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Coyotes (Canis latrans) have established populations in most major urban centers
across North America. While the risk of attacks on humans or their pets is low,
the presence of carnivores in areas with high human use has resulted in increased
public concern. Having a clearer understanding of which animals are more likely to
interact with humans and when interactions are more likely to occur will help mitigate
human-carnivore conflicts. Despite clear broad-scale patterns of human avoidance,
human-coyote interactions occur most frequently in residential areas. Our purpose was
to determine if use of residential areas varied consistently across individuals or time. We
used locations from GPS collars deployed on 14 coyotes in the Greater Toronto Area,
Ontario, Canada from 2012 to 2017 to fit a step selection function. Average (±SE) home
range size estimates were 17.3 ± 4.6 km2 for resident coyotes and 102.8 ± 32.9 km2

for non-residents. We found that coyotes used natural areas more (β = 0.07, SE = 0.02,
p < 0.0001), and roads (β = −0.50, SE = 0.13, p < 0.0001) and residential areas
(β = −0.79, SE = 0.21, p = 0.0001) less during the day than at night. We also found that
coyotes were more likely to use residential areas in the breeding season from January
to April (β = 0.69, SE = 0.20, p = 0.0007) and the pup rearing season from May to
August (β = 0.54, SE = 0.13, p < 0.0001) than in the dispersal season from September
to December. Lastly, we found that resident coyotes were less likely to use residential
areas than non-resident coyotes (β = −1.13, SE = 0.26, p < 0.0001). As far as we
are aware, our study is the first to identify the seasons when coyotes are more likely
to use residential areas. The seasonal patterns in habitat use that we observed reflect
patterns that have been previously reported for human-coyote conflicts. Our results
demonstrate that reducing the availability of anthropogenic food sources in residential
areas, particularly in the winter and spring, should be a priority for managers aiming to
reduce human-coyote conflict in urban areas.
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INTRODUCTION

Human-wildlife conflict is often defined as wildlife induced
damage to person or property (Dickman, 2010). The protein-rich
diet of mammalian carnivores can put them in direct competition
for resources with humans, resulting in relatively higher rates of
conflict with humans than observed for other mammal species
(Treves and Karanth, 2003). Extensive conversion of forests to
agricultural land and urban development following European
settlement of North America resulted in range contractions for
many mammalian carnivores (Woodroffe, 2000; Laliberte and
Ripple, 2004). Yet some species have succeeded at adapting to,
and even thriving in, human modified landscapes. Habituation
to humans, particularly through intentional or unintentional
feeding, is widely considered to be one of the main driving forces
behind human-carnivore conflict (Albert and Bowyer, 1991;
Newsome et al., 2015b). Further, human-wildlife conflicts are
more likely to occur when carnivores are in poor health (Towns
et al., 2009; Murray et al., 2015a), relying on more anthropogenic
food sources (White and Gehrt, 2009; Lukasik and Alexander,
2011; Murray et al., 2015b), or within areas with poor habitat
quality (Magle et al., 2014; Poessel et al., 2017a).

Coyotes (Canis latrans) have proven to be particularly
successful at taking advantage of anthropogenic changes to
landcover, with a documented range expansion of 40% following
European settlement (Laliberte and Ripple, 2004) and established
populations in most major urban centers in North America
(Bateman and Fleming, 2012; Poessel et al., 2017a). The presence
of coyotes in cities provides many ecological benefits for the
urban ecosystem; including increased bird diversity through
mesopredator release (Crooks and Soule, 1999) and controlling
populations of rodents and other pest species (Henke and Bryant,
1999; Jones et al., 2016). However, the presence of carnivores
in areas of high human density can also lead to human-wildlife
conflict. The number of newspaper articles reporting coyote
attacks on humans or their pets has increased dramatically in
recent decades, resulting in increased public concern over the
presence of coyotes in areas with high human use (White and
Gehrt, 2009). Human-coyote conflicts in urban areas are most
likely to occur in the late winter and early spring, which coincide
with the time of year when coyotes are breeding and raising pups
(Lukasik and Alexander, 2011; Poessel et al., 2013). Although the
actual risk of coyote attacks on humans or their pets is very low
(Lukasik and Alexander, 2011; Poessel et al., 2013), when attacks
do occur it can be a traumatizing event for those involved (Baker
and Timm, 1998; White and Gehrt, 2009). Management strategies
that attempt to reduce coyote populations through harvest are
ineffective due to high reproductive rates and immigration, so
coyote populations in urban areas are presumably here to stay
(Knowlton et al., 1999; Conner and Morris, 2015).

