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Animals can adjust their physiology, helping them survive and reproduce under a
wide range of environmental conditions. One of the strategies to endure unfavorable
environmental conditions such as low temperature and limited food supplies is
dormancy. In some insect species, this may manifest as reproductive dormancy, which
causes their reproductive organs to be severely depleted under conditions unsuitable
for reproduction. Reproductive dormancy in insects is induced by a reduction in juvenile
hormones synthesized in the corpus allatum (pl. corpora allata; CA) in response to
winter-specific environmental cues, such as low temperatures and short-day length. In
recent years, significant progress has been made in the study of dormancy-inducing
conditions dependent on CA control mechanisms in Drosophila melanogaster. This
review summarizes dormancy control mechanisms in D. melanogaster and discusses
the implications for future studies of insect dormancy, particularly focusing on juvenile
hormone-dependent regulation.

Keywords: reproductive dormancy, corpus allatum (corpora allata), juvenile hormone (JH), monoamine, insulin-
like peptides (ILPs), ecdysone, ecdysis-triggering hormone, circadian clock

INTRODUCTION

In animals, neuroendocrine systems play a crucial role in facilitating adaptation to a wide variety
of environments (Schmidt-Nielsen, 1997). In the temperate zone, winter is a challenging season
for many animals because of the freezing temperatures and food shortages, which are sustained
over several months. Hence, in winter, animals often suspend or slow down their normal physical
functions, a process known as dormancy (Hand et al., 2016). To date, dormancy is recognized as an
adaptive phenomenon in a wide variety of animal species (Hand et al., 2016).

Insects are one of the main animal groups that have been intensively used in dormancy studies.
This is because control of insect dormancy could benefit many aspects of industry and agriculture.
For example, since the silkworm Bombyx mori possesses an egg dormancy stage, a technology to
flexibly regulate the induction and end of egg dormancy is useful to enable sericulture throughout
the year (Yamashita and Yaginuma, 1991). In addition, pest dormancy studies are thought to
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be important because understanding the seasonal distribution
of pests is critical for generating predictive models to accurately
determine when pests are destructive (Denlinger, 2008).
Moreover, there have been attempts to select specific dormancy
phenotypes in biocontrol agents, which cannot become dormant
in a season when crop pest populations continue to grow (Lirakis
and Magalhdes, 2019). In this regard, it is noteworthy that a
branch of the United Nations promoted a coordinated research
project on dormancy management to enable mass-rearing and
increase the efficacy of sterile insects and natural enemies from
2014 to 2019 (Food and Agriculture Organization of the United
Nations, 2013).

Previous studies have revealed that the developmental stages
of dormancy differ between insect species (Tauber et al., 1986;
Danks, 1987, 2006; Schiesari and O’Connor, 2013). For example,
as described above, B. mori enters dormancy only in the egg
stage (Yamashita and Yaginuma, 1991). However, in other species,
dormancy is not restricted to the egg but can occur at other
stages, including the adult life. Adult dormancy results in many
metabolic and behavioral changes, such as the slow-down of
reproduction, decreased food ingestion, suppressed metabolism,
increased stress resistance, and extended adult lifespan (Danks,
1987; Tatar and Yin, 2001; Hahn and Denlinger, 2011; Kubrak
et al., 2014). Among the multiple changes, reproductive slow-
down is thought to be a key event of adult dormancy,
known as reproductive dormancy. Since adult insects allocate a
considerable amount of energy to gametogenesis, reproductive
dormancy allows insects to reduce their energy consumption
and produce offspring again in the spring when winter is over.
Reproductive dormancy is found in both male and female
adults; In particular, females exhibit a drastic suppression of
gametogenesis (oogenesis) by inhibiting vitellogenesis, accessory
gland activity, and mating behavior (Saunders et al., 1989; Pener,
1992; Kubrak et al., 2016).

Previous studies have shown that reproductive dormancy and
other types of dormancy are regulated by a complex interplay of
multiple hormones and neurotransmitters in insects (Denlinger,
2002; Emerson et al., 2009a; Denlinger et al., 2012). In particular,
several major hormones influence reproductive dormancy,
including juvenile hormones (JHs), insulin-like peptides, and
ecdysteroids (Denlinger, 2002; Emerson et al., 2009a; Denlinger
et al., 2012). All of three classes of hormones are known
to have a stimulatory effect on ovarian development, and a
decrease in these signals in dormant individuals suppresses
ovarian development (Denlinger, 2002; Emerson et al., 2009a;
Denlinger et al., 2012; Uryu et al., 2015; Lenaerts et al., 2019;
Santos et al., 2019; Swevers, 2019; Semaniuk et al., 2021).
Among these three, JHs, the arthropod-specific sesquiterpenoid
hormones, have been the most intensively studied in the
long history of entomology to unravel their vital role in
regulating reproductive dormancy in female adults. Since JHs
are essential for promoting vitellogenesis in normal (non-
dormancy-inducing) conditions, the reduction in JH levels is
conversely required for suppressing vitellogenesis, leading to
reproductive dormancy in females (Denlinger et al., 2012; Santos
et al, 2019). This mechanism was well demonstrated in a
study using the Colorado potato beetle Leptinotarsa decemlineata

