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Editorial on the Research Topic

Ecological Development and Functioning of Biological Soil Crusts After Natural and Human

Disturbances

In recent years, the importance of soil health for ecosystem functions has come further into
the scientific focus (Lehmann et al., 2020). Especially after severe ecosystem disturbances, soil
formation has to start anew. Such disturbances, which reset ecosystem development to the starting
point, can be of natural (volcanoes, mobile sand dunes, floods, glaciers) (La Farge et al., 2013;
Lan et al., 2014) or human origin (post-mining landscapes, military training areas, agricultural
lands) (Belnap et al., 2007; Schaaf et al., 2011). In these young ecosystems, the interactions
between the initial colonizers, the inorganic matter, and the subsequent biogeochemical processes
are an important prerequisite for the development of elemental fluxes, soil genesis, and thus for
further ecosystem development. In addition to pioneer plants, photoautotrophic and heterotrophic
microorganisms play a major role in the colonization of the freshly deposited sediment, regolith,
or disturbed soil material. Biological soil crusts (BSCs) develop when various combinations of
diminutive bacteria, terrestrial algae, fungi, lichens, and/or bryophytes occupy the upper few
millimeters of the soil or regolith. They can be present in a wide range of ecological, including
successional, and climatic conditions (Figure 1, Colesie et al., 2016) when and where disturbance
and/or aridity have resulted in bare soil available for colonization. However, they are most prevalent
in arid, semi-arid, and polar ecosystems and in temperate dry grasslands where vascular plant
cover and diversity are characteristically low, leaving large areas available for colonization by some
combination of the organismal groupsmentioned above (Weber et al., 2016). The ecological roles of
BSCs are numerous and diverse including the collection, accumulation, cycling of essential airborne
and soil nutrients (Beraldi-Campesi et al., 2009), redistribution of precipitated water (Chamizo
et al., 2016), soil formation and stabilization (Lan et al., 2014). Various ecological studies on the
development and ecosystem functioning of BSCs have been conducted during the last three decades
(Belnap and Lange, 2003; Breckle et al., 2008; Weber et al., 2016). The nexus of science related to
BSCs and aerobiology strongly suggests that BSCs can become established or re-established via
naturally occurring processes (Condon et al., 2020), as BSC propagules are found naturally in the
atmosphere (Elliott et al., 2019), and can be transported very long distances between hemispheres,
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FIGURE 1 | Examples of different BSC in disturbed ecosystems (A) Biological soil crusts re-covered after disturbance by military vehicles in the Nizzana arid dunes of

the north-western Negev, Israel, (B) Multi-layered cyanobacterial BSC in Nizzana, (C) Soil lichens- and moss-dominated BSC covering large areas of the sandy soils in

a temperate dry grassland in a formerly disturbed military training area (Lieberoser Heide, Brandenburg, NE Germany), (D) Early successional stages of green algae

and moss BSC established around gray hair-grass (Corynephorus canescens) in a temperate dry grassland, (E) Reclaimed post-mining site in Schlabendorf,

Brandenburg, Germany is covered by soil lichen-moss communities mainly Cladonia spec. (F) (Gypser et al., 2015).

continents, and climates (Warren et al., 2019). Even after
drastic disturbances, like fires, the relatively fast recovery
of microorganisms can be observed (Dümig et al., 2014;
Aanderud et al.; Chamizo et al., 2020). The ability of selected
BSC organisms to recover quickly after disturbance can be
exploited for various applications in ecosystem restoration
(Gypser et al., 2015; Antoninka et al., 2020; Román et al.,
2020). The speed and efficiency of inducing land surface
stability (which is a prerequisite for soil development)

depends on various environmental conditions (like texture
and climate) (Chamizo et al., 2018) and may hence be
very site specific. However, fast recovery is not always
happen for all BSC organisms in all ecosystems. Under
very harsh conditions such as the hyper-arid desert, this
is not the case and recovery can be very slow. Here
cyanobacteria and lichen biocrusts also need a longer
time to establish after disturbance. All these studies in the
different ecosystems underline the importance of the BSCs
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for the biogeochemical and ecohydrological processes in the
soil-plant system.

There remains a gap in understanding what shapes the
globally heterogeneous biogeographical patterns of the
different BSC organisms and how they relate to ecological
processes surrounding the establishment, re-establishment,
and development of BSCs. A more complete understanding of
similarities and dissimilarities in the establishment, growth,
and regeneration of BSCs from different geographical
regions is essential to fully comprehend their contribution
to ecosystem functioning and exploit their potential to
improve the health of diverse soils. This is especially true
for (remote) geographical regions that have hitherto been
understudied, such as the Brazilian Caatinga, for which Szyja
et al. emphasized the ecological importance of BSCs for providing
ecosystem services.

In the recent decade, new research aimed to link the structure
of BSC communities with ecosystem processes. Warren et al.
provide an overview of how each organismal group contributes to
the formation and maintenance of the structural and functional
attributes of BSCs, how they reproduce, and how they are
dispersed. The introduction of molecular biological methods
(Keepers et al.) provided new insights into the function and
composition of BSC communities in different ecosystems and
climatic regions. Molecular biological studies in drylands in the
Mojave Desert (Fisher et al.), Central Mexico (Becerra-Absalón
et al.), Brazilian savanna (Machado-de-Lima et al.), and the arid
lands of Western Australia (Autumn et al.) shed light on the
composition of BSC communities and discussed their possible
roles within their respective ecosystems. Pushkareva et al.
examined differences in community composition and biomass
in Arctic soil systems. An unusual human-made ecosystem is
described by Sommer et al. that demonstrated how green algae,
cyanobacteria, and diatoms can establish on severely saline mine
tailings in Germany.

Still, the complex interspecific interactions between the
organisms in the BSC communities and how these are
influenced by the environment are not fully understood.
Especially, the implication of heterogeneity and microhabitats
on biogeochemical processes and plant-microbes (BSCs)—soil
interactions need to be explored furthermore. In this context,
Albright et al. show that microhabitat (e.g., vascular plant

rhizosphere, BSC, and below BSC) was the strongest driver of
differences in bacterial and fungal community richness, diversity,
and composition in a dryland grassland in North America.
The study by Condon and Pyke shows the importance of BSC
organisms in plant communities of the semi-arid western US and
argues that they should be included in ecological site descriptions
due to their important contributions to ecosystem functions. The
dominant components of biological crusts are photoautotrophic
organisms, which primarily provide carbon for heterotrophs.
More complex is the importance of the biological crusts for
the N-cycling. Their ability to biologically fix N makes them
an important N input pathway into nutrient-poor soils, and
large amounts of inorganic N become accessible to the soil biota
through the initial activity of the N-fixers. The interactive effects
of BSC successional state and exposure to warmer temperatures
on the rate and temperature sensitivity of soil heterotrophic
C and N cycling in laboratory incubations could be shown
in a mesocosm experiment under greenhouse conditions by
Tucker et al.. The ecophysiological adaptation strategy and
desiccation tolerance (Greenwood et al.) of BSC mosses are most
crucial for their development in these extreme habitats, and
furthermore during global warming. The study by Borchhardt
and Gründling-Pfaff shows the ecophysiological plasticity of
Klebsormidium to temperature in biological soil crusts from the
Arctic and Antarctica.

Open topics for BSC research are still the interactions and
feedbacks of biogeochemical processes between microorganisms
and the soil-plant system. This applies particularly to the impact
of climate change on the development of biological soil crusts.
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