Within the urban ecosystem, coyotes predominately reside
in areas with greater amounts of natural cover and avoid more
developed areas that are associated with increased human use
(Riley et al., 2003; Atwood et al., 2004; Gehrt et al., 2009). In
more densely populated urban cores coyote home ranges typically
include a greater proportion of developed areas (Riley et al.,
2003; Gese et al., 2012). However, coyotes that have a greater

proportion of developed areas within their home range tend to
have larger home ranges (Gehrt et al., 2009). Larger home ranges
are an indication of lower habitat quality, because the individual
needs more area to meet its daily requirements (MacDonald,
1983). High use of linear features (Grinder and Krausman,
2001; Poessel et al., 2016) and repeat use of specific corridor
features (Way and Eatough, 2006) suggests that developed areas
are predominately used to travel between natural cover in the
urban matrix. When coyotes do go into areas associated with
high human use, they tend to do so at night when they are less
likely to interact with humans (Gese et al., 2012). Individual-level
patterns in habitat selection have been documented within urban
coyote populations. Dispersing coyotes, who tend to be subadults
searching for a mate, are often relegated to suboptimal habitats
(Mitchell et al., 2015). Furthermore, a few studies have found
that female coyotes in urban ecosystems have stronger habitat
preferences than males (Grinder and Krausman, 2001; Poessel
et al., 2016). Despite these strong population level patterns of
avoidance, human-coyote interactions in urban centers occur
most frequently in residential areas and very rarely in natural
habitat fragments (Krester et al., 2008; White and Gehrt, 2009;
Lukasik and Alexander, 2011; Poessel et al., 2013).

We had three objectives for this study. Our first objective was
to assess whether the coyotes in our study area had patterns
of habitat selection indicative of human avoidance, as has been
documented in other urban coyote populations. Our second
objective was to describe home range size of coyotes in our
study area for comparison with other studies of urban space use.
Our third objective was to determine if individual and temporal
variation in habitat selection by urban coyotes reflects previously
reported patterns in human-coyote conflicts. Our focus was on
investigating differences in use of residential areas, which are
zoning areas that predominantly consist of housing, because this
is the land use type where humans and coyotes are most likely to
interact and where most conflicts occur (White and Gehrt, 2009).
We predicted that (1) coyotes would use natural areas more
during the day and developed areas more at night, (2) coyotes
would use residential areas more frequently during breeding and
pup rearing seasons, (3) resident coyotes would use residential
areas less than non-residents, (4) sub-adult coyotes would use
residential areas more than adult coyotes, and (5) female coyotes
would use residential areas less than male coyotes.

MATERIALS AND METHODS

Study Site
We conducted our study in the Greater Toronto Area (GTA),
Ontario, Canada. Although the GTA consists of a range of
landscapes from urban to rural, we focused our study primarily
in the 10 municipalities that make up the urban and suburban
core (Figure 1). The urban and suburban core of the GTA had
a population greater than 5 million people with a population
density of ca. 2,169 people per km2 (Statistics Canada, 2011). The
study area was located in the Lake Erie Lowland ecoregion, with
mean summer temperatures of 18◦C, mean winter temperatures
of −2.5◦C, and annual precipitation ranging from 750 to 900 mm
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(Ecological Stratification Working Group, 1995). The study
site was dominated by developed land covers but scattered
throughout were natural and non-natural green spaces. Natural
green spaces were predominantly found within a system of
ravines that were protected from development across the GTA
to mitigate flood damage. Vegetation cover included deciduous
and mixed-wood stands; with sugar maple (Acer sacharum),
oak (Quercus rubra and Quercus alba), and green ash (Fraxinus
pennsylvanica) being some of the common native tree species
(Ecological Stratification Working Group, 1995).