(de Wilde and de Boer, 1961, 1969; Schooneveld et al., 1977;
Kort, 1990), which has frequently been used for studies
on reproductive dormancy. After hatching under short-day
condition, the adults burrow into the soil and enter dormancy.
When the endocrine organ known as the corpus allatum (pl.
corpora allata; CA), responsible for biosynthesizing JHs, is
dissected out from a non-dormant beetle and then transplanted
to a dormant beetle, the dormant status is released from the
beetle receiving the transplant. Such release of dormancy is also
observed when JH is applied to a dormant beetle. In contrast,
when the CA of a non-dormant beetle is surgically ablated, the
ovarian development is inhibited even under long-day (non-
dormancy-inducing) conditions. These results indicate that the
reduced concentration of JH, which is biosynthesized in the CA,
causes reproductive dormancy in L. decemlineata females. After
this discovery, the importance of JH reduction to induce female
reproductive dormancy has been confirmed in many insect
species (Denlinger et al., 2012; Hand et al., 2016). Therefore, there
must be essential, common mechanisms by which information
about dormancy-inducing environmental cues, such as low
temperature and short-day condition, are transmitted to the CA
to control JH biosynthesis or release. However, the mechanisms
at the molecular, cellular, and neuroendocrine levels have not yet
been fully elucidated.

Among several insects used in laboratories, the fruit fly
Drosophila melanogaster has contributed substantially to
the discovery of various biological phenomena based on
powerful genetic tools such as the GAL4-UAS system (Brand
and Perrimon, 1993; Neckameyer and Argue, 2013). In the
last decade, significant progress has been made in the study
of reproductive dormancy in females of D. melanogaster.
Specifically, there have been several recent studies to address
how dormancy-inducing stimuli are transmitted to the CA
to regulate reproductive dormancy through the reduction
of JH titer. Importantly, a part of D. melanogaster research
is beginning to contribute to understanding the molecular
mechanisms of reproductive dormancy in other insects,
as we describe below. This review summarizes current
knowledge about the mechanisms of reproductive dormancy in
D. melanogaster females and discusses the remaining questions
of the D. melanogaster dormancy, particularly focusing on
juvenile hormone-dependent regulation.

AN OVERVIEW OF DROSOPHILA
MELANOGASTER DORMANCY

First, we would like to define our usage of the term “dormancy.”
In general, dormancy can be broadly classified into two types,
diapause and quiescence. Diapause is induced by seasonal cues
that do not directly prevent development but foreshow the arrival
of unfavorable conditions. On the other hand, quiescence is
characterized by slowed metabolism and directly results from
unfavorable environmental conditions such as low temperature
(Kostal, 2006; Schiesari et al., 2011; Schiesari and O’Connor,
2013). There is still a debate about whether reproductive
dormancy in D. melanogaster should be classified as diapause
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or quiescence (Tatar et al., 2001; Kostal, 2006; Lirakis et al.,
2018). However, it seems obvious that reproductive dormancy
in D. melanogaster is influenced by both short-day conditions
and low temperature (Schiesari et al., 2016; Zonato et al., 2017;
Figure 1). This fact implies that reproductive dormancy in
D. melanogaster has both quiescence and diapause properties.
Therefore, most papers published in recent years simply use
“dormancy” to describe the short-day and low temperature-
induced changes in D. melanogaster adults (Kubrak et al., 2016;
Liu et al., 2016; Andreatta et al., 2018; Lirakis et al., 2018; Ojima
et al,, 2018; Nagy et al., 2019; Abrieux et al., 2020). In this paper,
as is customary, we will refer to the D. melanogaster phenotypes
in terms of dormancy.

In laboratories, D. melanogaster dormancy is commonly
induced by transferring virgin females into dormancy-inducing
conditions shortly after (usually 2-6 h) eclosion under non-
dormancy-inducing conditions. Such newly eclosed female
flies are supposed to have previtellogenic or even few early
vitellogenic egg chambers but not mature eggs. When the
newly eclosed females are maintained in dormancy-inducing
conditions, the flies continuously keep the immature ovaries even
2 or 3 weeks after eclosion (Zonato et al., 2017; Lirakis et al.,
2018; Figure 1). However, since reproductive dormancy is a

“slow-down” and not a complete arrest, in ovarian development,
the percentage of non-dormant flies increases about 4 weeks
after hatching (Schiesari et al., 2016; Zonato et al., 2017; Lirakis
et al, 2018). Meanwhile, rearing flies under conditions of
temperature and day length that mimic winter can prolong the
slow-down of oogenesis and maintain a higher reproductive
dormancy rate than simple dormancy-inducing conditions even
3 months after eclosion (Zonato et al., 2017). It is still unclear
why such environmental fluctuation is important to extend
reproductive dormancy.

