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According to the niche variation hypothesis (NVH), the populations with wider niches
are phenotypically more variable than those with narrow niches. Giller expanded the
NVH, suggesting that the niche width, morphological variation, and genetic diversity
are all positively correlated. However, the hypothesis has been a subject of debate and
discussion. In the present study, the NVH was tested by analyzing the relationships
among trophic niche width, morphological variation, and genetic diversity of Hemiculter
leucisculus, a widespread cyprinid fish. The fish samples were collected from six sites
across Haihe, the Yellow, and the Yangtze River basins in China. The relationships
among trophic niche width, morphological variation, and genetic diversity were analyzed
using Pearson correlation at the inter-population level. Our analysis indicated that trophic
niche width is significantly positively correlated with morphological variation, which
corroborates the NVH. Morphological variation was significantly correlated to genetic
diversity. However, no relationship was observed between trophic niche width and
genetic diversity. We inferred that the dietary niche of H. leucisculus might change due
to the plastic response toward environmental changes rather than due to the genetic
variation. We also suggest that the effects of environment and heredity on the niche of
the freshwater fish should be quantified separately in further studies.

Keywords: niche variation hypothesis, freshwater fish, population level, stable isotope analysis, plastic response,
morphometric characters

INTRODUCTION

Niche is an important concept in ecology that helps in understanding species interactions
and community structures (Syväranta et al., 2013). Niche width, the core of the niche
theory (Roughgarden, 1972; Bolnick et al., 2002), refers to the variety of resources, habitats,
or environments utilized by a given species (Van Valen, 1965; Shugart and Blaylock, 1973;
Roughgarden, 1974; Schindler et al., 1997; Bolnick et al., 2010; Edwards et al., 2013; Sexton et al.,
2017). Previous studies on the niche width have contributed toward understanding the causes of
species diversity (Roughgarden, 1974; Giller, 1984; Maldonado et al., 2017) and the response of
species to environmental variation (Bolnick et al., 2010; Clavel et al., 2011; Bison et al., 2015).
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Van Valen (1965) found that the bird populations on the
islands had more morphological variance than those on the
mainland and concluded that the birds on the islands evolved
to different morphological traits to using more diverse resources
and avoid competition (Snowberg et al., 2015). Therefore, the
author hypothesized that “populations with wider niches are
phenotypically more variable than populations with narrow
niche,” which is known as the niche variation hypothesis (NVH).
The total population niche width is composed of the within-
and between-individual component (Bolnick et al., 2010). Niche
width variation at the population level can mainly result from the
increased variation at the between-individual level (Bolnick et al.,
2007), which is accompanied by greater morphological variation
(Snowberg et al., 2015).

Several studies involving multiple taxa, such as bird (Hsu
et al., 2014; Maldonado et al., 2017), fish (Bolnick et al., 2010;
Snowberg et al., 2015), wasp (Santoro et al., 2011), and lizard
(Costa et al., 2008) have provided evidence to support the NVH.
On the contrary, some studies have challenged the NVH because
of failure in finding the correspondence between niche width and
morphological variation (Díaz, 1994; Blondel et al., 2002; Meiri
et al., 2005; Griffen and Mosblack, 2011). Bolnick et al. (2007)
concluded that studies not supporting the NVH were biased
because they did not directly measure the niche variation.

Furthermore, studies have demonstrated a positive correlation
between the niche width and the level of genetic diversity
(Smith, 1970; Shugart and Blaylock, 1973; Soulé and Yang, 1973;
Steiner, 1977; Noy et al., 1987; Lavie et al., 1993; Pavlíček
et al., 2000). Populations with large niche widths also have
greater genetic variability, which enable them to adapt to a
wide range of environmental conditions (Noy et al., 1987).
When different individuals in a population focus on a specific
subset of available resources, a specific group of individuals
in the population become most likely to experience genetically
controlled individual variation. When individuals spend most or
all their lives in a specific niche, selection favors different alleles
in different sub-niches, resulting in high heterozygosity (Noy
et al., 1987), although this perception was also debated (Powell
and Wistrand, 1978; Mitter and Futuyma, 1979; Smith, 1981;
Lavie et al., 1993). Moreover, few studies have investigated the
relationship among niche width, morphological variation, and
genetic diversity, altogether.