Habitat Classification
We classified the study area into four habitat types: Natural
Cover, Open Paved, Housing, and Other Developed based
on information in the Southern Ontario Land and Resource
Inventory v. 1.2 (Southern Ontario Land Resource Information
System (SOLRIS), 2008) and land use categories from municipal
zoning by-law and official plan maps (Peel Region, 2003; Toronto,
2013; Burlington, 2014; Mississauga, 2014; Oakville, 2014). We
used ArcGIS 10.3.1 for the creation of habitat maps (ESRI,
2011). We amalgamated municipal zones into either Housing
(residential zones) or Other Developed (including commercial,
office space, industrial, institutional, and mixed use zones).
We extracted areas from the SOLRIS “Built Up Impervious”
Class that overlayed Housing and Other Developed zones
using the “Clip” function. We combined any remaining area
from the “Built Up Impervious class” that did not have a
zoning designation with the “Transportation” class to create
the Open Paved habitat, which resulted in a land cover type
that consists of roads, railways, abandoned lots, and parking
lots. For the purpose of this study, we defined natural land
use as areas not dominated by buildings, pavement, or other
anthropogenic impervious surfaces and therefore include non-
natural features (e.g., agriculture, cemeteries, golf courses, etc.).
The Natural Cover habitat class was based solely on the SOLRIS
classification, and included all wetlands, forests, fields, and urban
parks (Figure 1).

Trapping and Radiocollaring
We conducted trapping opportunistically in natural areas
using padded footholds (Victor no. 3 Softcatch) from 2012
to 2014. We continuously monitored traps on public lands
overnight and covered them with wood boards during the
day to avoid incidental interactions with the general public.
We anesthetized captured animals using an intramuscular
injection of xylazine hydrochloride (2 mg/kg) and Telazol (4 m
mg/kg), and we reversed animals after capture using atipamezole
(0.2 mg/kg). We fitted captured animals with GPS (Lotek Wildcell
SG, Newmarket, Ontario) collars, determined their sex, took
morphometric body measurements, and collected hair, whisker,
and blood samples. From 2016 to 2017 we also deployed collars
on coyotes that were treated for mange and subsequently released
by the Toronto Wildlife Centre. We focused our fieldwork in
Mississauga, with a few captures in Toronto (Figure 1). Collars
were programed to record a location fix either every 2.5 or 3 h.
More frequent fixes were used with the collar schedules for some
animals but they are not included in this study. We aged coyotes

based on tooth wear patterns and classified them as either sub-
adult (0–2 years old) or adult (>2 years old) (Gipson et al., 2000).
All capture and handling methods were approved by the Ontario
Ministry of Natural Resources Animal Care Committee (Protocol
nos. 75-12, 75-13, 75-14).

Home Range Analysis
To facilitate comparison with previous urban coyote research,
we calculated home range size estimates for both residents
and non-residents using 95% minimum convex polygons in
the “adehabitatHR” package for R 3.2.4 (Calenge, 2006). Like
previous work on urban coyotes, we found that kernel density
estimates provided home ranges that were highly fragmented and
did not accurately represent coyote territories (Gehrt et al., 2009;
Mitchell et al., 2015; Poessel et al., 2016). We classified individuals
as either residents or non-residents. We identified residents
based on continued use of the same areas for ≥3 months, with
home ranges either contained within a single habitat fragment
or showing return visits to multiple habitat fragments. Resident
coyotes are typically a breeding pair and associated pack members
that defend a territory from neighboring residents (Gese et al.,
1989). Non-resident coyotes are generally not associated with a
pack or territory and roam the landscape widely (Gese et al.,
1989). For resident coyotes we also calculated separate home
ranges using diurnal and nocturnal locations, and for each
biological season. We used Mann-Whitney U-tests to test for
differences between home range sizes of resident males vs.
females and adults vs. sub-adults. We used a Wilcoxon-signed
rank test to test for differences between diurnal and nocturnal
home ranges for resident coyotes. Lastly, we used an unbalanced
repeated measures ANOVA with individual ID as a random block
variable in the R package “car” (Fox and Weisberg, 2019) to
determine if there were differences between biological seasons
for residents. Non-residents were excluded from these statistical
tests because they do not use a well-defined area and home range
size estimates are predominantly influenced by duration of collar
deployment (Wheeldon, 2020).