Under dormancy-inducing conditions in laboratories,
D. melanogaster adults display some physiological changes,
such as reduced metabolism (Saunders et al., 1989; Saunders and
Gilbert, 1990; Tatar and Yin, 2001; Tatar et al., 2001; Kubrak et al.,
2014; Anduaga et al., 2018). Previous studies have shown that
absolute amounts of trehalose and glucose positively correlate
with the dormancy rate (Kubrak et al., 2014; Anduaga et al,
2018). In addition, trehalose/glycogen and trehalose/glucose
ratios also positively correlate with the dormancy rate (Watanabe
et al., 2002; Kubrak et al,, 2014; Anduaga et al.,, 2018). These
observations raise a hypothesis that the biosynthesis of trehalose,
an energy source and an anti-freezing material, is activated in
dormant flies (Crowe, 2007; MacRae, 2010; Hahn and Denlinger,

Non dormancy-inducing conditions
(25°C, 12 h light: 12 h dark)

Brain

Juvenile hormone(JH)

Ovaries with
mature eggs

Ovary

Corpus allatum(CA) \Q

FIGURE 1 | Reproductive dormancy in Drosophila melanogaster adult females. Under non-dormancy-inducing conditions (25°C, 12 h light:12 h dark; left),
approximately 20-60 mature eggs, in which yolk proteins are well accumulated, are observed in the female abdomen. On the other hand, under dormancy-inducing
conditions (11°C, 10 h light:14 h dark; right), oogenesis is severely suppressed, and mature eggs with yolk protein are rarely observed. In non-dormant flies, yolk
protein accumulation is positively controlled by juvenile hormone (JH) produced in and secreted from the corpus allatum (CA, orange). Conversely, in dormant flies,
JH biosynthesis in the CA is suppressed, leading to the slow-down of oogenesis. Scale bars, 0.5 mm.
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2011). On the other hand, protein amount does not correlates
with dormancy rate (Kubrak et al., 2014; Anduaga et al., 2018).
Dormancy-associated physiological changes also include an
increase in stress tolerance, an extended lifespan, and the
activation of the innate immune system in both male and female
fly adults (Saunders et al., 1989; Saunders and Gilbert, 1990;
Tatar et al., 2001; Tatar and Yin, 2001; Kubrak et al., 2014;
Kueerova et al., 2016; Anduaga et al., 2018). In addition, in
D. melanogaster dormant females, the intestine is markedly
shortened (Kubrak et al, 2014). Some of these physiological
changes are also observed in other insects when they enter
dormancy (Tatar and Yin, 2001; Denlinger, 2002; Hahn and
Denlinger, 2007, 2011; Sim and Denlinger, 2013).

Along with the changes in metabolic state, suppression of
vitellogenesis in oogenesis is another major aspect of dormancy
(Figure 2); hence this process is called reproductive dormancy.
Among the 14 distinct stages of D. melanogaster oogenesis (King,
1970; Bastock and St Johnston, 2008), vitellogenesis occurs from
stage 8 (Bownes, 1994; Soller et al., 1997). Therefore, oocytes
before and at stage 7 are defined as previtellogenic oocytes,
while those after and at stage 8 are defined as vitellogenic
oocytes. Most studies classify flies as dormant if their ovaries
have only previtellogenic egg chambers, while flies with ovaries
containing vitellogenic egg chambers are characterized as non-
dormant (Saunders et al., 1989, 1990; Saunders, 1990; Saunders
and Gilbert, 1990; Williams, 1993; Richard et al., 1998; Tatar
et al., 2001; Schmidt and Conde, 2006; Williams et al., 2006;
Schmidt and Paaby, 2008; Schmidt et al., 2008; Emerson et al,,
2009b; Lee et al., 2011; Fabian et al., 2015; Schiesari et al., 2016;
Zhao et al., 2016; Zonato et al., 2017; Andreatta et al., 2018;
Ojima et al., 2018; Nagy et al., 2019; Figure 1). However, there
is still an ongoing debate about whether this commonly used
classification is truly valid, as discussed in several papers (Tatar
et al., 2001; Lee et al., 2011; Lirakis et al., 2018; Erickson et al.,
2020). These papers claim that oogenesis in dormancy-inducing
conditions is not arrested at provitellogenic stages but rather
at stage 9 corresponding to early vitellogenesis. In fact, stage 9
oocytes are largely different from stage 10 and later oocytes from
the following perspectives. First, stage 10 oocytes massively grow
and are drastically enlarged compared to stage 9 oocytes (He et al.,
2011). Second, stage 9 oocytes possess a very small amount of
yolk, but stage 10 oocytes accumulate it well (He et al., 2011).
Third, stage 8 oocytes self-synthesize yolk proteins, while stage 10
oocytes incorporate extracellular yolk proteins synthesized in the
fat body cells and released into the hemolymph (Brennan et al.,
1982). Importantly, several studies have shown that dormant
oocytes incorporate hemolymph yolk proteins in lesser amounts
(Saunders, 1990; Saunders et al., 1990; Richard et al., 2001b). This
issue is still being debated.