Hemiculter leucisculus (Basilewsky, 1855), a small cyprinid
fish, is widespread in the freshwaters of Southeast Asia and
the far-eastern region of Russia (Dai and Yang, 2003). The
fish inhabits pools, lakes, and rivers. Because of its high
fecundity, the fish has become predominant in fish assemblages
(Kolpakov et al., 2010; Esmaeili and Gholamifard, 2011).
H. leucisculus also is an omnivorous fish that primarily feeds
on zooplankton, invertebrates, algae, and organic detritus (Liu
et al., 2016). Therefore, this fish is a suitable model organism for
testing the NVH.

In this study, we evaluated the NVH by analyzing the
relationship between the trophic niche width, morphological
variation, and genetic diversity in six geographically diverse
populations of H. leucisculus from China. The stable isotope
method was used to quantitatively estimate the trophic

niche width in the current analysis (Newsome et al., 2007;
Marshall et al., 2019).

MATERIALS AND METHODS

Study Site and Fish Sampling
The sampling was conducted from September to October 2017,
along the latitude from six sites in the three big river basins in
China (Figure 1). Fangshan site is in the Reservoir in the Haihe
River basin. Luoyang site is in the Yellow River basin. Mudong,
Xingzi, Yugan, and Tongling sites are in the Yangtze River basin
(Figure 1). Mudong site is located at the end of the Three
Gorges Reservoir and connected with a tributary. Xingzi and
Yugan sites are in Poyang Lake. The Haihe River is approximately
1,050-km long. The Yellow River is approximately 5,464-km long
and is the second-longest river in China. The Yangtze River is
approximately 6,300-km long and is the third-longest river in the
world. The sample sites covered various habitats, such as running
water (Tongling and Luoyang), transitional zone (Mudong) and
lacustrine zone of reservoir (Fangshan), lake (Yugan), river
channel, and lake (Xingzi).

A total of 188 H. leucisculus were collected from fishing
landings in the local fishery markets. The specimens
were identified based on the description of Ding (1994).
Approximately 28–39 specimens were sampled from each site to
ensure availability of adequate data to perform morphological
and genetic analyses (Table 1). The standard body length (BL)
in 1 mm and weight in 0.1 g were measured for each specimen.
The gender could not be identified because the gonads were
in the second stage of development. The sampling method
was performed in accordance with the Laboratory Animal
Management Principles of China. The experimental protocols
were approved by the Ethics Committee for Animal Experiments
of the Institute of Hydrobiology, Chinese Academy of Sciences.

Morphological Measurements
We measured the BL in addition to 20 other morphometric
features for each specimen (Figure 2). All features were measured
from the left side of the fish by the same investigator to minimize
error. A total of 20 morphometric features were included, and the
morphometric features were measured to the nearest 0.01 mm
by using a digital Vernier caliper, except for BL, which was
accurate to 1 mm. Twenty morphological traits used in the
current study describe the shape of fish body and mainly reflect
the feeding habits and foraging and swimming abilities. In this
study, the morphological traits, including snout length (SnL),
eye diameter (ED), head length behind the eyes (HLBE), head
length (HL), head depth (HD), and eye distance (EDs), were
measured to account for feeding habits. Other traits including
body depth (BD), predorsal fin distance (DprD), prepectoral
fin distance (DPrP1), pectoral fin length (LP1), prepelvic fin
distance (DPrP2), pelvic fin length (LP2), pre-anal fin distance
(DPrA), dorsal fin length (LD), anal fin length (LA), anal fin
base length (Lab), caudal peduncle length (CPL), caudal peduncle
depth (CPD), body width (BW), and caudal peduncle width
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FIGURE 1 | Map of sampling locations of Hemiculter leucisculus (Fangshan, Luoyang, Mudong, Xingzi, Yugan, and Tongling).

(CPW) were measured to account for foraging and swimming
abilities (Figure 2).

Genetic Diversity
The dorsal muscle tissues were dissected from each specimen.
The muscle tissues were preserved in 95 % alcohol for
DNA extraction. DNA was extracted following the standard
phenol/chloroform protocol (Kocher et al., 1989), as described
by Tang et al. (2008). The mtDNA cyt b gene was amplified
using the polymerase chain reaction (PCR) with primer sets
L14724 and H15915 (Xiao et al., 2001). The PCR amplification
was performed in a total volume of 30 µL. PCR products were
sent to Shanghai DNA Biotechnologies Company for purification
and sequencing. All sequences obtained during this study
were deposited in GenBank (accession numbers: MN696802–
MN696989). The genetic diversity in our study was measured
using the two indices, haplotype diversity (Hd) and nucleotide
diversity (Pi).