Step Selection Functions
Step selection functions are a type of resource selection function
that compare habitats “used” by animals to the habitats that were
“available” to them. Unlike other resource selection functions
that compare observed locations (used) to locations randomly
sampled across the home range or wider landscape (available),
step selection functions create a paired case-control design
by defining available habitat for each used location based on
observed movement patterns (Fortin et al., 2005). To create a
paired case-control design, step selection functions use “steps”
as the base sampling unit. A step is the straight-line between
two consecutive locations in a set of animal locations sampled at
regular time intervals. Therefore, paired used and available steps
compare where an animal at a given location went after a fixed
time interval to where it could have gone based on observed step
lengths and turning angles (Fortin et al., 2005).

We prepared GPS locations obtained from radiocollars for
analysis in a step selection function using the R package
“amt” following the recommended workflow outlined by
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FIGURE 1 | (A) Map of Ontario with a red square showing the location of the study area. (B) Showing the boundaries of 10 municipalities that make up the
contiguous urban and suburban core within the Greater Toronto Area, Canada and the location of resident coyote home ranges calculated using 95% minimum
convex polygons. (C) A representative example of the distribution of different habitat classes within resident coyote home ranges in the City of Mississauga. Maps
were created using ArcGIS 10.3.1. Contains information licensed under the Open Government Licence — Canada.

Signer et al. (2019). We resampled locations to either a 2.5 or 3
h fix interval depending on the collar schedule. We classified
locations as diurnal or nocturnal based on sunset and sunrise
times for Toronto at the corresponding time of year. We also
classified locations according to biological season as defined by
Gehrt et al. (2009): breeding (January 1–April 30), pup rearing
(May 1–August 31), and dispersal (September 1–December 31).
We separated locations into “bursts,” which consisted of series
of consecutive locations uninterrupted by missed fixes. We
removed bursts with fewer than 3 consecutive locations, which
is the minimum number required to calculate a turn angle. We
converted bursts into a series of steps by creating a straight
line between consecutive locations, calculating distance along the
line, and the angle of the change in direction from the previous
heading. For each individual, we fit observed step lengths to a
gamma distribution and observed turn angles were fit to a Von
Mises distribution (Forester et al., 2009). For each used step, we
drew 25 available steps by randomly selecting step length and turn
angle from these distributions. We recorded the habitat at the
end of all used and available steps. We created dummy variables
for Natural Cover, Open Paved, and Housing habitats, which left
Other Developed as the reference habitat. We included the used
step in the sample of available steps to ensure that the selected

habitat was always present in the pool of available steps (Avgar
et al., 2016). We removed available steps that ended in Lake
Ontario from the analysis.

Because Step Selection Functions using categorical habitat
classifications only provide inferences on habitat selection
relative to the reference habitat, we calculated summary statistics
of absolute differences between habitat use and availability to
provide additional context. We calculated the proportion of used
steps that ended in each habitat class for each animal. We also
determined the proportion of available steps that ended in each
habitat class for each observed step, and then calculated the mean
availability across all observed steps for each animal.