Previous laboratory studies have reported that, like other
insects, low temperature and short-day condition influence the
induction of dormancy in D. melanogaster adults (Saunders
et al., 1989; Saunders and Gilbert, 1990; Allen, 2007; Figure 1).
However, in contrast to the importance of short-day condition
to induce dormancy in many other insect species, it is known
that low temperature, but not short-day condition, is the crucial
dormancy stimulus in D. melanogaster (Saunders and Gilbert,

1990; Zonato et al., 2017; Anduaga et al., 2018). In other words,
D. melanogaster adults enter dormancy at temperatures less
than 13°C even in long-day condition, but they never enter
dormancy in short-day condition if the temperature is higher
than 13°C. In D. melanogaster, the photoperiod appears to
modulate reproductive dormancy within a 10-13°C range of
permissiveness temperature (Saunders et al., 1989; Saunders and
Gilbert, 1990; Schiesari et al., 2011). Curiously, a recent study
has suggested that a very subtle difference in temperature, such
as a 0.3°C difference, possibly has a significant impact on the
induction of dormancy (Anduaga et al., 2018).

A concern about most laboratory experiments is that
these previous data were obtained under artificial light on/off
conditions, which is the unnatural constant light-constant dark
photoperiodic cycle. However, a recent study has claimed
that such artificial light on/oft conditions does not reflect
natural light/dark change and, thus, underestimate the effect
of photoperiod on D. melanogaster reproductive dormancy
(Nagy et al,, 2018). This study revealed that a photoperiod-
dependent reproductive dormancy is more clearly observed in
D. melanogaster European strains when the animals are reared
under gradual elevation and reduction of light that mimic
the natural light/dark change (Nagy et al., 2018). In addition
to low temperature and short-day condition, starvation is an
additional factor that enhances dormancy rate (Lirakis et al.,
2018; Ojima et al., 2018).

In the wild, it has been well described that there are geographic
variations in reproductive dormancy in D. melanogaster
(Williams et al., 2006; Tauber et al., 2007; Sandrelli et al., 2007;
Schmidt and Paaby, 2008; Schmidt et al., 2008; Emerson et al.,
2009b; Kolaczkowski et al., 2011; Lee et al., 2011; Fabian et al,,
2012; Bergland et al, 2014; Kapun et al, 2016; Zhao et al,
2016; Zonato et al., 2017; Lirakis et al., 2018; Betancourt et al.,
2021; Machado et al, 2021). D. melanogaster originated in
sub-Saharan Africa and subsequently expanded its habitat,
possibly in association with humans and agriculture (Flatt,
2020). The flies have colonized temperate habitats in Eurasia
and, more recently, North America and Australia. Genotypes
from some populations enter reproductive dormancy readily in
response to low temperature and short-day conditions, whereas
others have low or zero dormancy propensity (Williams, 1993;
Schmidt and Paaby, 2008; Emerson et al., 2009b; Fabian et al.,
2015). Seasonal high-latitude populations show much greater
dormancy inducibility than flies from subtropical/tropical
low-latitude populations. In addition, geographic variations in
reproductive dormancy in wild D. melanogaster are associated
with single nucleotide polymorphisms in several loci, as we
discuss later, suggesting that the traits of reproductive dormancy
are genetically constrained.

THE ROLE OF JUVENILE HORMONES IN
DROSOPHILA MELANOGASTER
REPRODUCTIVE DORMANCY

As in other insect species, the induction of D. melanogaster
reproductive dormancy is associated with reduced JH levels
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(Figure 1). A previous study using an in vitro assay system has
shown that the dissected CA from animals under reproductive
dormancy-inducing conditions exhibits reduced JH biosynthesis
(Saunders et al., 1990). In contrast, administration of the JH
analog methoprene can break reproductive dormancy (Tatar
and Yin, 2001). Phenotypes of reproductive dormancy are also
observed in female flies in which JH biosynthetic enzymes are
enhanced or suppressed. For example, overexpression of a gene
encoding juvenile hormone acid O-methyltransferase (Jhamt)
significantly reduces the percentage of dormant flies (Shinoda
and Itoyama, 2003; Niwa et al., 2008; Noriega, 2014; Ojima et al.,
2018). Conversely, the CA-specific transgenic double-strand
RNA interference (RNAi) of Jhamt increases the percentage
of dormant flies (Ojima et al, 2018). Taken together, these
observations are consistent with the fact that JH accelerates
oogenesis in most insects, including D. melanogaster, under non-
dormancy-inducing conditions.

