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Distributions of landbirds in Canadian northern forests are expected to be affected by
climate change, but it remains unclear which pathways are responsible for projected
climate effects. Determining whether climate change acts indirectly through changing fire
regimes and/or vegetation dynamics, or directly through changes in climatic suitability
may allow land managers to address negative trajectories via forest management.
We used SpaDES, a novel toolkit built in R that facilitates the implementation of
simulation models from different areas of knowledge to develop a simulation experiment
for a study area comprising 50 million ha in the Northwest Territories, Canada. Our
factorial experiment was designed to contrast climate effects pathways on 64 landbird
species using climate-sensitive and non-climate sensitive models for tree growth and
mortality, wildfire, and landbirds. Climate-change effects were predicted to increase
suitable habitat for 73% of species, resulting in average net gain of 7.49 million ha
across species. We observed higher species turnover in the northeastern, south-central
(species loss), and western regions (species gain). Importantly, we found that most of
the predicted differences in net area of occupancy across models were attributed to
direct climate effects rather than simulated vegetation change, despite a similar relative
importance of vegetation and climate variables in landbird models. Even with close to a
doubling of annual area burned by 2100, and a 600 kg/ha increase in aboveground
tree biomass predicted in this region, differences in landbird net occupancy across
models attributed to climate-driven forest growth were very small, likely resulting from
differences in the pace of vegetation and climate changes, or vegetation lags. The
effect of vegetation lags (i.e., differences from climatic equilibrium) varied across species,
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resulting in a wide range of changes in landbird distribution, and consequently predicted
occupancy, due to climate effects. These findings suggest that hybrid approaches using
statistical models and landscape simulation tools could improve wildlife forecasts when
future uncoupling of vegetation and climate is anticipated. This study lays some of
the methodological groundwork for ecological adaptive management using the new
platform SpaDES, which allows for iterative forecasting, mixing of modeling paradigms,
and tightening connections between data, parameterization, and simulation.

Keywords: landscape simulation, ecological forecasting, vegetation, fire, decision support, forest management,
reproducibility, reusability

INTRODUCTION

The North American boreal forest represents approximately 48%
of the continent’s forests (Smith et al., 2018), and it provides
breeding habitat for half of North American bird species (Wells
and Blancher, 2011). In recent decades, the southern boreal forest
has seen rapid economic development from forestry, agriculture,
oil, bitumen and gas, with attendant consequences for the region’s
biodiversity (Hebblewhite, 2017; Mahon et al., 2019; Stewart
et al., 2020). However, in the northern parts of the boreal forest,
climate change is perhaps the greatest threat to biodiversity
(Price et al., 2013). The region is warming at twice the global
average rate (Masson-Delmotte et al., 2019), which is expected
to increase the frequency, extent, and severity of droughts and
wildfires (Boulanger et al., 2014; Gauthier et al., 2015; Masson-
Delmotte et al., 2019). An overall decrease in tree productivity
and total biomass may be expected in these northern regions
(Boulanger et al., 2017), with projected shifts from mid- and
late-successional conifers (Picea spp.) to fire-adapted pioneer
species of genus Populus and Pinus. Major vegetation transitions
of this nature have been documented (Wang et al., 2020), with a
combination of frequent fire and drought (Whitman et al., 2019)
as well as permafrost thaw (Helbig et al., 2016) potentially playing
major roles. As a result, climate change may alter the diversity
and abundance of many terrestrial taxa (Dawson et al., 2011),
including landbirds (Stralberg et al., 2015a; Cadieux et al., 2020).

More than half of boreal landbird species have shown declines
in abundance over the last five decades (Rosenberg et al., 2019)
and climate change may exacerbate these trends. According to
Stralberg et al. (2015a), projected changes in end-of-century
breeding habitat for boreal landbirds range from an average
40% change based on bioclimatic models alone (with 45% of
species decreasing), to a projected 20–60% contraction when
considering vegetation lags due to climate change (70–100% of
species decreasing). Similarly, Bateman et al. (2020a) estimated
that 98% of 48 modeled boreal landbird species were at moderate
to high risk of range size contraction due to climate change, based
on bioclimatic niche models. Climate change may cause range
and/or population changes through several mechanisms, with
different implications for management. Climate change might
act indirectly, through climate-induced changes to vegetation or
wildfire and resulting change to habitat, or directly, through non-
vegetation mediated climatic effects. The relative importance of
these pathways has important implications for management. For

example, if climate-caused declines are indirect, land managers
can use tree-planting, vegetation restoration, or fuel limitation
as on the-ground adaptation strategies to reduce the system’s
vulnerability to the effects of climate change (Bauduin et al.,
2020), and consequently improve conservation. If climate-
caused declines are direct, more drastic adaptation actions
such as species translocation, as well as mitigation strategies
that can change climate trajectories in the short-term may
be needed to meet conservation objectives. Quantifying the
relative importance of these alternate pathways is a matter of
urgency given current and projected declines in boreal landbirds
(Tremblay et al., 2018; Stralberg et al., 2019; Cadieux et al., 2020).

Separating direct from indirect pathways of climate
effects poses a significant challenge for standard statistical
modeling approaches to both predicting and forecasting
wildlife distribution. Interactions and feedback loops (or simply
“feedbacks”) among different drivers of change are not yet fully
understood, but have the potential to greatly influence outcomes
(Bush and Lemmen, 2019; Wilcox et al., 2019; Turetsky et al.,
2020). It has been shown, for example, that the forecasted
direction of species’ movements under climate change in some
cases suggests northern retractions rather than the expected
expansions (e.g., Clason et al., 2020). Our current ability to
forecast how the various pathways of climate may affect landbird
occupancy in boreal forests is limited. Landbird projections to
date have been mostly based on statistical correlations between
landbird abundance and climate and vegetation covariates,
without including feedbacks between climate, habitat, and
disturbance regimes (but see Tremblay et al., 2018; Cadieux et al.,
2019, 2020). More realistic near-term forecasts can come from
dynamic simulations where ecological elements can interact
during the forecast period. Interactions and feedbacks could
allow, for example, annual vegetation changes to affect annual
wildfire forecasts, which in turn affect subsequent vegetation
(Marchal et al., 2017a,b, 2019). Absent this, forecasts may diverge
too greatly from the upcoming future, potentially resulting in
ineffective management actions and misapplication of scarce
conservation resources. To address such challenges in the field of
predictive ecology (Peters, 1982; Clark, 2001; Dietze et al., 2018;
Yates et al., 2018; Dietze and Lynch, 2019; White et al., 2019) and
conservation biology (Travers et al., 2019), and improve both
uncertainty assessment and conservation resource allocation,
the ability to integrate dynamic simulation models such as of
forest growth and mortality, wildfire, and wildlife distribution is
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essential. Spatial Discrete Event Simulation (SpaDES) has been
developed with such purposes in mind (Chubaty and McIntire,
2021; McIntire et al., 2021).