Analysis of step selection functions followed the approach
outlined in Muff et al. (2020). We used the R package
“glmmTMB” (Brooks et al., 2017) to run a Poisson generalized
linear mixed model with step ID as random intercept, which is
a likelihood equivalent of a conditional logistic regression (Muff
et al., 2020). We fixed the variance for the step ID random
intercept at 1,000 to allow the estimates of this parameter to vary
without shrinkage toward the mean (Muff et al., 2020). All models
included a random intercept term for animal ID and a random
slope term that varied according to animal ID for every habitat
variable and interaction term included in the model.
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We conducted model selection using a combination of
Akaike’s Information Criteria (AIC) and null hypotheses testing,
similar to the approach described in Wood and Augustin (2002).
If adding a variable decreased the model AIC by ≥ 2 and the
added fixed effect coefficient was significantly different from
zero, with a p ≤ 0.05, then there was support for the more
complicated model. We used a combined approach because
both methods are imperfect. The issues with relying solely on
p-values for hypothesis testing are well documented, and the
consensus among statisticians is that they need to be considered
in conjunction with other statistical values (Wasserstein and
Lazar, 2016). Whereas AIC is generally the preferred approach
for model selection in ecology, it can overfit models by including
uninformative parameters, which is a particularly common issue
in studies with large numbers of data points (Arnold, 2010).
We fit a habitat-only step selection function that served as the
base habitat model in hypothesis testing, where probability of
choosing the observed step was a function the habitat type at
the destination. To ensure that the base habitat model was an
improvement over a null model we compared it to a model
that only included random intercepts for step ID and animal
ID. We added interaction terms to the base habitat model to
test hypotheses about individual-level and temporal variation in
habitat use. We created candidate models that included 2-way
interaction terms representing hypotheses on the effect of social
status (resident vs. non-resident), sex (male vs. female), age (adult
vs. subadult), time of day (day vs. night), and biological season
(breeding vs. pup rearing vs. dispersal) on the use of different
habitats (Natural Cover, Open Paved, and Housing). Lastly, we fit
a full model with the base habitat model and all interaction terms
that were supported during model selection. All data processing
and analyses was done in R 4.0.2 (R Core Team, 2020).

RESULTS

Trapping and Radiocollaring
In total, 18 coyotes were captured and fitted with GPS
collars. Locations from collared individuals were within five
municipalities: Toronto, Mississauga, Brampton, Oakville and
Burlington. We truncated the data from two coyotes when they
left the study area and removed four individuals from analysis
because their collars were active for <30 days. Four animals
were released by the Toronto Wildlife Centre between 2016 and
2017, although only one of these individuals met the criteria to
be included in this study. Collars remained on the coyotes for
6 months to a year (mean: 278.4 days ± 82.2 SD) depending
on mortality and battery life. The average number of used steps
per individual was 1678 ± 555 SD (range: 904–2,517). The
individuals used in this study consisted of seven males and
seven females with ten adults and four subadults. Several coyotes
changed their social status (resident vs. non-resident) during the
study. One animal shifted their home range twice while collared.
Because each home range was occupied for >3 months and each
displayed continued repeat use of a few natural fragments, we
treated them as three separate resident states. The number of
unique animal-social states consisted of eleven residents and six

non-residents. Five of the collared coyotes died during the study,
four from vehicle collisions and one from natural causes (with
visible signs of mange). One coyote’s fate was unknown (the collar
was found, but not the individual).

Home Range Analysis
Average (± SE) 95% minimum convex polygon home range size
estimates for residents was 17.3 ± 4.6 km2 (range: 0.9–56.9 km2)
and 102.8 ± 32.9 km2 (range: 12.2–198.0 km2) for non-residents.
Home range sizes of resident males (15.0 ± 10.4 km2) were not
significantly different from home range sizes of resident females
(18.3 ± 5.2 km2; w = 11, p = 0.330). Home range sizes of resident
adults (20.6 ± 7.1 km2) were not significantly different from
home range sizes of resident subadults (12.0 ± 3.1 km2; w = 23,
p = 0.724). Resident coyotes used a significantly smaller portion
of their home range during the day (13.8 ± 4.0 km2) than at
night (16.9 ± 4.6 km2; v = 7, p = 0.005). There was no significant
difference between home range sizes of resident coyotes between
seasons (χ2 = 0.79, p = 0.673): average breeding, pup rearing,
and dispersal home range sizes were 13.4 ± 4.4, 18.5 ± 7.2, and
13.6 ± 4.5 km2, respectively.

Step Selection Functions
On average (±SE), individual coyotes selected Natural Cover
74.1 ± 3.8% of the time, which is more than it occurred
in available steps (50.0 ± 2.9%). They selected Open Paved
(15.7 ± 3.3%) less than it was found in available steps
(20.8 ± 2.0%) and Housing (5.5 ± 1.1%) less than in available
steps (19.6 ± 1.5%). Lastly, coyotes selected Other Developed
(4.7 ± 1.5%) less than in available steps (19.6 ± 1.5%; Figure 2).