The role of JH in the regulation of D. melanogaster
reproductive dormancy has also been investigated at the level
of oogenesis. It is well known that JH is essential for facilitating
vitellogenesis from the oocyte stage 8 (Bownes, 1994; Soller et al.,
1997). More precisely, JH promotes yolk protein production,
which occurs mainly in the fat body, and also acts on the ovarian
follicle cells to promote vitellogenesis by enhancing yolk protein
uptake to oocytes (Postlethwait and Weiser, 1973; Bownes,
1989; Soller et al., 1997, 1999; Richard et al., 2001a; Santos
et al., 2019). The suppression of yolk protein production in the
dormancy-inducing condition correlates well with reproductive
dormancy (Saunders et al, 1990; Figure 2). Experimentally,
application of the JH analog to dormant females increased
yolk protein production and the number of vitellogenic oocytes
as compared to an experimental control group (Saunders
et al,, 1990; Tatar et al, 2001). These data indicate that, in
D. melanogaster and many other insects, reproductive dormancy
is due to the suppression of vitellogenesis, at least in part, by JH
titer reduction.

NEUROENDOCRINE MECHANISMS
THAT DIRECTLY OR INDIRECTLY
CONTROL JUVENILE HORMONE
BIOSYNTHESIS IN THE CORPUS
ALLATUM IN DROSOPHILA
MELANOGASTER

To understand how JH biosynthesis in the CA is suppressed
when the animals are placed in dormancy-inducing conditions,
it is important to unravel the mechanisms transmitting
environmental cues to the CA to influence the activity of JH
biosynthesis. Although the mechanisms have not yet been fully
elucidated, recent studies on D. melanogaster have collectively
argued that several neuroendocrine factors are crucial for
inducing JH-mediated reproductive dormancy. Hereafter we are
describing the recent knowledge of neuroendocrine regulation
of reproductive dormancy in D. melanogaster. As we described
earlier, insect reproductive dormancy is regulated not only

Dopamine JH
S
o
Q
&
&

Ecdysteroid

X
Ovary
meee € @
stage8~10
Pr'e-vitellogenic onc;(t'e Vitellogenic oocyte

FIGURE 2 | Reproductive dormancy is regulated by JH through the
production of yolk protein in the fat body. JH (orange) promotes the production
of yolk protein in the fat body and the uptake of yolk protein in the ovary. On
the other hand, ecdysteroids (pink) promote yolk protein production in the fat
body, affect JH biosynthesis in the CA, and regulate oogenesis. Under
dormancy-inducing conditions, a decrease in JH level and ecdysteroid level
suppresses the yolk protein accumulation (dark yellow) in oocytes, leading to
reproductive dormancy. Furthermore, dopamine (dark blue) might be involved
in inducing reproductive dormancy via yolk protein production in the fat body.

by JHs but also many other hormones, including insulin-
like peptides and ecdysteroids. Although it might be plausible
to consider that insulin-like peptides and ecdysteroids have
roles in reproductive dormancy independent of JHs, recent
D. melanogaster studies have indicated that insulin-like peptides
and ecdysteroids influence JH biosynthesis in the CA in multiple
way. Therefore, in this review, instead of deliberately focusing
on the whole picture of hormone interactions, we dare to
focus on JHs and discuss the involvement of other hormones
and neurotransmitters.

Mechanisms of Insulin
Signaling-Mediated Reproductive

Dormancy

Insulin signaling controls development, growth, and physiology
by regulating nutrient metabolism and energy expenditure in
animals. In D. melanogaster, insulin signaling has versatile
functions, including reproductive dormancy (Sim and Denlinger,
2013; Kubrak et al., 2014; Liu et al., 2016; Schiesari et al.,
2016; Ojima et al., 2018; Semaniuk et al., 2021). Drosophila
insulin-like peptides (Dilps), orthologs of vertebrate insulin
and insulin growth factors, are the endocrine factors activating
insulin signaling in D. melanogaster (Semaniuk et al., 2021;
Figures 3A,B). Their secretion is regulated by the activity of
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FIGURE 3 | Schematic representation of the neuroendocrine mechanisms regulating JH biosynthesis. (A) Anatomy of small ventral lateral neurons (s-LNv; magenta),
insulin-producing cells (IPCs; red), and the corpus allatum (CA) in D. melanogaster adult female. s-LNvs are the circadian clock pacemaker neurons whose axons
seem to have direct synaptic connections with IPCs. (B) The s-LNv-IPC-CA axis and multiple humoral factors to regulate JH biosynthesis in the CA. Under dormant
conditions, the secretion of pigment-dispersing factor (Pdf) and short neuropeptide F (sSNPF) from s-LNv is reduced, followed by the suppression of IPC activity and
consequently that of Dilp production. Serotonin and dopamine are also involved in inducing reproductive dormancy by repressing Dilp expression in IPCs. It is
noteworthy that, whereas it is generally considered that serotonin receptor (5-HT1A) and dopamine receptor (DopR1) positively evoke intracellular cAMP level, it is
unclear how serotonin-5-HT1A and dopamine-DopR1 signaling negatively regulate Dilp expression, differently from Pdf-Pdf receptor (PdfR) and sNPF-sNPF receptor
(sNPFR) signaling. In addition to these hormones and neurotransmitters, Dilp expression is intracellularly regulated by the transcriptional regulator Eye absent (Eya)
and possibly the core circadian clock gene timeless (Tim). Dilps and Ecdysis-triggering hormone (ETH) have a function to promote JH biosynthesis in the CA. On the
other hand, dopamine has a function to suppress JH production in the CA under dormancy-inducing conditions. In many insects, direct projection nerves of the CA