Spatial Discrete Event Simulation is a platform that facilitates
the use of the PERFICT approach, which stands for Predictive
Ecology that is built on the concepts of Reusability, Free
availability, and Interoperability of models, which are built
around a Continuous workflow, and Tested automatically
(McIntire et al., 2021). In a nutshell, the SpaDES platform
allows wrapping models (typically implemented in R scripts) into
modules and schedules the execution of these modules, allowing
for different models (e.g., from siloed areas of knowledge) to
interact through their shared inputs and outputs. For example,
both forest age and species composition influence the estimation
of wildfire parameters (i.e., ignition, escape, and spread
probabilities), which in turn, are used to simulate landscape
burning modifying both the forest age and its composition
(i.e., via serotiny). Continuing the simulation, the new forest
composition and age modify the following year’s fire parameter
probabilities. Species distribution models are then influenced
by the forest composition and potentially other parameters for
each simulation year, and can eventually also play a role in
modifying both forest growth and wildfire regimes if biological
processes such as seed dispersal are modeled. Because SpaDES
is implemented in R, it allows tight coupling of data import,
processing, modeling, and analyses with simulation components.

Focusing on the Taiga Plains ecozone within the Northwest
Territories, Canada, we used this novel and dynamic simulation
platform to (i) begin teasing apart the individual effects of
direct and indirect climate-change pathways, and (ii) forecast
the combined direct and indirect effects of climate pathways,
including their interactions and feedbacks, on landbirds. To
answer such complex ecological forecasting questions, we
developed a simulation experiment of climate sensitive/non-
climate sensitive models for (i) forest growth, (ii) wildfire,
and (iii) landbird densities. We used existing modules for
forest growth and wildfire and wrapped the landbirds’ statistical
models into a module, as described below. Considering the large
simulated effects of climate on both vegetation (Boulanger et al.,
2017) and wildfire regime in several boreal regions (Boulanger
et al., 2014; Gauthier et al., 2015; Masson-Delmotte et al., 2019;
Cadieux et al., 2020), we anticipated that all pathways would
contribute substantially to the effect of climate on landbird
species forecasted occupancy. Using SpaDES allowed us to
integrate statistical and geospatial simulations to generate tightly
coupled data-simulation forecasts covering large spatial and
temporal extents (McIntire et al., 2021) to begin investigating
the pathways through which climate change will affect boreal
landbird species.

MATERIALS AND METHODS

Study Area and Species
The Taiga Plains ecozone within the Northwest Territories is
located in northwestern Canada, and encompasses approximately
50 million ha (Supplementary Appendix I Figure A1).

This vast area is primarily composed of upland (50%) and
lowland (15%) boreal forests, intermixed with many lakes
and small waterbodies (15%), with the remaining 20% land
cover composed mostly of low vegetation (i.e., shrubs, herbs,
barren ground), ice, and human development (Ecosystem
Classification Group, 2007). The predominant tree species are
black spruce (Picea mariana), white spruce (Picea glauca),
jack pine (Pinus banksiana), paper birch (Betula papyrifera),
trembling aspen (Populus tremuloides), and tamarack (Larix
laricina) (Ecosystem Classification Group, 2007).

The Northwest Territories hosts nearly 300 breeding landbird
species (Lepage, 2019), with twenty of these considered Species
at Risk (SAR) at the federal and/or territorial government
levels (GNWT, 2019). Our present analysis focused on 64
of these landbird species (Table 1), including two SAR. The
species selected for modeling were chosen primarily based
on the availability of survey data within the Northwest
Territories and the availability of density offsets (Sólymos et al.,
2013) to standardize point-count survey estimates (see section
“Landbird Models”).

Simulation Experiment
We developed statistical and simulation models for boreal
landbirds, wildfire, and forest growth using the SpaDES
modeling framework (Chubaty and McIntire, 2021; Figure 1),
implemented as a suite of packages in R (R Core Team,
2019). Even though many of the drivers used in the geospatial
simulation models (specifically LandR-Biomass and FireSense;
see below) have been estimated using statistical approaches, we
distinguish “simulation models” as iterative, dynamic models
whose subsequent iteration depends on the previous state. This
describes the vegetation and fire models, but not the “statistical”
landbird models, for which predictions are derived solely from
the covariates, which may or be dynamic or static, at the time of
prediction (e.g., as “simulated” by the fire and vegetation models).

We developed or adapted three types of ecological models:
(i) forest growth and succession (simulation model); (ii) wildfire
(simulation model); and (iii) landbird species densities (statistical
models). We developed pairs of each of these three model types:
“climate-sensitive” (CS) variants in which climate covariates are
explicit, and “non-climate-sensitive” (non-CS) variants where
climate covariates are excluded (although climate may act
implicitly, e.g., via vegetation covariates), for a total of six
models: two forest growth succession models (CS and non-
CS), two wildfire models (CS and non-CS), and two landbird
density (CS and non-CS). To disentangle climate pathways,
we developed a fully factorial simulation experiment involving
the three model types with two levels each (CS and non-
CS), resulting in 2 × 2 × 2 = 8 treatment combinations
(labeled I to VIII; Table 2 and Figure 2). By developing six
unique models, we are implementing a “best-in-type” approach
to forecasting. Such a novel approach involves building two
distinct models (CS and non-CS) for each model type (tree
growth, wildfire, and landbird) rather than one “full” model of
each type where the non-CS forecast is simply the full model
with fixed climate covariates at their mean. The best-in-type
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TABLE 1 | Landbird species code, common and scientific names, and the
number of records (number of individuals detected in point count surveys) per
species in the dataset used to build the landbird statistical models.