Stable Isotope Analysis
Maldonado et al. (2017) tested the NVH by analyzing the stable
isotope data from 7 to 14 specimens of each passerine bird
species. Similar other studies have also used comparable sample
sizes for analyzing stable isotope values in different populations
(11–22 samples in a study by Cook et al., 2007; 7–21 samples

in a study of Ryan et al., 2013). Thus, in this study, we selected
13 specimens from each site for stable isotope analysis. First, we
grouped the collected samples according to BL and then selected
samples from each BL group in equivalent proportion. In this
manner, the average BL of the selected samples was similar for
samples collected at each site (Table 1). One dorsal muscle tissue
(about 0.3 mg) dissected for each specimen was oven-dried at
60◦C for at least 48 h until a constant weight was attained, and
then, it was ground into homogeneous powder by using mortar

TABLE 1 | The number and body length of the sampled fish used for
morphological measurement and genetic analysis and the specimens used for
stable isotope analysis.

Sites Morphological measurement Stable isotope

and genetic analysis analysis

Sample
size N

Average body
length (mm)

Sample
size N

Average body
length (mm)

Fangshan (FS) 30 106.4 ± 6.7 13 108.4 ± 7.6

Tongling (TL) 32 120.0 ± 8.3 13 118.5 ± 6.9

Yugan (YG) 30 99.4 ± 8.2 13 101.7 ± 9.7

Xingzi (XZ) 29 120.9 ± 14.3 13 120.0 ± 14.9

Luoyang (LY) 28 104.1 ± 12.5 13 102.1 ± 14.6

Mudong (MD) 39 115.9 ± 17.2 13 119.7 ± 23.0
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FIGURE 2 | Morphometric parameters investigated on H. leucisculus. BL, body length; BD, body depth; HL, head length; HD, head depth; SnL, snout length; ED,
eye diameter; HLBE, head length behind eye; CPL, caudal peduncle length; CPD, caudal peduncle depth; DprD, predorsal fin distance; DPrP1, prepectoral fin
distance; P1, pectoral fin; DPrP2, prepelvic fin distance; P2, pelvic fin; DPrA, pre-anal fin distance; BW, body width; EDs, eye distance; CPW, caudal peduncle width;
LD, dorsal fin length; LP1, pectoral fin length; LP2, pelvic fin length; LA, anal fin length.

and pestle (Xu et al., 2012). The powder was preserved in sealed
containers for stable isotope analysis (SIA).

The carbon and nitrogen stable isotope compositions (δ13C
and δ15N) were measured using the Delta Plus (Finnigan,
Bremen, Germany) Continuous-flow Isotope ratio Mass
Spectrometer coupled to the Carlo Erba NA2500 Elemental
Analyzer (Carlo Erba Reagenti, Milan, Italy) in the Institute
of Hydrobiology, Chinese Academy of Sciences. Stable isotope
ratios were expressed in δ notation the deviation from the
international standards in parts per thousand (h) deviation
according to the equation: δ X = [(Rsample/Rstandard) – 1] × 1000,
where X is 15N or 13C, and R is the corresponding ratio 15N/14N
or13C/12C; δ is the measure of heavy to light. The standard
references for carbon and nitrogen were Vienna Pee Dee
Belemnite and atmospheric N2, respectively (Yao et al., 2016).
In general, four internal working standards (USGS40, USGS41,
UREA-Thermo, and UREA-Wuhan) were employed for every
seven samples for calibration of obtained values. Twenty percent
of the samples were run in duplicate; the average standard errors
of replicate measurements for δ13C and δ15N were both less than
0.3h. After obtaining values of δ13C and δ15N for each sample,
we corrected them according to the fitting function obtained
from the values of the four working standards.