are essential for the regulation of reproductive dormancy, while it is still unclear whether this is also the case in D. melanogaster.

insulin-producing cells (IPCs), which are neurons located in the
pars intercerebralis (PI) of the brain. Dilps are then released from
IPCs into the hemolymph (Semaniuk et al., 2021; Figure 3A).
A previous study has demonstrated that, in flies reared at 11°C,
short-day condition results in lower neuronal activity of IPCs
than long-day condition (Ojima et al, 2018). Furthermore,
when IPCs are artificially activated by overexpression of a
transient receptor potential cation channel under dormancy-
inducing conditions, the percentage of dormant flies decreases.
Conversely, an artificial inhibition of IPCs by overexpressing
an inward rectifier potassium channel increases the percentage
of dormant flies (Venken et al,, 2011; Schiesari et al., 2016;
Ojima et al., 2018). These results suggest that IPCs negatively
regulate reproductive dormancy. Phenotypes of reproductive
dormancy are also observed in loss- and gain-of-function of
Dilps and insulin receptor (InR). For example, overexpression
of Dilp2 and Dilp5 in the IPCs suppresses the induction of
dormancy (Schiesari et al., 2016). On the other hand, IPC-specific
RNAI of Dilp2, Dilp5 upregulates the induction of dormancy
(Schiesari et al., 2016). Moreover, molecules downstream of
Dilps and InR are also involved in reproductive dormancy.
For example, Phosphatidylinositol-3 kinase (PI3K) influences

of the rate of reproductive dormancy in the North American
population of D. melanogaster (Williams et al., 2006). In addition,
FoxO, a well-known transcription factor downstream of Dilp
signaling, also plays a crucial role in inducing reproductive
dormancy, as revealed by an experiment using a FoxO-mediated
gene expression reporter (Schiesari et al., 2016). Taken together,
the production and secretion of Dilps are greatly suppressed
in dormancy-inducing conditions, resulting in reduced insulin
signaling, followed by the suppression of oogenesis (Figure 3B).
How does the reduction of Dilp signaling suppress oogenesis?
One mechanism is that reduced Dilp signaling in the CA
downregulates JH biosynthesis (Figure 3B). For example,
overexpression of constitutively active InR or PI3K in the CA
significantly decreases in flies with ovarian arrest in dormancy-
inducing conditions (Ojima et al., 2018). Conversely, InR RNAi
or dominant-negative PI3K or mTOR, another downstream
element of insulin signaling, increases the proportion of flies
with ovarian arrest in both normal and dormancy-inducing
conditions (Ojima et al., 2018). On the other hand, besides the
JH-mediated action of Dilps, there are other mechanisms by
which Dilps directly act on ovarian cells to regulate oogenesis
or indirectly influence oogenesis through the regulation of
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ecdysteroid biosynthesis (Tu et al, 2002, 2005; LaFever and
Drummond-Barbosa, 2005).

The role of insulin signaling in controlling developmental
arrest has also been suggested in species other than insects,
such as the nematode Caenorhabditis elegans and the annual
killifish Austrofundulus limnaeus. In C. elegans, low food levels
or other unfavorable environmental conditions lead to larval
developmental arrest, known as dauer (Hu, 2007). Previous
studies have identified and characterized genes mutated in
various mutants exhibiting dysregulation of dauer arrest, called
daf mutants. Some of the identified genes encode insulin-like
peptides, insulin receptor, and signal transduction molecules
downstream of insulin receptor (Golden and Riddle, 1982, 1984;
Cornils et al,, 2011; Sim and Denlinger, 2013). In the annual
killifish, downregulation of insulin signaling appears essential
for regulating embryonic diapause (Woll and Podrabsky,
2017). Considering that JHs are arthropod-specific and neither
nematodes nor vertebrates biosynthesize JHs, it would be
intriguing to examine whether and how insulin signaling
interacts with other hormones and other bioactive molecules
to regulate developmental arrest in these animals, such as
dafachronic acids in C. elegans (Hu, 2007; Niwa and Niwa, 2014)
and vitamin D3 in the annual killifish (Romney et al., 2018).

