns themselves (e.g., increased use of urban areas by
wildlife). Other plausible scenarios where data may be MNAR as
a result of lockdowns include changes in emissions or wildlife
harvest due to reduced human activity or lapses in oversight
during the lockdown period.

Diagnosing the mechanism of missingness (sensu Little and
Rubin, 1987, 2019) is an important step to guide subsequent data
analysis and should be prioritized for all datasets with missing
data (Schafer and Graham, 2002; McKnight et al., 2007). It
would be risky, especially for regulators, to assume that missing
data owing to the lockdown are MCAR. In fact, even when
diagnostic tests identify missing data as MCAR, it is generally
safer to presume MAR when dealing with missing values in
ecological studies (Nakagawa and Freckleton, 2008; Nakagawa,
2015, but see Chen and Ibrahim, 2013). In so doing the
researcher acknowledges that, in practice, MAR is a more realistic
assumption and that missing data may be MAR or MNAR even
when tests fail to detect departures from MCAR (Nakagawa and
Freckleton, 2011; Nakagawa, 2015). When data are MAR, bias in
parameter estimates can be avoided by leveraging information
about the non-random associations between data missingness
and other observed variables in the dataset, but this is not the
case when data are MNAR (Schafer and Graham, 2002; Little
and Rubin, 2019). Differentiating between MAR or MNAR is
difficult, in part because it relies on fundamentally untestable
assumptions related to unobserved data, however, a number of
conceptual, numerical, and graphical methods can be helpful
(see McKnight et al., 2007; Enders, 2010). Detectable patterns of
missingness that cannot be explained by other variables in the
dataset also indicate MNAR. Ultimately, researchers must rely
primarily on their understanding of the system, and a correct
interpretation of missingness mechanisms, to determine whether
data are likely to be MAR or MNAR (Bhaskaran and Smeeth,
2014; Nakagawa, 2015) before moving on to determine how to
handle gaps in their datasets.

REMEDIES FOR MISSING DATA

Once the mechanism of missingness has been determined,
researchers should adopt statistically robust procedures for
dealing with missing data, of which there are several options that
differ in their statistical philosophy, complexity, and underlying
assumptions (Table 1). Here, we focus on the most relevant and
straightforward approaches that should meet the needs of the
majority of professionals in ecology (Nakagawa and Freckleton,
2008; Nakagawa, 2015). When missing data are MAR, multiple
imputation (MI) and full information maximum likelihood
(FIML) are reliable options (Nakagawa and Freckleton, 2008;
Jakobsen et al., 2017; Little and Rubin, 2019; Figure 1). In MI,
missing data are replaced with a set of random draws from
the observed data distribution, and this process is repeated
to create several new full datasets. Each full dataset is then
analyzed separately, and the results are combined (McKnight
et al., 2007; Enders, 2010). The number of imputations required

depends in part on how much data are missing. As few as
3–20 imputed datasets may be sufficient to generate unbiased
estimates (Dong and Peng, 2013; Jakobsen et al., 2017), but 30–
40 imputations are often required (Nakagawa, 2017; Nakagawa
and de Villemereuil, 2019). FIML does not replace missing
values, but instead uses observed data distributions to infer
the characteristics of the complete dataset. The approach uses
an iterative process of implicit replacement and analysis with
feedbacks, most commonly using the expectation–maximization
algorithm (Enders, 2010; Dong and Peng, 2013; Little and Rubin,
2019). Whereas FIML permits the use of likelihood ratio tests for
comparing nested models and generally yields smaller standard
errors, MI can deal with categorical variables (Dong and Peng,
2013, see also Allison, 2005). Both MI and FIML maintain
statistical power, preserve patterns of natural variability in data,
and generally lead to unbiased estimates when assumptions are
met and data are MAR (Donders et al., 2006; Nakagawa and
Freckleton, 2008). Reporting guidelines for missing data analysis
can be found in Enders (2010) and van Buuren (2018).

The above approaches may not be helpful when the proportion
of missing data are large (e.g., ∼40%), only missing from
the dependent variable and suitable auxiliary variables are not
identified, or when the assumptions of MNAR are plausible
(Dong and Peng, 2013; Jakobsen et al., 2017). Importantly, even
when < 5% of data are missing it may not be “ignorable”
(i.e., MCAR or MAR). When missing data is “non-ignorable”
(i.e., MNAR), analysis requires that the researcher make specific
assumptions about how the unobserved data are missing and
build a model to fill in missing values. Methods for dealing
with MNAR include selection models and pattern-mixture
models (see Enders, 2010; Little and Rubin, 2019). Assumptions
about unobserved data are fundamentally untestable, and these
models will perform poorly if the assumptions are incorrect.
Supplementary analyses (e.g., worst/best case sensitivity analyses)
should be employed to quantify the potential impacts of missing
data on key outcomes (Enders, 2010; Jakobsen et al., 2017), and
efforts should be made to clearly articulate uncertainly in the
outcome. Given that pure forms of MCAR, MAR, and MNAR
are unlikely in ecological datasets, employing MAR approaches
(e.g., multiple imputation) may still be helpful when dealing
with datasets where the mechanism of missingness is, in part,
MNAR, because it will help mitigate problems caused by the
MAR component (Nakagawa, 2015; van Ginkel et al., 2020).