Species code Common name Scientific name No. records

ALFL Alder Flycatcher Empidonax alnorum 21,766

AMCR American Crow Corvus brachyrhynchos 25,672

AMRE American Redstart Setophaga ruticilla 17,689

AMRO American Robin Turdus migratorius 34,825

ATSP American Tree Sparrow Spizella arborea 354

BAWW Black-and-white Warbler Mniotilta varia 5,963

BBWA Bay-breasted Warbler Setophaga castanea 4,048

BBWO Black-backed Woodpecker Picoides arcticus 421

BCCH Black-capped Chickadee Poecile atricapillus 8,258

BHCO Brown-headed Cowbird Molothrus ater 9,092

BHVI Blue-headed Vireo Vireo solitarius 6,358

BLPW Blackpoll Warbler Setophaga striata 1,132

BOCH Boreal Chickadee Poecile hudsonicus 2,567

BRBL Brewer’s Blackbird Euphagus cyanocephalus 5,643

BRCR Brown Creeper Certhia americana 3,196

BTNW Black throated Green Warbler Setophaga virens 9,318

CAWA Canada Warbler Cardellina canadensis 3,715

CHSP Chipping Sparrow Spizella passerina 41,075

CORA Common Raven Corvus corax 14,733

COYE Common Yellowthroat Geothlypis trichas 14,935

DEJU Dark-eyed Junco Junco hyemalis 17,901

EAKI Eastern Kingbird Tyrannus tyrannus 895

EAPH Eastern Phoebe Sayornis phoebe 1,407

FOSP Fox Sparrow Passerella iliaca 2,302

GRAJ Gray Jay Perisoreus canadensis 9,999

HETH Hermit Thrush Catharus guttatus 25,251

HOLA Horned Lark Eremophila alpestris 300

LCSP Le Conte’s Sparrow Ammodramus leconteii 6,727

LEFL Least Flycatcher Empidonax minimus 26,990

LISP Lincoln’s Sparrow Melospiza lincolnii 23,225

MAWA Magnolia Warbler Setophaga magnolia 10,868

NOFL Northern Flicker Colaptes auratus 5,012

NOWA Northern Waterthrush Parkesia noveboracensis 4,675

OCWA Orange-crowned Warbler Oreothlypis celata 5,245

OSFL Olive-sided Flycatcher Contopus cooperi 1,575

OVEN Ovenbird Seiurus aurocapilla 57,723

PAWA Palm Warbler Setophaga palmarum 4,709

PISI Pine Siskin Spinus pinus 12,022

PIWO Pileated Woodpecker Dryocopus pileatus 1,757

PUFI Purple Finch Haemorhous purpureus 1,183

RBGR Rose-breasted Grosbeak Pheucticus ludovicianus 14,546

RBNU Red-breasted Nuthatch Sitta canadensis 10,964

RCKI Ruby-crowned Kinglet Regulus calendula 20,671

REVI Red-eyed Vireo Vireo olivaceus 51,564

RUGR Ruffed Grouse Bonasa umbellus 4,214

RWBL Red-winged Blackbird Agelaius phoeniceus 28,540

SAVS Savannah Sparrow Passerculus sandwichensis 19,748

SOSP Song Sparrow Melospiza melodia 16,415

SWSP Swamp Sparrow Melospiza georgiana 5,945

SWTH Swainson’s Thrush Catharus ustulatus 48,944

TEWA Tennessee Warbler Oreothlypis peregrina 68,503

TRES Tree Swallow Tachycineta bicolor 6,375

(Continued)

TABLE 1 | (Continued)

Species code Common name Scientific name No. records

WAVI Warbling Vireo Vireo gilvus 10,734

WCSP White-crowned Sparrow Zonotrichia leucophrys 1,965

WETA Western Tanager Piranga ludoviciana 9,671

WEWP Western Wood-Pewee Contopus sordidulus 2,657

WIWA Wilson’s Warbler Cardellina pusilla 1,324

WIWR Winter Wren Troglodytes hiemalis 9,391

WTSP White-throated Sparrow Zonotrichia albicollis 86,333

WWCR White-winged Crossbill Loxia leucoptera 6,778

YBFL Yellow-bellied Flycatcher Empidonax flaviventris 2,202

YBSA Yellow-bellied Sapsucker Sphyrapicus varius 13,672

YEWA Yellow Warbler Setophaga petechia 24,564

YRWA Yellow-rumped Warbler Setophaga coronata 59,281

approach proposed here partitions more of the variance to non-
climate covariates in the non-CS model than it does in its
climate-sensitive counterpart, since there is likely some degree
of collinearity between these covariates. While some of the
extra partitioned variance will be noise, some of it will be a
signal incorrectly attributed to the climate covariates in the CS
models. This results in a more informative non-CS model than
a single “full” model type. A caveat to this approach is that
the “control” model (in the present work, the non-CS) is not
merely a simplified version of the “experimental” model (in the
present work, the CS model with no climate covariates): they are
alternative fits to data with different assumptions. As discussed
below, we focused on assessing the pathways of climate change
effects on landbirds (i.e., differences between models) rather
than exploring forecasted climate-sensitive landbird occupancy
(i.e., forecasts of one model). In this case, using a “full control
model” that would only include factors that are not changing
over time (i.e., our non-CS model I with included static climate
variables) would result in mostly unchanging predictions, which
are not relevant for the purpose of this study. Therefore, while
our control model could include climate variables, it would
not present different outcomes from the one used. Our used
approach has the advantage of allowing researchers to reuse
models from any arbitrary source, regardless of the area of
research and method used, e.g., computer simulation or machine
learning, in this case.

We ran 90-year simulations at an annual time step from 2011
through 2100. We used a common spatial resolution of 250 m
across all models to align with the resolution of the input stand
biomass layers. For each of the eight treatment combinations,
we ran 10 replicate simulations to incorporate the inherent
stochasticity of the wildfire and vegetation dynamics models.
Finally, for each component of this study we have selected, to our
knowledge, the best available models given the available data and
process models, and our objectives.

Climate Data
We obtained historical climate normals (1981–2010) from
ClimateNA (Wang et al., 2016) and https://adaptwest.databasin.
org/ to match as closely as possible the years of data in each

Frontiers in Ecology and Evolution | www.frontiersin.org 4 October 2021 | Volume 9 | Article 679673

https://adaptwest.databasin.org/
https://adaptwest.databasin.org/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-679673 September 28, 2021 Time: 15:24 # 5

Micheletti et al. Climate Change Pathways Affecting Landbirds

FIGURE 1 | Study framework connecting boreal landbird model (Birds/Birds.CS) fitting, forest growth (LandR/LandR.CS), and wildfire (SCFM/FireSense) simulation
and landbird occupancy forecasting. Point-count data to generate landbird models was compiled from the database of the Boreal Avian Modelling Project (Barker
et al., 2015), supplemented with data from Automated Recording Units (ARUs; WildTrax, 2019).

of the vegetation, fire and bird databases and used these for
parameterizing each of the climate-sensitive components of the
respective models. We obtained annual (2011–2100) climate
projection layers, downscaled to a 1-km grid cell resolution
using the ClimateNA software, from forecasts of the Community
Climate System Model version 4 (CCSM4) general circulation
model from the U.S. National Center for Climate Research.
CCSM4 is a coupled climate model that simulates earth’s
climate system. It was chosen due to its high spatial resolution
(0.9424◦ latitude, 1.2500◦ longitude) and because it has shown
good overall performance in other regions when compared to

TABLE 2 | Wildfire, forest growth and landbird models used in a factorial
simulation experiment to explore the pathways through which climate change
might drive responses and forecast the net effect of climate change on different
boreal landbird species.

Short code Wildfire model Forest growth model Landbird model

I SCFM LandR Birds

II FireSense LandR Birds

III SCFM LandR.CS Birds

IV SCFM LandR Birds.CS

V FireSense LandR.CS Birds

VI FireSense LandR Birds.CS

VII SCFM LandR.CS Birds.CS

VIII FireSense LandR.CS Birds.CS

Each model type (n = 3) presented two possible formulations (n = 2; climate-
sensitive and non-climate-sensitive). The factorial experiment used all eight possible
combinations of these models (23 = 8). Climate sensitive model variants are
indicated in bold.

other climate models with available annual forecasts (Ahmed
et al., 2019) and its averaged precipitation and temperature
changes are is the closest to the ensemble model for our study
region (Fajardo et al., 2020). We used climate forecasts under
Representative Concentration Pathway (RCP) 8.5, which may
be considered as a worst-case scenario of climate change for
2100 based on a continuation of current policies and economic
incentives (Hausfather and Peters, 2020). We chose RCP 8.5
as evidence suggests that the average increase in temperature
in the present century will likely exceed RCP 4.5 (Sherwood
et al., 2020), supporting instead the use of RCP 8.5 for forecasts
(Schwalm et al., 2020). We focus our current work on assessing
uncertainty due to climate effect pathways, rather than other
sources of uncertainty, such as choice of climate model or
emissions scenario. The climate data was post-processed to
match the resolution of the vegetation layers by applying a
bilinear interpolation using the function postProcess from the
reproducible R package (McIntire and Chubaty, 2021).