FIGURE 2 | Boxplot showing the proportion of used habitat and mean
proportion of available habitat for 14 coyotes with GPS collars in the Greater
Toronto Area from 2012 to 2017. The center line represents the median. The
limits of the box represent the interquartile range (IQR) and the whiskers
represent 1.5 × IQR. Solid circles denote outliers. Habitat types are Natural
Cover (NC), Open Paved (OP), Housing (Hs), and Other Developed (Dv).
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Model selection (Supplementary Appendix 1) analyzing
interactions between individual characteristics or temporal
patterns and habitat selection revealed broad selection for Natural
Cover (β = 1.50, SE = 0.14, p < 0.001), and Open Paved (β = 0.82,
SE = 0.15, p < 0.001) habitats relative to Other Developed habitat
types (Table 1). Natural Cover was selected more during the day
(β = 0.07, SE = 0.02, p < 0.001) than at night, whereas Open
Paved (β = −0.49, SE = 0.13, p < 0.001) and Housing (β = −0.79,
SE = 0.21, p = 0.001) habitats were more likely to be selected
at night than during the day. There was no statistical support
for differences in habitat selection due to age or sex (p < 0.05).
There was support for increased use of Housing areas during
breeding (β = 0.64, SE = 0.20, p = 0.002) and pup rearing (β = 0.47,
SE = 0.13, p < 0.001) seasons relative to the dispersal season.
Resident coyotes were less likely to use Housing areas (β = −1.21,
SE = 0.28, p < 0.001) than non-resident coyotes (Figure 3).

DISCUSSION

Overall, habitat selection and home range size showed strong
evidence of human avoidance by urban coyotes in the Greater
Toronto Area (GTA). Similar to other studies of urban coyote
space use, coyotes strongly selected for natural land cover and
avoided developed land cover (Riley et al., 2003; Atwood et al.,
2004; Gehrt et al., 2009; Gese et al., 2012; Mitchell et al., 2015).
When coyotes leave natural areas, there appears to be stronger
use of Open Paved habitats over developed land cover types.
Roads, railways, abandoned lots, and other open paved areas play
an integral role in coyote movements through developed areas.
Linear features in the urban landscapes are likely used as travel
corridors through areas with higher risks of interactions with
humans (Grinder and Krausman, 2001; Atwood et al., 2004). That
we observed resident coyotes having smaller home ranges during
the day than at night suggests that coyotes in our study area hide
in core areas when humans are most active and only use certain
portions of their territory when the risk of interaction is lower.
This temporal pattern of human avoidance is supported by the
observed decrease in use of natural areas and increase in use of

TABLE 1 | Model output for a step selection function based on 14 coyotes with
GPS collars in the Greater Toronto Area from 2012 to 2017.

Model coefficients β ± SE p-value σ2 ± SE

Natural cover 1.50 ± 0.14 <0.0001 0.25 ± 0.50

Open paved 0.82 ± 0.15 <0.0001 0.26 ± 0.51

Housing 0.13 ± 0.19 0.480 0.11 ± 0.33

Day × Natural Cover 0.07 ± 0.02 <0.0001 <0.0001

Day × Open paved −0.49 ± 0.13 <0.0001 0.18 ± 0.42

Day × Housing −0.79 ± 0.21 0.0001 0.42 ± 0.65

Breeding × Housing 0.64 ± 0.20 0.0018 0.32 ± 0.56

Pup rearing × Housing 0.47 ± 0.13 0.0003 0.06 ± 0.24

Resident × Housing −1.21 ± 0.28 <0.0001 0.43 ± 0.66

Estimated fixed effects coefficients (β), p-values, random slope variances (σ2), and
standard errors (SE) for each variable of the Full Model, which includes the base
habitat model and all interaction terms that had statistical support.

developed areas at night. Diurnal shifts in activity and habitat
selection by coyotes as a mechanism for avoiding interactions
with humans are well documented across North America (Riley
et al., 2003; Atwood et al., 2004; Gese et al., 2012; Mitchell et al.,
2015; Poessel et al., 2016; Murray and St Clair, 2017).