Statistical Analysis
The morphological variation parameters, related to trophic
niche width and genetic diversity, for each population used in
the analysis were calculated. Q-Q diagram and Kolmogorov–
Smirnov test were used to detect whether the data of each
morphological trait in each local population were normally
distributed. A regression of BL to each morphological trait

was performed to eliminate the effects of the size-dependent
variation. The standard deviations of the residuals of the
regressions in each population were calculated to present the
morphological variation. The principal component analysis
(PCA) was used to reduce the dimensionality of the retained
morphological traits, transform interdependent variables into
significant and independent components (Brosse et al., 2001;
Wang et al., 2015), clarify the greater part of variation, and
extract new composite variables (Samaee et al., 2009). To avoid
super factorization and select variables that better represent
morphology, we used components with eigenvalue scores >1
according to the Kaiser–Guttmann criteria (Kaiser, 1960). The
extracted principal components (PCs) were rotated using a
varimax rotation method for simplifying factors. In this study,
the PC scores within each population were used to represent the
morphological variation and used for subsequent analyses.

MEGA 7 was used to align and refine the nucleotide sequences
manually by referring to the sequencing maps (Kumar et al.,
2016). The Hd and the Pi were calculated using the DnaSP
software (version 5.10) (Librado and Rozas, 2009).

We calculated the corrected standard ellipse area (SEAc) as
the trophic niche width (Jackson et al., 2011, 2012; Syväranta
et al., 2013). Metrics were calculated using the “SIBER” package
(Jackson et al., 2011) in the R software (version 3.5.1).1

The relationships among corrected standardized ellipse area,
morphological variation, and genetic diversity at the population
level were analyzed using the Pearson correlation analysis (Hsu
et al., 2014). A P value of <0.05 was considered to indicate
statistical significance. The statistical analysis was performed

1http://www.r-project.org/
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TABLE 2 | Principal component axis loadings of the morphometric characters in
Hemiculter leucisculus across the six study sites in China.

Variables PC1 PC2 PC3

Eigenvalue 6.698 5.513 3.730

Variance explained (%) 33.49 27.65 18.65

BD 0.495 −0.102 0.807

HL 0.255 0.955 −0.020

HD 0.168 −0.025 −0.091

SnL −0.058 0.803 0.539

ED 0.952 0.105 0.253

HLBE 0.742 0.333 −0.097

CPL −0.065 0.770 0.013

CPD 0.223 0.955 −0.042

DprD 0.082 0.315 –0.699

DPrP1 0.954 0.193 0.157

DPrP2 0.933 −0.141 0.053

DPrA 0.442 −0.072 −0.353

BW 0.203 0.117 0.967

EDs −0.087 −0.369 0.572

CPW −0.222 0.659 0.294

LD −0.029 0.939 −0.261

LP1 –0.570 −0.075 –0.781

LP2 0.333 0.083 0.046

LA −0.434 0.277 −0.116

Numbers in bold means the value >0.5 or <–0.5.
BD, body depth; HL, head length; HD, head depth; SnL, snout length; ED,
eye diameter; HLBE, head length behind eye; CPL, caudal peduncle length;
CPD, caudal peduncle depth; DprD, predorsal fin distance; DPrP1, prepectoral
fin distance; P1, pectoral fin; DPrP2, prepelvic fin distance; P2, pelvic fin; DPrA,
pre-anal fin distance; BW, body width; EDs, eye distance; CPW, caudal peduncle
width; LD, dorsal fin length; LP1, pectoral fin length; LP2, pelvic fin length; LA,
anal fin length.

with the SPSS software (version 20.0, SPSS Inc, Chicago,
IL, United States).

RESULTS

Morphological Variation
Q-Q diagram and Kolmogorov–Smirnov test showed that
the morphological trait of each population fitted the normal
distribution. PCA produced five factors; however, only the first
three principal components (PC) were used in this study because
they accounted for nearly 80% of the total variance (Table 2).
Fifteen morphological traits had the value of PC axis loadings
more than 0.5 (Table 2). The PC scores varied among the local
populations (Table 3). PC1 scores ranged from −0.918 to 1.831;
PC2 scores ranged from −0.826 to 1.924; PC3 scores ranged from
−1.206 to 1.805. In the following analysis, the PC1, PC2, and
PC3 scores are referred to be representative of the parameters
measuring morphological variation parameters (MV1, MV2, and
MV3), respectively.

Genetic Diversity
Alignment of the cyt b sequences yielded a 1140-bp-long region.
The Hd ranged from 0.775 to 0.989, and the Pi ranged from

0.00256 to 0.00652. The minimum and maximum values of
these two indices were observed in Tongling and Fangshan
populations, respectively (Table 3).