Models
Forest Growth and Succession Models
For non-CS and CS forest growth and succession models we used
the LandR Biomass and LandR.CS model suites, respectively.
The LandR Biomass (“LandR” hereafter) model (Supplementary
Appendix II), is an implementation of the LANDIS-II biomass
succession model (v3.2.1; Scheller and Mladenoff, 2004) in R.
LandR has some minor model algorithm differences compared
to LANDIS-II, notably simultaneous within-year growth across
cohorts, rather than sequential. As with LANDIS-II, there are
many tree species-level traits to parameterize. We parameterized
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FIGURE 2 | Framework of the factorial experiment of vegetation (green), wildfire (red), and landbird (black) models. This factorial experiment covers the eight possible
combinations of the two forms of the three models. The arrows represent the pathways via which climate might affect landbirds (“Birds”). Each graphical
representation of the model combinations used can be matched with the model numbers (roman numbers) in Table 2.

tree species’ growth curve and mortality shape based on
permanent sample plot data (Supplementary Appendix II
and Acknowledgments Section). For other species-level traits
(longevity, sexual maturity, ability to resprout), we used the best
available estimates from the literature and trait values used in
LANDIS-II applications (Supplementary Appendix II). Briefly,
during simulations using LandR, one or more cohorts (defined as
the biomass of a given tree species with a given age in a pixel)
is created and maintained as a non-linear function of growth
and mortality equations (i.e., growth curves and within-pixel
competition), dispersal dynamics, and responses to disturbances,
such as wildfire (i.e., mortality, serotiny, and resprouting; more
details in Supplementary Appendix II). The main output from
LandR consists of annual tables and maps of the biomass and age
of every tree species cohort in every pixel with at least one cohort.

To create the CS version of LandR, we modified cohort
growth and mortality equations following the statistical approach
developed in Luo et al. (2019). Rather than using their
simultaneous multivariate approach, from which we could not
correctly predict without developing our own custom statistical
routines, we fit two separate univariate models for plot-level
biomass growth increment (t/year) and biomass mortality
(t/year) as functions of spatially explicit climate variables.
Specifically, we first calculated the annual growth and mortality
from permanent sample plots (Supplementary Appendix II)
located in the Boreal and Taiga Plains ecozone. Even though
there are permanent sample plots in the Northwest Territories,
the (i) minimum three repeated measurements to fit a statistical
model for growth and mortality are still lacking, (ii) there are not
enough sampling plots to be modeled without supplementation
from other portions of the ecoregion, and most importantly, (iii)
there are concerns regarding the time disparity between repeated
measures for these permanent sample plots and the reference
years from other permanent sample plots. Therefore, we used
data from across the southern part of the ecoregion in Alberta

and Saskatchewan to be able to model the climate effects on
growth and mortality. This also allowed us to encompass some
of the warmer future climates that might characterize our study
area in the future. We then related plot-level biomass growth
increment and mortality to annual temperature anomalies (ATA)
and an annual Climate Moisture Index (CMI; Hogg, 1994),
accounting for cohort age (sensu Chen et al., 2016). We used
a Generalized Linear Mixed Model (GLMM) and a Generalized
Additive Model specifying the Location, Scale, and Shape of
the data distribution (GAMLSS; gamlss R package; Rigby and
Stasinopoulos, 2005), for growth increment and mortality,
respectively. We then calculated CMI and ATA using historical
monthly temperature and precipitation for summer months
(Supplementary Appendix I Figure A2). For each driver (tree
growth or tree mortality), we calculated the annual “climate effect
ratio” (CER), which is the ratio of the growth (or mortality)
under each annual future climate and the growth (or mortality)
under the averaged historic climate, for each pixel. We finally
multiplied the LandR-derived growth and mortality by this CER.
This gives, for example, no change in growth (or mortality) when
a future year has the same climate as the historical average,
because the ratio is 1. As future climate changes, this ratio can
go above or below 1, resulting in deviations from the non-CS
stand-level growth (or mortality). We did not apply the CER to
cohorts under 20 years of age because they were not represented
in the permanent sample plots, lacking information on their
climate sensitivity. We, therefore, determined their growth and
mortality using the default LANDIS-II equations. We also placed
upper and lower limitations on this ratio (1.66 and 1/1.66 = 0.6,
respectively, which allows for up to a 66% increase or decrease
in growth and mortality) in an attempt to balance two opposing
sources of forecasting error: minimizing cases where we deemed
that the extrapolation would be too great and not allowing for
future climate to have unrealistically severe effects on growth and
mortality. In other words, we used a percentile to estimate the
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effect of climate on growth/mortality for climate sensitive forest
growth models, where we divided the current climate effects by
reference climate effects. We used these upper and lower limits
to circumvent problems caused by very small denominators as
well as constraining predictions outside the data range used to
generate the model. We selected these thresholds to be slightly
outside the range of the most extreme predictions made within
the first few decades of projected climate values. We attempted
to extract tree species-specific CER, but there were insufficient
sample sizes for most species. As a result, we used plot-level
growth increment and mortality.

We ran the above dynamic forest growth models for all “treed”
pixels, including treed wetlands. Land cover classes modeled
were the ones classified as “treed” by Latifovic and Pouliot
(2005), i.e., 1–15, 20, 32, 34, 35, and 39. Even though 34 and
35 are classified as burned, we converted those to the nearest-
neighbor’s forested class to allow for forest regeneration. We
used Beaudoin et al. (2014) dataset as our starting layers for
biomass (for details, please refer to Supplementary Appendix II).
Data were not supplemented with the Northwest Territory’s
forest inventory data due to the small spatial coverage of this
dataset in comparison to the size of our study area. We did not
simulate dynamic vegetation changes for non-treed locations:
non-vegetated, non-treed wetlands, shrublands, herb dominated,
grasslands, croplands, and lichen dominated land cover classes,
which summed to 35% of the total landscape cover. These
were held static during simulations as we did not have access
to a sufficiently fine-grained dynamic forest growth model
within the study area.

Wildfire Models
We used two landscape fire models, SCFM and FireSense to
represent non-CS and CS fire models, respectively. SCFM is
a three-stage landscape fire model (Cumming et al., 1998;
Armstrong and Cumming, 2003). It simulates wildfire as a
process of ignition (fires that ignited at a given time period),
escape from ignition pixels to neighboring cells (the binary
probability of escaping or extinguishing), and spread from
escaped pixels across a rasterized landscape (if a fire escapes,
what is the probability it will burn the neighboring cells). This
approach is a variant of percolation models (Hargrove et al.,
2000). Fires are extinguished when no further spreading occurs.
Each of the three stages is probabilistic, and the probabilities
were estimated from historical fire data between 1965 and 2016
(Canadian Forest Service, 2019). We considered lightning-caused
fires only, as human-caused fires have been negligible within
our study area (Canadian Forest Service, 2019). We estimated
ignition rate (fires per 100 km2 yr−1 – translated to pixel-level
probability of ignition) from all known fires of all sizes. We
estimated the pixel-level escape probability as the ratio of fires
>1 pixel to the number of fires. We calculated the mean size of
escaped (i.e., realized) fires (>1 pixel area burned) from historic
fire data obtained from the Canadian National Fire Database
(Canadian Forest Service, 2019). We estimated the spread
probability using a calibration approach whereby we simulated
approximately 100,000 fires with different landscape-constant
spread probabilities. We fitted a shape-constrained Generalized

Additive Model (Pya and Wood, 2015) to the scatterplot of
spread probabilities simulated fire sizes. From this curve, we
determined the landscape-specific, pixel-level spread probability
that reproduces the historical mean fire size for the landscape.
All pixels were either flammable with their given ignition, escape,
and spread probabilities (not only treed land cover classes, but
also lower vegetation ones) or non-flammable (water bodies,
ice and snow, rocks and non-vegetated areas such as human
development). The model simulates stand-replacing fires only,
and the only influence of climate and vegetation on SCFM is
indirect through their influence on the historical fire regime.