Mechanisms of Aminergic
Signaling-Mediated Reproductive

Dormancy

Previous studies on pupal dormancy in butterflies and
moths have shown that hemolymph levels of aminergic
neurotransmitters, such as dopamine and serotonin, are
elevated during dormancy (Noguchi and Hayakawa, 1997;
Isabel et al., 2001; Hsu et al., 2020; Figure 3B). Recent studies
have revealed that serotonin and dopamine are also involved
in regulating reproductive dormancy in D. melanogaster
(Andreatta et al., 2018).

In D. melanogaster, the dopamine level in the whole adult body
significantly increases under dormancy-inducing conditions
(Andreatta et al.,, 2018). Furthermore, the percentage of flies
with reproductive dormancy is reduced in mutants of DOPA
decarboxylase (Ddc), which is involved in the biosynthesis of
dopamine and serotonin (Sherald and Wright, 1974; Wright et al.,
1976). On the other hand, activation of the dopaminergic neurons
results in an increased proportion of flies with reproductive
dormancy. These results indicate that dopamine, in contrast
to Dilps, positively regulates reproductive dormancy. However,
among the approximately 130 bona fide dopaminergic neurons
in the D. melanogaster brain (Kasture et al, 2018; Karam
et al., 2020), the dopaminergic neuron(s) important for inducing
reproductive dormancy have not yet been identified.

A previous study has revealed that Dop1R1, the gene encoding
one of the dopamine receptors, is expressed at the CA and
the fat body (Gruntenko et al., 2012; Figure 3B). Knockdown
of DopIRI1 either in the CA or the fat body significantly
reduces the percentage of dormant flies (Andreatta et al., 2018),
suggesting that dopamine induces reproductive dormancy via
both the CA and the fat body. It should be remembered

that the fat body is the main organ producing yolk protein,
which is essential for vitellogenesis (Bownes, 1994). Therefore,
these data raise the possibility that dopamine might inhibit
yolk protein production in the fat body, which indirectly
suppresses vitellogenesis in dormant flies (Figure 2). Besides
the CA and the fat body, dopamine seems to act on IPCs
as well. While it is unclear whether any of the dopamine
receptors are expressed in IPCs, DopIRI knockdown in IPCs
also reduces the percentage of dormant flies (Andreatta et al.,
2018). Therefore, Dilps production may be reduced when the
IPCs receive dopamine (Figure 3B). Taken together, these data
indicate that dopamine simultaneously acts on multiple tissues to
regulate reproductive dormancy.

It is known that DoplRI is coupled with the stimulatory
trimeric G-protein, known as Gs, and utilizes intracellular cyclic
AMP (cAMP) as a second messenger (Gotzes et al, 1994;
Sugamori et al,, 1995). A previous study has shown that the
CA-specific forced expression of a dominant-negative form of
protein kinase A (PKA), a cAMP-activating kinase (Francis
and Corbin, 1994), represses reproductive dormancy in the
dormancy-inducing condition (Andreatta et al., 2018). Moreover,
the animals in this study exhibited expression changes in JH-
responsive genes, which seemed to reflect the increased JH
titer. These results are also consistent with the involvement
of DoplR1 signaling in the CA in regulating reproductive
dormancy (Figure 3B).

In addition to dopamine, serotonin also regulates reproductive
dormancy in D. melanogaster. Artificial neuronal activation
of serotonergic neurons by overexpressing a voltage-gated ion
channel causes a significant increase in the percentage of dormant
flies (Venken et al., 2011; Andreatta et al., 2018). Furthermore,
one of the serotonin receptors, 5-HT1A, is expressed in IPCs and
negatively regulates IPCs (Luo et al., 2012, 2014). Knockdown of
5-HT1A in IPCs greatly reduces the percentage of dormant flies.
Consistent with this observation, the IPC-specific knockdown of
5-HT1A enhances the expression levels of Dilp2 and Dilp5. These
results indicate that serotonin acts on IPCs to promote dormancy
via regulation of insulin signaling (Figure 3B).

Other bioactive monoamines include octopamine and
y-aminobutyric acid (GABA) (Nissel, 2018). It has been
demonstrated that the activation of octopaminergic neurons
suppresses reproductive dormancy, while GABAergic signaling
does not consistently affect dormancy (Andreatta et al., 2018).
Since the octopaminergic signal is known to influence the
production and release of Dilps in non-dormancy-inducing
conditions (Enell et al, 2010; Luo et al, 2014), a previous
study has examined whether octopamine regulates reproductive
dormancy by acting on IPCs. However, the silencing of the
octopamine receptor in mushroom bodies (OAMB) in the
IPCs does not affect the percentage of dormant flies (Andreatta
et al., 2018). On the other hand, a previous study has suggested
that octopamine suppresses JH degradation, leading to a
rise in JH titer under heat stress (Gruntenko et al., 2000;
Rauschenbach et al., 2001). Although this study does not
focus on reproductive dormancy, this observation implies that
activation of octopaminergic neurons may facilitate reproductive
dormancy. However, it is still unclear which tissues receive
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octopamine and whether octopamine-dependent control of
reproductive dormancy requires JH signaling.