In many cases MI and FIML will be appropriate, however
fully Bayesian approaches are among the most powerful for
dealing with missing data. Here, missing data are treated like
any other unknown random variable that is represented by a
probability distribution (i.e., the posterior distribution) and can
be obtained by assigning priors to the unknown parameters.
When data are MCAR or MAR, missingness does not depend
on the unobserved response variable, meaning that any inference
would be equivalent to that from a model for the observed data
alone (Rubin, 1976; Seaman et al., 2013). However, construction
of a joint model that accounts for the mechanism of missingness
is required when data are MNAR, and this can take a variety
of forms (e.g., selection, pattern mixture, shared parameter
models) (Little and Rubin, 2019). This process may still involve
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making strong and unverifiable assumptions. The strengths
of this approach are that: (1) Assumptions are made clear
and explicit through the specification of priors as part of the
model, and (2) missing data can be accommodated within a
Bayesian framework and applied to both missing response and
covariate data distributions without a need for new techniques
for inference (Ibrahim et al., 2002, 2005). Understanding that
Bayesian statistics are not yet widespread among ecologists,
whichever approach is selected must be appropriate given the
extent and type of data missingness.

The pandemic presents a unique situation where research and
monitoring activities that vary widely in their goals and data
collection techniques have all been affected by the same problem;
the solutions to which may ultimately take similar forms. Missing
data theory is an active area of research, and a growing number
of techniques are available which offer useful or promising routes
for robust inference in the face of missing data. It is not possible
for us to review them all here, although we provide a summary
of the most prominent approaches in Table 1. For additional
coverage of the topic, we direct readers to McKnight et al. (2007),
Daniels and Hogan (2008), Enders (2010); Nakagawa (2015),
and Little and Rubin (2019).

AVOIDING AND PLANNING FOR
MISSING DATA

The pandemic should prompt researchers and monitors to
consider how they might mitigate the missing data problem in
the future. Indeed, in specific cases the lockdown may motivate
development and use of automated or remote data collection
techniques that limit reliance on human site attendance. Many
of these tools are already available and are rapidly becoming
less costly (e.g., Wickert, 2014). However, validation of many
techniques is still forthcoming, some data collection simply
cannot be automated, and prohibitive costs of automation may
preclude widespread adoption. Nonetheless, researchers can
prepare for missing data at the study design and data collection
stage by identifying variables most likely to suffer from data loss,
as well as auxiliary variables that can be collected more reliably.
These adjustments will ensure that even with missingness, data
will meet the assumption of MAR rather than being relegated
to MNAR (Nakagawa, 2015; Noble and Nakagawa, 2018).
Automating the collection of auxiliary variables may increase its
availability for dealing with missing data. Researchers interested
in this approach should explore Two-method Measurement
Design and Planned Missing Data Designs, both of which are
active areas of research (Enders, 2010; Nakagawa, 2015; Noble
and Nakagawa, 2018). Once lockdowns are rescinded and data
collection has fully resumed, we may also see an increase in the
use of backcasting methods which predict unobserved values that
might have existed in the years where data collection was on
hold, given the observed data (e.g., Le et al., 2008; Saghafian
et al., 2018; Contreras-Reyes and Idrovo-Aguirre, 2020). These
methods are distinct from others discussed in this paper and
could serve as an effective alternative in data restoration for
robust inference in the future.

DISCUSSION

Missing data are now prevalent across virtually all longitudinal
datasets in ecology, and similar gaps could arise in the future.
COVID-19 lockdowns should therefore motivate researchers
and environmental monitors to critically reassess how data
collection is planned and missing data are dealt with. Failing
to do so will surely lead to future instances of weak or faulty
inference, with potentially severe impacts on academic research,
environmental monitoring and management. The statistical tools
discussed here are not new, but novel approaches continue
to become available (Table 1). Multiple imputation and other
model-based methods already have R libraries available and will
be appropriate for many missing data scenarios encountered in
ecology (Nakagawa and Freckleton, 2008; Nakagawa, 2015). More
broadly, missing data theory and corrective measures should be
covered more extensively in graduate statistics training in ecology
and environmental science. We will also benefit from efforts
to make approaches for handling missing data more accessible
(e.g., via development of R packages and tutorials), and greater
collaboration with statisticians. In light of the ongoing global
environmental crisis it is increasingly evident that longitudinal
data in ecology will play a critical role in understanding,
anticipating, and possibly mitigating environmental changes.
To meet these challenges, we have a responsibility to employ
procedures that ensure reliable insight from our research and
monitoring efforts.
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