FireSense also simulates fires through percolation as described
for SCFM, but with ignition, escape, and spread probabilities that
vary spatially and temporally as a function of annual fire weather
and vegetation. We developed statistical models to predict the
simulation parameters from these covariates, using methods
adapted from Marchal et al. (2017a,b, 2019). We used Monthly
Drought Codes from annual Global Climate Model projections
(sensu Bergeron et al., 2010) as annual fire weather covariates.
For ignition and escape, we classified the historical and projected
landscapes based on land cover classes (Latifovic and Pouliot,
2005), while for spread, the most complex model of the three, we
classified the historical and projected landscapes into one of the
four land cover classes, following this order: (i) young (<15 years
since disturbance), (ii) deciduous leading, (iii) conifer leading,
and (iv) other; the pixel “leading” tree species or land cover class
is that accounting the largest proportion of total species biomass.

Landbird Models
We used landbird density models fit by the Boreal Avian
Modelling (BAM) project (Cumming et al., 2010; Barker et al.,
2015) with avian point count data from the Boreal and Taiga
Plains ecozone [as represented by Bird Conservation Region
6 (Bird Studies Canada and NABCI, 2014; Supplementary
Appendix I Figure A1)]. Data were compiled as part of the
BAM project and include data from both publicly available
and independent projects within the boreal and hemi-boreal
regions of North America. These human-based avian point-
count surveys were conducted between 1993 and 2018. The
BAM database was supplemented with point-count data from
autonomous recording units (ARU) deployed in the Northwest
Territories and Alberta between 2012 and 2018 by the Canadian
Wildlife Service and the University of Alberta Bioacoustic
Unit (WildTrax, 2019). The final database used to fit the
bird models comprised 126,621 point-counts (5.5% of which
were from ARUs), from a total of 42,612 sampling stations.
This resulted in 975,527 individual bird records (Table 1)
for the species modeled in this study. Of these point-counts,
63% took place in Alberta, 9% in British Columbia, 11% in
Manitoba, 6% in Saskatchewan, and 11% in the Northwest
Territories. Even though there is unbalanced spatial coverage
due to the challenging nature of data collection in remote
Northern forests, the data coming exclusively from the Northwest
Territories still comprised almost 4,700 unique sampling stations.
To minimize the influence of this spatial data imbalance
on the landbird models, we weighted individual point-count
observations (counts) according to the inverse of the number
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of surveys conducted within a 5 km × 5 km window around
the survey station (including repeat visits to the same station),
thereby down-weighting the influence of individual surveys in
heavily sampled areas.

For each landbird species (n = 64; Table 1), we developed two
species density models: non-CS (vegetation and terrain covariates
only) and CS (vegetation, terrain, and climate covariates). Even
though we recognize that the non-CS model is not necessarily
insensitive to climate, its effect would be mostly indirect, and
we chose to use a consistent naming convention (CS vs. non-
CS) for our factorial experiment. These count models were fit
as boosted regression trees (BRT) with a Poisson distribution
using the gbm.step function in the dismo package (Hijmans
et al., 2011), following methods outlined in Stralberg et al.
(2015b). We used ten-fold cross-validation to assess model
robustness to sampling bias. The covariates (Table 3) used
for the bird model fitting were either: (i) assumed static over
the simulated period and not allowed to change, e.g., water
bodies, wetland, urban/agriculture, water proportion, human
development proportion (Latifovic and Pouliot, 2005); (ii) static,
i.e., topographic ruggedness (Sappington et al., 2007); or (iii)
dynamic and allowed to change, e.g., tree species, biomass,
age, and climate covariates. Tree species biomass covariates for
fitting the bird models were derived from predicted biomass
layers for 2001 or 2011 (Beaudoin et al., 2014, 2017). Pre-2006
sampling events were associated with the 2001 biomass data,
whereas events from 2006 and up were associated with the

2011 biomass data. Tree species used for biomass covariates
included the main tree species present in the study area: paper
birch, tamarack, white spruce, black spruce, jack pine, and
trembling aspen.

To standardize the landbird density models, we accounted for
differences in sampling protocol and covariate effects on landbird
species detectability using statistical offsets. This included the
effects of time of day and day of year on the probability
of availability given presence, and the effects of tree cover
and land-cover type on the probability of detection given
availability (Sólymos et al., 2013). Offsets were calculated based
on removal and distance-sampling models (Sólymos et al.,
2018). The adjustments appeared as offsets in the BRTs so
that expected values represented species density. We assumed
that ARU detectability rates were similar to those of human
observers (after Van Wilgenburg et al., 2017; Yip et al., 2017).
We assessed potential correlation between predictors using
Pearson correlation coefficients between climate, topographic,
and vegetation covariates. We did not include covariates that
presented stronger correlation than 0.9 with other covariates
(sensu Stralberg et al., 2015b).

We also summed relative importance of vegetation and
climate variables (i.e., predictors) to assess the combined
relative importance of climate vs. vegetation (and assumed-
static covariates) in each species’ model. The summed relative
importance for climate predictors was compared with the net
effect on occupancy (see below) using linear regression.

TABLE 3 | Type of covariates, covariate acronyms, definitions, and range of possible values for the covariates used to build the landbird models.

Type Covariate acronym Definition Possible values

Naturally dynamic, but
held static

wat Sample point is defined as water Binary variable, 1 or 0

wet Sample point is defined as wetland Binary variable, 1 or 0

led25 Water proportion within 5 × 5 moving window Continuous variable, from 0 to 0.04

dev25 Development proportion within 5 × 5 moving window Continuous variable, from 0 to 0.04

Naturally static vrug Topographic ruggedness Continuous variable, between 0 and 0.165

Naturally dynamic and
simulated

Species_Betu_Pap_v1 Total biomass of paper birch Integer variable, from 0 to 5599

Species_Lari_Lar_v1 Total biomass (t/ha × 100) of tamarack Integer variable, from 0 to 4364

Species_Pice_Gla_v1 Total biomass (t/ha × 100) of white spruce Integer variable, from 0 to 12822

Species_Pice_Mar_v1 Total biomass (t/ha × 100) of black spruce Integer variable, from 0 to 11257

Species_Pinu_Ban_v1 Total biomass (t/ha × 100) of jack pine Integer variable, from 0 to 8476

Species_Popu_Tre_v1 Total biomass (t/ha × 100) of trembling aspen Integer variable, from 0 to 14572

Structure_Stand_Age_v1 Stand Age Integer variable, from 0 to 298

AHM Annual heat-moisture index (MAT+10)/(MAP/1000)) Continuous variable, between 5 and 33

CMD Hargreaves climatic moisture deficit (mm) Continuous variable, between 0 and 311

eFFP The day of the year on which frost-free period ends Continuous variable, between 224 and 266

EMT Extreme minimum temperature over 30 years Continuous variable, between −54 and −39