Trophic Niche Width
The corrected standard ellipse areas (SEAc) based on δ13C and
δ15N values of the six H. leucisculus populations showed that
trophic niche widths in these populations were different. The
trophic niche width (SEAc) values ranged from 0.548 to 4.788.
SEAc in the Mudong population was the highest (4.788) and that
in the Tongling population was the lowest (0.548). The SEAc
values in the Fangshan, Yugan, Xingzi, and Luoyang populations
were 0.568, 0.744, 1.449, and 1.237, respectively (Table 3).

Trophic Niche Width, Genetic Diversity,
and Morphological Variation
Pearson correlation analysis indicated significant correlation
between SEAc and the PC3 scores (R = 0.897, P < 0.05, n = 6)
(Table 4). No correlation was noted between SEAc and PC1 and
PC2 and genetic diversity (P > 0.05). Genetic diversity, including
Hd and Pi, was significantly correlated with the PC1 scores
(P < 0.05) (Table 4).

DISCUSSION

Relationship Between Trophic Niche
Width and Morphological Variation
Our results from the current study involving H. leucisculus
demonstrated that the trophic niche width is positively related
to morphological variation at the inter-population level, which
supports the NVH. The morphological traits concerning foraging
and swimming abilities that contribute toward competition for
resources play important roles in affecting the trophic niche
width (Table 2). The fish compete for food and space and avoid
predators mostly depending on their eyesight and swimming
capacities (Fulton et al., 2001; Andrew et al., 2002; Onsrud
et al., 2005). For example, individuals with bigger eyes can find
food resources proficiently (Wikramanayake, 1990; Pouilly et al.,
2003). The dimensions of the caudal peduncle and the anal fin
were related to swimming capabilities, which includes speed and
maneuvrability (Bellwood and Wainwright, 2001; Breda et al.,
2005; Oliveira et al., 2010; Sampaio et al., 2013).

The plasticity of swimming in fishes can evolve depending on
environmental variations (Oufiero and Whitlow, 2016). Adept
swimming ability could make individuals gain advantages in
competing for food and prompt them to have potential in
stretching their diet spectrum and expanding their habitat areas
(Winemiller, 1991; Onsrud et al., 2005; Oliveira et al., 2010).
This has also been substantiated in several reports. Booth
and Beretta (2004) found that the coral reef fish with high
physiological conditions including swimming speed dominated
the fish assemblage and consumed a large portion of a limiting
prey resource. Andrew et al. (2002) showed that Atlantic salmon,
gilthead sea bream, and European sea bass increased their
swimming speed to find more food. However, in a study at
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TABLE 3 | Trophic niche width, morphological variation (MV1, MV2, and MV3 refers to PC1, PC2, and PC3 scores, respectively), and genetic diversity (haplotype
diversity and nucleotide diversity) of H. leucisculus in the studied populations.

Sites Trophic niche width (SEAc) Morphological variation Genetic diversity

MV1 MV2 MV3 Haplotype diversity (Hd) Nucleotide diversity (Pi)

Fangshan (FS) 0.568 1.831 −0.536 −0.137 0.775 0.00256

Tongling (TL) 0.548 −0.097 1.924 −0.374 0.989 0.00652

Yugan (YG) 0.744 −0.651 −0.826 −1.206 0.945 0.00638

Xingzi (XZ) 1.449 −0.918 −0.458 −0.294 0.970 0.00648

Luoyang (LY) 1.234 0.341 0.185 −0.207 0.934 0.00625

Mudong (MD) 4.788 −0.505 −0.290 1.805 0.919 0.00520

the water around Taishan Island in China, Yang et al. (2016)
argued that in a given spatial scale, fish with stronger swimming
capabilities had a narrower niche width.

Our results also suggest that habitat heterogeneity may play
a role in niche width of H. leucisculus, with populations living
in more heterogeneous habitats displaying a wider niche. Sexton
et al. (2017) found that environmental heterogeneity in space,
time, or both can impact the evolution of niche width based on
a meta-analysis. For example, in this study, the population in
Mudong site showed the maximum value of the trophic niche
width. The water level changes between 145 and 175 m each
year at the Mudong site, which is in the transitional zone of the
Three Gorges Reservoir (TGR), leading to the flow shift between
lotic and lentic regimes. The population in Xingzi site, which
is the channel between Yangtze River and Poyang Lake, has an
intra-annual variation of 11.01 m in the average water level and
has the second largest value of trophic niche width. The species
composition and density of zooplankton and phytoplankton
in Mudong and Xingzi exhibit significant differences due to
water level fluctuation (Song et al., 2015; Li et al., 2019; Wang
et al., 2020). High diversity of resources increases the degree of
individual specialization, according to the ecological opportunity
theory (Nosil and Reimchen, 2005; Parent and Crespi, 2009;
Araújo et al., 2011), which can increase niche width at the
population level.