Average home range size for resident coyotes in our study
(17.3 ± 4.6 km2) was larger than reported in previous studies
of urban coyotes: Tuscon, AZ (12.6 ± 3.5 km2; Grinder and
Krausman, 2001), Chicago, IL (5.0 ± 0.3 km2; Gehrt et al.,
2009), Cuyahoga Valley, OH (6.2 ± 2.2 km2; Franckowick et al.,
2019), and Denver, CO (11.6 ± 11 km2; Poessel et al., 2016).
This is likely because our study was focused entirely within
the urban and suburban core of the GTA and did not include
surrounding exurban or rural areas. Coyotes within the urban
core tend to occupy home ranges with more developed area
and therefore have larger home ranges (Riley et al., 2003; Gehrt
et al., 2009). Other factors that could contribute to the larger
home range sizes observed in our study are latitude (coyote home
range sizes generally increase with latitude) and hybridization
with wolves/domestic dogs (Ellington and Murray, 2015). As
coyotes expanded into eastern North America they hybridized
with wolves (Kays et al., 2010) and domestic dogs (Wheeldon
et al., 2013). These hybridization events resulted in populations
of coyotes that were larger than their western counterparts (Kays
et al., 2010). It has been hypothesized that hybridization has
also resulted in functional changes to coyote populations and
potentially improving the ability of eastern coyotes to adapt to
human modified landscapes (Monzõn et al., 2014). However,
most research on urban coyotes has been conducted on western
coyotes, so it is not yet clear whether hybridization is influencing
spatial ecology of urban coyotes. Our study supports previous
research demonstrating that eastern coyotes have similar patterns
of human-avoidance to western coyotes (Way, 2011; Mitchell
et al., 2015; Franckowick et al., 2019).

We did not find support for sex-based differences in home
range sizes or habitat selection in our study system. Some other
studies of urban coyotes have also found no sex-based differences
in habitat selection (Gehrt et al., 2009; Murray and St Clair, 2017;
Franckowick et al., 2019). However, a few studies found that
female coyotes in urban settings can show stronger avoidance
of developed habitats (Grinder and Krausman, 2001; Riley et al.,
2003; Poessel et al., 2016). Coyotes are highly adaptable and show
a wide range of responses to different anthropogenic and natural
conditions. Having a better understanding of the features of
urban areas that show differential use by the sexes could improve
our understanding of how coyotes are able to adapt to such a
wide range of conditions. We also did not find support for age-
based differences in home range size or habitat selection, which
is a consistent finding across the literature. Young canids tend to
stay near their parents and therefore have similar home ranges
and habitat selection prior to dispersal (Riley et al., 2003; Gehrt
et al., 2009; Murray and St Clair, 2017).

Non-resident coyotes are predominantly young individuals
who have dispersed from their natal territory (Gese et al., 1989),
although older coyotes can get displaced from their role in a
pack and become non-residents as well (Gese et al., 1988). It is
a high-risk time in a coyote’s life cycle that individuals need to
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FIGURE 3 | Individual and temporal variation in selection for Housing based on a Step Selection Function conducted on 14 coyotes with GPS collars in the Greater
Toronto Area, Canada from 2012 to 2017. Selection Ratio on the y-axis shows how likely an animal will select Housing relative to Other Developed land use classes.
Error bars represent standard error around the estimate of the fixed effects. The red line indicates when Housing areas are equally as likely to be selected as Other
Developed areas.

survive to reach breeding status. Mortality rates are higher for
non-residents than resident coyotes (Gese et al., 1989; Harrison
et al., 1991), and non-resident coyotes tend to be relegated to sub-
optimal habitat (Kamler and Gipson, 2000; Mitchell et al., 2015).
Non-residents coyotes in urban environments also include a
larger proportion of anthropogenic food in their diets (Newsome
et al., 2015a). Experimental studies have shown that food-stressed
organisms are more likely to use higher risk habitats to forage
(Pettersson and Bronmark, 1993). Increased use of Housing
by non-resident coyotes presumably reflects a combination of
avoiding areas of high use by territorial residents and increased
willingness to look for food sources in areas with a higher risk of
interactions with humans.