FFP Frost-free period Continuous variable, between 49 and 125

MAP Mean annual precipitation (mm) Continuous variable, between 217 and 839

MAT Mean annual temperature (◦C) Continuous variable, between −9 and 3

NFFD The number of frost-free days Continuous variable, between 75 and 162

PPT_wt Winter precipitation (mm) Continuous variable, between 28 and 164

SHM Summer heat-moisture index [(MWMT)/(MSP/1000)] Continuous variable, between 18 and 111

Tave_sm Summer mean temperature (◦C) Continuous variable, between 8 and 18

TD Temperature difference between MWMT and MCMT, or continentality (◦C) Continuous variable, between 21 and 44

Land cover model covariates were derived from the Commission for Environmental Cooperation (CEC) North American Land Cover 2005, vegetation biomass was derived
from Beaudoin et al. (2014, 2017) and climate covariates representing the 1981–2010 normal period were derived from Wang et al. (2016).
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Quantifying Direct and Indirect Climate
Effects on Landbird Occupancy
Our analyses were based on changes in mapped predicted
densities within the study region, over the course of a
simulation. Predicted densities in 2011 included large areas of
very low (effectively zero) densities, outside of species’ known
distributions (BirdLife International, 2021), as well as very small
areas with very high densities (up to three orders of magnitude
higher densities than average). This increased the complexity
of the estimation of density changes between scenarios. To
address this, we converted species’ density maps into occupancy
maps by applying species-specific density thresholds defined
by historically identified high density areas, i.e., areas where
predicted densities exceeded the mean predicted density within
the model-building area (sensu Stralberg et al., 2015a). Although
the thresholds used to define occupancy may affect pixel-level
changes, the relative magnitudes of direct, indirect, and net
climatic effects are likely insensitive to the choice of threshold.
Changes in thresholds used to define occupancy would likely
modify the magnitude of change in occupancy, but not the
qualitative differences in change observed among the three
pathways. We generated these occupancy maps for 2011 and
2100, for each species, treatment, and replicate resulting in 160
maps per species (2 years× 8 treatments× 10 replicates).

For each landbird species, treatment and replicate, we
subtracted the 2011 occupancy map from the 2100 occupancy
map. The resulting 80 maps representing the changes in
occupancy for each of the 64 species had pixels coded 1, −1,
or 0, depending whether a pixel changed from 0 to 1 (gain of
the given species in that pixel), changed from 1 to 0 (loss of
the given species in that pixel), or did not change, respectively.
For each pathway effect (direct, indirect via vegetation, indirect
via fire), we stacked the 80 maps into two groups (CS and non-
CS), resulting in 40 maps per pathway effect of the CS model
versions, and 40 per pathway effect of the non-CS versions (i.e.,
vegetation pathway – CS group = III, V, VII, VIII and non-CS
group = I, II, IV, VI; fire pathway – CS group = II, V, VI, VIII and
non-CS group = I, III, IV, VII; direct pathway – CS group = IV,
VI, VII, VIII and non-CS group = I, II, III, V; see Table 2 and
Figure 2). For estimating the net effect of climate, i.e., cumulative
and additive effects of climate change pathways, we only used the
full CS (Scenario VIII) and the full non-CS (Scenario I) models,
which resulted in two groups of 10 maps per species. We then
estimated the per-pixel probabilities of gain and loss for each of
these groups (two additional maps), separately:

Pgain = number of replicates with gain/total number of replicates
(i.e., either 40 if individual pathway effects, or 10 for the
net effects)

Ploss = number of replicates with loss/total number of replicates
This resulted in 16 maps per species: one gain and one loss of

occupied area maps for each of the two climate grouping, CS and
non-CS, for each of the four pathway and net effects [(i) direct, (ii)
indirect via vegetation, (iii) indirect via fire, and (iv) net effect, i.e.,
2 × 2 × 4]. For each species, we multiplied probabilities by pixel
area to estimate the mean areas (in ha) of species gain and loss
per pathway. Then, for each species we subtracted areas of species

loss from areas of species gain, to estimate the total climate effect
on occupancy for each pathway. A schematic representation of
this process is found in Figure 3. Information regarding code
and data to reproduce the analysis can be found in a GitHub
repository1. Finally, we mapped the change in the number of
species (i.e., species turnover) between 2100 and 2011 due to
net climate effects by calculating the difference in occupancy
between the full CS (VIII) and full non-CS (I) models across
species (Figure 2).

RESULTS

Landbird Model Performance and
Variable Importance
Model performance varied widely across landbird species and
models. Pseudo-R2 values ranged from 0.02 (WIWA) to 0.459
(SAVS) for non-climate sensitive models, and from 0.079 (NOFL)
to 0.705 (ATSP) for climate-sensitive models (Supplementary
Appendix III). The total relative importance of vegetation
variables averaged 59% in non-climate-sensitive models (with a
mean pseudo-R2 of 0.21) and 24% in climate-sensitive models
(with a mean pseudo-R2 of 0.25; Supplementary Appendix III).
Climate-sensitive landbird models showed widely varying relative
importance of climatic variables, ranging from 19% (OVEN)
to 91% (WCSP) across species (Supplementary Appendix I
Figure A3 and Supplementary Appendix III).

Climate Effects on Forest Growth and
Mortality and Wildfire
The CS forest growth simulation model showed a net increase
in tree biomass of 400 kg/ha (15.4%; Figure 4) compared to
results from the non-CS simulation model. CS fire simulations
alone resulted in a net increase in tree biomass of 100 kg/ha,
representing a 13% increase across the whole study area
compared to results from the non-CS fire simulations (Figure 4).
Another 100 kg/ha increase can be accounted for by interactions
between fire and vegetation in the combined CS models. Thus,
the net climate effect on tree biomass was an increase of
600 kg/ha in 2100 (Figure 4). Net climate effects on biomass
changes can be spatially seen in Supplementary Appendix I
Figure A4. The distribution of pixel-level leading tree species
showed fairly modest changes, with higher deciduous conversion
in the southeastern portion and more conversion to conifer in
the central and eastern portions (Supplementary Appendix I
Figure A5), with small increases in black-spruce dominated
mixed stands, and small decreases in mixed stands dominated
by white spruce and trembling aspen (see Supplementary
Appendix I for detailed results).

Comparing CS to non-CS fire simulations, mean annual area
burned increased by 280 thousand ha in 2100 (Figure 5). This
represents a climate-driven increase of almost 90% relative to
historical conditions (1965–2016). Given the modest changes in

1https://github.com/tati-micheletti/NWT/tree/FEE
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FIGURE 3 | Scheme describing the steps taken to calculate change in occupancy of landbird species by direct and indirect climate effects (summarized in Figure 6)
from the forecasted landscape.

fuel type abundances reported above, this increase is attributable
to the direct effects of climate warming on fire activity.