Relationship Between Genetic Diversity
and Trophic Niche Width and
Morphological Variation
Our results indicated that trophic niche width has no correlation
with genetic diversity. Moreover, the viewpoint on correlation
between trophic niche width and genetic diversity is merely
an extension of NVH, rather than the basic assumption, and
thus is controversial. Only a few studies have been conducted
in the recent years in this regard. For example, Noy et al.
(1987) found that the population of Littorina neritoides with a
broader niche had more genetic diversity than Littorina punctate
with a narrower niche in the Mediterranean coast in Israel,
whereas Mitter and Futuyma (1979) found that the genetic
polymorphism was higher in specialized species of the geometrid
subfamily Ennominae in the forests of Long Island, New York.
Genetic diversity can reflect the inter-individual differences
in morphology, physiology, ecology, and habits (Moritz and

Hillis, 1990). Genetic differences among individuals caused by
nucleotide sequence variation may affect the population niche
width by enhancing the phenotypic plasticity (Herrera et al.,
2012). However, in addition to the genetic differences caused
by nucleotide sequence variation, environmentally induced
epigenetic changes can promote plasticity and broaden the
resource utilization and niche width of organisms (Herrera et al.,
2012; Meyer, 2015; Sexton et al., 2017). The present study suggests
that the trophic niche width of H. leucisculus may be influenced
by epigenetic variation rather than nucleotide sequence variation.

In this study, morphological variation was found to be
significantly related to genetic diversity. Morphological variation
is often accompanied by genetic differences, although they are
sometimes not synchronous (Bell et al., 1982; Derkarabetian et al.,
2011). However, in some cases, greater phenotypic diversity is
associated with a greater number of genotypes. Nevertheless,
some observations suggest that higher levels of heterozygosity
confer developmental homeostasis, resulting in lower levels
of phenotypic variance (Mitton, 1978). These two seemingly
contradictory results represent the two situations: inter- and

TABLE 4 | The Pearson correlations among trophic niche width (corrected
standardized ellipse areas, SEAc), morphological variation (MV1, MV2, and MV3
refers to PC1, PC2, and PC3 scores, respectively) and genetic diversity (Hd
and Pi).

Variables Correlation coefficient (R)

SEAc vs Hd 0.065

vs Pi −0.012

vs MV1 −0.348

vs MV2 −0.207

vs MV3 0.897*

Hd vs MV1 −0.863*

vs MV2 0.445

vs MV3 −0.130

Pi vs MV1 −0.844*

vs MV2 0.334

vs MV3 −0.221

SEAc denotes the corrected standardized ellipse areas that is used to measure
the trophic niche width. MV1, MV2, and MV3 are the factor scores of the first
three principal components (PC1, PC2, and PC3) obtained through the principal
component analysis. Hd is the haplotype diversity, Pi is the nucleotide diversity.
*P < 0.05.
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intra-populations, implying that within any population, the most
heterozygotic individuals tend to have the least phenotypic
variation, but under the same conditions, populations with
higher genetic diversity will have greater phenotypic variation.
Moreover, the high genetic diversity indicates that the population
has high gene richness and high genetic variation potential,
which is conducive to the adaptation of a given species.
Adaption with respect to morphology, and reproduction and
food preference/behavior in response to environmental changes
contribute toward long-term survival (Honjo et al., 2004;
Allendorf et al., 2008). Therefore, the morphological variation
was attributed to either genetic factors or environmental
heterogeneity (Mitton, 1978).

In summary, the trophic niche width positively correlated
with the morphological variation in our analysis for geographical
populations of H. leucisculus. This inference is in agreement with
the NVH. We conclude that the dietary niche of H. leucisculus
could change owing to a plastic response to environmental
changes rather than to genetic variation. We suggest that the
effects of environment and heredity on the niche of the freshwater
fish should be quantified separately in further studies.
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