As far as we are aware, our study is the first to document
seasonal changes in use of residential areas by urban coyotes.
The seasonal patterns of increased use of residential areas that
we documented match increases in the number of human-coyote
conflicts that have been reported in the breeding season in
Denver, CO (Poessel et al., 2013) and in the pup-rearing season
in Calgary, AB (Lukasik and Alexander, 2011). Given the ability
of individual coyotes to adapt to a wide range of situations, it
is likely that the main drivers of human-coyote conflicts vary
from city to city and are dependent on some combination of
environmental characteristics and human actions. It has been
hypothesized that two of the main drivers of seasonal changes
in human-coyote conflicts are temporal patterns in aggression
toward competitors and food availability (Lukasik and Alexander,
2011; Poessel et al., 2013).

The most common form of human-coyote conflict in urban
areas is attacks on pets. Lukasik and Alexander (2011) found
that coyote attacks on pets were more frequent in neighborhoods
where coyotes had a greater proportion of anthropogenic food in
their diets. However, Poessel et al. (2017b) found that seasonal
increases in the frequency of coyote attacks on pets did not result

in a seasonal increase in the presence of pets in a coyote’s diet.
This suggests that coyotes attack pets because they are either
perceived as competitors for food resources or as a threat to
their young, not because the pets themselves are perceived as a
prey item. Competition within coyote packs is greatest during the
breeding season (Gese et al., 1996). This intrapack competition
could push subordinate individuals into riskier habitats, such
as residential areas, in search of food and therefore make them
more likely to interact with pets. On the other hand, coyote
aggression against intruding animals as a form of territorial
defense is greatest during the breeding and pup rearing seasons,
with peaks in the rate of aggressive encounters in March and June
(Gese, 2001).

Alternatively, strong seasonal patterns in food availability
can result in seasonal dietary shifts toward more anthropogenic
food resources (Morey et al., 2007; Larson et al., 2020). Food
availability and dietary diversity are lowest for urban coyotes
in the winter (Quinn, 1997; Morey et al., 2007). This could
force coyotes to look to residential areas for alternative sources
of food when there is not a healthy and diverse available prey
population. Human-coyote conflicts are more likely in areas that
have fewer available natural sources of food (Magle et al., 2014)
and when individual coyotes are subsisting on protein-poor diets
(Murray et al., 2015b).

Our study demonstrates that there are individual and temporal
patterns in use of residential areas, however, these areas are still
strongly avoided by coyotes at the population level. Increased use
of residential areas does not necessarily result in increased use
of anthropogenic foods. Coyotes use residential areas for reasons
other than foraging, such as travel (Way and Eatough, 2006) and
rest (Murray and St Clair, 2017). There is also strong evidence for
individual specialization in diet within urban coyote populations.
Generally, coyotes that have more developed land in their home
range tend to eat more anthropogenic food, however, some
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coyotes have territories consisting predominantly of developed
habitats that do not significantly rely on anthropogenic food
to meet their dietary requirements (Newsome et al., 2015a).
Previous research has shown that human-wildlife conflicts
predominantly stem from a small number of individuals that
have learned to use anthropogenic food sources instead of
natural prey items (Sacks et al., 1999; Clark et al., 2002). We
encourage mitigation strategies for human-coyote conflicts that
focus on preventative measures that stop specific individuals
from becoming conflict prone. Preventative measures, such as
minimizing available anthropogenic food sources, are more
effective at reducing human-wildlife conflict than reactionary
measures, such as relocation (Hopkins et al., 2012). Considering
residential areas are predominantly private property, public
education campaigns focused on how to limit the availability
of food sources in residential yards may be vital for reducing
human-coyote conflicts. Relatively high use of residential areas
by non-resident coyotes in the winter and spring may represent
a critical juncture for the creation of problem animals. The
combination of low food resources in winter, with higher
aggression from conspecifics during the breeding and pup-
rearing seasons could increase the likelihood that dispersing
individuals turn to anthropogenic food in residential areas
despite increased risk of interactions with humans.
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