Climate Effects on Landbird Distributions
Climate change was projected to positively affect average landbird
occupancy area in the Northwest Territories by about 7.39
million ha. This area represents approximately 15% of the Taiga
Plains ecozone within the Northwest Territories (Figure 6A and
Supplementary Appendix IV). Over all species, we forecasted
a positive mean difference of 7.49 million ha exclusively due
to the direct effects of climate change (dashed blue vertical
line on Figure 6B), which were partially offset by a negative
mean difference of 97 thousand ha due to indirect effects of
climate via fire (dashed red vertical line on Figure 6B). Effects
of climate via changes in forest growth and mortality were
negligible (a positive mean difference of 4,250 ha; dashed green
vertical line on Figure 6B). Overall, the direct effect of climate
on landbirds was almost two orders of magnitude greater than
the indirect effects, based on simulated changes in landbird
distributions (Figure 6). We reiterate that results presented here
are not simulated forecasts of future occupancy but instead
represent the difference between forecasted occupancy with CS
and non-CS models. Even though in some cases the present
results might match forecasted occupancy (for example, if the

forecasts of non-CS models are unchanging through time) the
present results (Figure 6) should not be interpreted as future
distribution shifts or range expansions and contractions without
careful consideration of the control model (model I).

Approximately 19% of the landbird species showed both
positive and negative direct effects of climate as measured
by the gained and lost areas (blue bars on Figures 6A,B).
Most species (75%) showed a net area gain to direct
effect of climate when comparing variants CS vs. non-
CS (Figure 6A), while for 25% there was a net area loss
due to direct effects of climate, when making the same
comparison. The indirect effect of climate acting through fire
or vegetation on landbird distribution varied considerably
among species, generating important spatial variation in
local gain and loss of occupied area (Figures 6, 7). The
net climate effects across species were not correlated with
the relative importance of climate variables in the CS
models (Figure 8).

The forecasted effect of climate (CS vs. non-CS variants)
suggested a net reduction in richness of up to 12 and seven species
in the south-central and northeastern regions, respectively
(Figure 7). In contrast, the western regions of the study area
showed an increase of up to 20 species when comparing the
CS vs. non-CS variants. Species turnover was highest in the
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FIGURE 4 | Distribution of area (number of pixels multiplied by resolution)
difference of simulated tree species biomass (kg/ha) across models and
replicates within the study area in 2100. Dashed lines represent median of
biomass differences due to direct climate effects on vegetation (+400 kg/ha;
green), indirect effects via fire (+100 kg/ha; red), and the total net effects
(+600 kg/ha; blue).

northeastern, south-central (higher species loss) and western
regions (higher species gain) of the study area (Figure 7).

DISCUSSION

Understanding the relative importance of key pathways through
which climate change affects ecosystems is important for
informing potential adaptation and mitigation measures. The
abundance and distribution of landbirds – and wildlife in
general – are affected by climate change through the effects
of climate on their habitat, more specifically on vegetation,
i.e., indirect climate effects (Wisz et al., 2013), but also
directly through, e.g., physiological responses to temperature and
precipitation (Riddell et al., 2021). Understanding the relative
influence of direct and indirect effects enables wildlife managers
to identify opportunities to address negative effects of changing
climate on valued ecological indicators (Bauduin et al., 2020).
We present a novel evaluation of the relative influences of
three potential climate-change pathways (vegetation, wildfire,
and climate) on future landbird distributions in Northwest
Territories, Canada. Direct climate effects were approximately

FIGURE 5 | Difference in mean area burned from 2011 to 2100 when
simulating landscape change and wildfire between with climate-sensitive and
non-climate-sensitive models [Scenarios (II, V, VI, VIII) – (I, III, IV, VII)] for the
Taiga Plains Ecozone within the Northwest Territories (dots). The red line
represents the fitted linear regression of values through time (y = 1.7x –
3258.2; p = 0.00003).

two orders of magnitude more important in explaining predicted
changes in landbird occupancy than the indirect pathways.
Despite a 90% simulated climate-driven increase in annual area
burned by 2100, this did not translate into major vegetation
changes across our large study area. Models simulated an average
increase of 600 kg/ha in tree biomass, but with only modest
changes in leading tree species due to climate change. These
results suggest that actions directed at indirect pathways such as
wildfire suppression or forest management may not be enough
to effectively mitigate landbird species distributional changes
under climate change.

In our models, climate drives both forest growth and mortality
(i.e., via climate-affected modifiers to these parameters), as well
as the probabilities of wildfire ignition, escape and spread. Yet,
the indirect effects of climate change on species distribution
were still marginal compared to direct effects. This might be
explained by vegetation lags. Rapid climate change, accompanied
by a relatively slow vegetation change, could result in a state
of disequilibrium between climate and vegetation (Wu et al.,
2015). Stralberg et al. (2015a) drew attention to the importance
of considering lags in vegetation responses to changes in
climate when evaluating the effects of climate change on the
distributions of boreal landbirds. In theory, the more important
the vegetation lag, the more landbird species are likely to
experience important range contraction, due to reductions in
suitable habitat (Stralberg et al., 2015a). Still, based on the
simulated changes in forest growth, mortality, and wildfire
regime, our results suggest that vegetation lags may be longer
than the simulation time span used in this study, and that
direct and/or indirect effects of climate will not necessarily
impose important range contractions to most of the 64 species
we studied, as previously proposed. Farther south, in Alberta,
Cadieux et al.’s (2019) projections suggest larger changes in
species composition, reflecting shorter lags in vegetation response
to climate change.
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FIGURE 6 | Direct and indirect effects of climate change on the distributions of 64 landbird species within the study area (Supplementary Appendix I Figure A1).
Effects are measured as the absolute or relative differences between paired climate-sensitive and non-climate sensitive models (Table 1) in the changes in pixel
occupancy between 2011 and 2100, in terms of probabilities calculated over replicates. Left to right, (A) the net direct effects (Scenarios [IV, VI, VII, VIII] – [I, II, III, V],
Table 2); blue), and indirect effects via fire (Scenarios [II, V, VI, VIII] – [I, III, IV, VII], Table 2; red) and via forest change (Scenarios [III, V, VII, VIII] – [I, II, IV, VI], Table 2;
green). Net effects are the difference between the climate sensitive model and non-climate sensitive model predictions, after calculating the total net area (gained
minus lost); (B) light colored bars represent mean expected areas gained (positive) and lost (negative) for each one of the bird species due to direct (blue) and indirect
effects of climate (red via fire, green via forest change). Full color bars depict the net effect (gained minus lost) of each of these pathways. The dotted lines represent
the average across species. Species for which the net differences in abundance between paired climate-sensitive and non-climate sensitive models (i.e., losses
higher than gains) were higher than 90% are marked with an “*”.

Projected shifts in climate and habitat resulted in species
distribution patterns with 47 of 64 (73%) of species projected
to show an increase in the area they occupy and 16 of 64
(25%) of the species projected to show a decrease in the area
occupied within the study area by 2100 when comparing CS
vs. non-CS variants. Of the 47 species which net climate effects
would increase the occupied area, 72% (34 species) currently
have their range centroid south of our study area, supporting
previous results projecting northward range shifts of migratory
birds (Hitch and Leberg, 2007; Langham et al., 2015; Bateman
et al., 2020b; McCaslin and Heath, 2020). Interestingly, these
results might point to slower rates of change in mountain
ranges, as well as the ability for species to move up slopes
to suitable habitats. Species whose models project increases in
its habitat extent generally have diverse habitat associations;
however, species with the largest net gains (“winners”) are
primarily associated with deciduous forests, e.g., Black-capped
Chickadee (Poecile atricapillus), Yellow Warbler (Setophaga
petechia), Black-and-white Warbler (Mniotilta varia), Least
Flycatcher (Empidonax minimus), Warbling Vireo (Vireo gilvus),
and Ruffed Grouse (Bonasa umbellus). Species whose models
project the largest net losses (“losers”) are species associated

with: (1) conifer forest, such as White-winged Crossbill (Loxia
leucoptera), Boreal Chickadee (Poecile hudsonicus); (2) non-
forested habitats, such as Lincoln’s Sparrow (Melospiza lincolnii),
Fox Sparrow (Passerella iliaca); or (3) treeline-tundra habitats
such as American Tree Sparrow (Spizelloides arborea), Horned
Lark (Eremophila alpestris). These outcomes align with other
simulation studies in the western boreal forests (Mahon et al.,
2016; Cadieux et al., 2020), and highlight the importance of
simulating landscape change with climate sensitive components
when forecasting potential future species distributions. Still,
two important caveats should be considered when interpreting
these results. First, only forested habitats were simulated by
the forest growth and mortality model which might influence
expected changes in non-forested habitat, and consequently, on
landbird species associated with these environments. Second, the
extent of current range of landbird species could also influence
expected gains and losses for species with narrow ranges within
the data set, for example White-crowned Sparrow (Zonotrichia
leucophrys). Although this species occurs within the Northwest
Territories, it is uncommon across all of the northern region of
Alberta, from which much of the data to fit the landbird statistical
models was collected.
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FIGURE 7 | Expected change in the number of species due to net effects of
climate change (difference of the change from 2011 to 2100 between full
climate-sensitive models and full non-climate-sensitive models) in the Taiga
Plains ecozone within the Northwest Territories, Canada. Yellow to red values
represent species losses, and yellow to blue values represent species gains.

In light of the highly variable magnitudes of potential
vegetation change in the North (e.g., Rehfeldt et al., 2012), further
studies should aim to better understand temporal response of
both forested and non-forested habitats, and wildfire regime
to climate change, including lag responses of vegetation to
climate change, and further assess the implications of climate and
landscape change on landbird communities.

The lack of a relationship between importance of climate
variables in the species distribution models and the net climate
change effects in simulation (Figure 8) implies that our forecasted
changes in landbird occupancy are not simply a consequence
of the strength of climate variables in the CS models. It
may be explained by the fact that the predicted densities

from a species distribution model are the product of the
magnitude of the covariate effect (i.e., the importance of climate
variables combined with the explanatory power of the model
and the underlying simulated landscape covariates). This result
(Figure 8) emphasizes the importance of actually performing
forecasts (i.e., simulating landscape changes and forecasting
species concurrent changes in occupancy) to understand
plausible future outcomes (Dietze et al., 2018); it is not sufficient
to infer possible futures directly from coefficients of species
distribution models.

We recognize that there may be mismatches between the
specific vegetation changes simulated and those captured by
the landbird models, and that our results are a direct outcome
of the particular forest growth and mortality, and wildfire
models used. Our models also do not account for important
ecological processes such as permafrost thaw or changes in
surface hydrology (Helbig et al., 2016), nor do they capture or
simulate extreme weather events (Tanner et al., 2017), that are
likely to change with climate. We also could improve our models
and obtain more refined landbird forecasts if including other
explicit biological processes such as landbirds’ dispersal capacity
and potential changes in species interactions due to future climate
change (i.e., mismatches in ecological networks). These processes
could all alter avian habitat quantity and quality through direct
and indirect mechanisms. Our choice of occupancy thresholds for
landbirds may also have resulted in over- or under-estimation of
species gains, losses, and turnover. However, this should not have
influenced the overall patterns observed or our main finding, i.e.,
relatively small effects of indirect vs. direct climate pathways on
landbird occupancy across our study area.

To our knowledge, this study represents the first example of
a fully reproducible and reusable modeling workflow, covering
every step from acquisition and assimilation of raw data, through
the parameter estimation of all statistical models, the specification
of simulation experiments, and their execution to generate
the samples of forecasts. This study highlights the platform’s
ability to actually perform (i) yearly simulation of ecological
processes (i.e., forest growth and wildfire) with (ii) existing
feedbacks when forecasting species (i.e., landbird) distribution,
in contrast to using a scenario based approach for forecasting,
which neglects the effects ecological feedbacks among ecological
processes, and (iii) on the same platform, as opposed to using
one platform for the landscape simulation and another for
wildlife modeling (sensu Regos et al., 2018), which improves
both model reusability and nimbleness. This study also (iv)
allowed us to account for direct effects of climate on both
wildfire regimes and forest growth, and (v) represents both the
vegetation component with a high level of details (i.e., several
species cohorts per pixel), both of which have been previously
identified as a limitation of other platforms and models (De
Cáceres et al., 2013). Our workflow, using the SpaDES platform,
allows for frequent updates and revisions, even to input datasets
far upstream from the simulations. Further, at every step, we were
able to include expertise of multiple subject experts to update and
correct components of different models. We mixed numerous
statistical modeling tools (e.g., BRTs, GAMLSS, GLM, GAMS,
non-linear mixed effects models) and simulation paradigms
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FIGURE 8 | Non-significant correlation (blue line) between relative importance of climate covariates in the climate-sensitive avian species distribution models and
total net effect of climate change in terms of area – calculated as the difference of the area affected by climate change calculated between climate-sensitive and
non-climate-sensitive predictions in 2100 – for 64 boreal landbird species within the Bird Conservation Region 6 within the Northwest Territories.

(e.g., percolation processes, continuous tree propagule dispersal,
forest stand growth modeling), using the best science currently
available from each discipline. The SpaDES platform allowed us
to integrate these diverse tools in a single data-driven paradigm
with reusable modular components (Chubaty and McIntire,
2021; McIntire et al., 2021). This platform is especially well
suited to address the new generation of the ecological forecasting
paradigm (Dietze et al., 2018; Stall et al., 2019; Bodner et al., 2020)
and the implementation of the PERFICT approach (McIntire
et al., 2021). This approach can, for example, help reduce model
overfitting by enabling faster and iterative re-evaluation and
updating of models and model fit. This can also be done, not only
by the original model creators but also other researchers, when
new data becomes available, speeding up scientific advances. This

nimble approach can improve science-based decision making
processes, where increasingly complex ecological processes and
management objectives can be addressed (McIntire et al., 2021).

This study, and the use of the SpaDES framework, sets
the stage for continued testing and development of models
and hypotheses to inform land management. The two avian
model variants used for this experiment, although not necessarily
state-of-the-art models, were appropriate for forecasting because
they only required external climate inputs, and tree species
composition and age. This made these models particularly well
suited for integration with ecological process forecasting, as
they did not include covariates for which forecasted data is not
available. As with most forecasting studies, there were a large
number of ecological processes that were held static or not
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included in our simulations (e.g., wetland dynamics, permafrost
change, extreme events, and anthropogenic disturbances), each of
which may have impacts on our estimates of direct versus indirect
climate effects on landbirds. A crucial element of our simulation
system was the close connection between data and models, and
between statistical data analysis and the parameterization of the
ecological process models used in the simulation. SpaDES is the
only platform, to our knowledge, that could handle our entire
workflow. This study – and the models used and developed
here – will become part of an iterative, continuously improving
forecasting process (sensu Dietze et al., 2018; White et al.,
2019). Future development will weave in forecast validation and
integrate ecological processes (mentioned above), improving the
capacity of these and other models to forecast likely impacts of
climatic change and other processes of management concern.
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