Mechanisms of Ecdysteroid
Signaling-Mediated Reproductive

Dormancy
The classical scheme of insect endocrinology describes how
insect developmental transitions are regulated by three
primary circulating factors: prothoracicotropic hormone,
JHs, and ecdysteroids (Jindra et al., 2013; Truman, 2019). In
D. melanogaster, besides JHs, ecdysteroids are also known to
play an important role in regulating reproductive dormancy
(Richard et al., 1998, 2001b). Ovaries of reproductively dormant
flies exhibit lower ecdysteroid biosynthesis activity in vitro
compared to those of non-dormant flies (Richard et al., 1998).
On the other hand, the ovarian ecdysteroid level is elevated
during the dormancy-breaking process (Richard et al., 1998).
The elevation of the ovarian ecdysteroids occurs before mature
eggs start to be produced in the dormancy-broken ovaries.
Moreover, microinjection of 20-hydroxyecdysone (20E), the
most active form of ecdysteroid, to reproductively dormant
females evokes vitellogenesis (Richard et al, 1998, 2001b).
Notably, vitellogenesis is severely suppressed in the ecdysone
receptor (EcR) loss-of-function ovaries in non-dormant flies
(Carney and Bender, 2000). Taken together, these results indicate
that ecdysteroid biosynthesis in the ovary needs to be suppressed
in the dormancy-inducing condition, while the elevation of the
ovarian ecdysteroid level and the activation of 20E signaling are
required for breaking reproductive dormancy (Figure 2).
Currently, however, the role of ecdysteroids in the regulation
of reproductive dormancy in D. melanogaster has not been as
well documented as that of the JHs. It is also unclear how
the ovarian ecdysteroid levels are suppressed in the dormancy-
inducing condition. Nevertheless, it has been hypothesized that
three major pathways might be involved in the 20E-mediated
regulation of reproductive dormancy. First, the downregulation
of 20E signaling in the fat body seems to suppress yolk
protein production in the dormancy-inducing condition, as 20E
stimulates the fat body in non-dormant females, leading to
the promotion of yolk protein production (Postlethwait and
Handler, 1979; Jowett and Postlethwait, 1980; Bownes, 1982;
Handler and Maroy, 1989; Bownes et al., 1996; Richard et al,,
2001a). Second, the downregulation of 20E signaling in the ovary
might suppress many aspects of oogenesis in the dormancy-
inducing condition. Previous studies have indicated that 20E
has versatile roles in D. melanogaster oogenesis, including niche
formation, germline stem cell proliferation and maintenance,
cystocyte differentiation, and the developmental checkpoint at
the stage 8-10 egg chambers (Belles and Piulachs, 2015; Uryu
etal., 2015; Ameku and Niwa, 2016; Ameku et al., 2017; Swevers,
2019). Third, the downregulation of 20E signaling might suppress
JH biosynthesis in the CA in the dormancy-inducing condition.
In fact, very recent studies have just revealed the relationship
between 20E signaling and JH biosynthesis, which is at least
in part mediated by the peptide hormone ecdysis-triggering
hormone (ETH). We provide more details in the next section.

Mechanisms of Ecdysis-Triggering
Hormone-Mediated Reproductive

Dormancy

ETH has been identified and characterized as the peptide
hormone playing an essential role in regulating innate ecdysis
behavior in the tobacco horn moth Manduca sexta and
D. melanogaster (Zitoan et al.,, 1996; Kingan et al., 1997; Park
et al,, 1999). ETH is produced by Inka cells located close to
tracheal pits in the thorax and abdomen and then secreted into
the hemolymph. While early studies have shown that the released
ETH is received in the brain, after which there is activation of
a neuroendocrine mechanism to control ecdysis behavior, the
recent studies using non-dormant D. melanogaster have also
revealed that ETH has a function to promote JH biosynthesis in
the CA, leading to ovarian development in females and mating
behavior in males (Lee et al., 2017; Meiselman et al., 2017).
In females, knockdown of ETH results in the reduction of JH
levels and slow-down of ovarian development (Lee et al., 2017;
Meiselman et al., 2017). In addition, live imaging experiments
have shown that ETH is directly received by the ETH receptor
on the CA to elevate intracellular Ca?t level (Lee et al., 2017;
Meiselman et al, 2017). Curiously, it is known that ETH
production is promoted by 20E (Park et al., 1999). Therefore, it
is plausible to expect that, in dormancy-inducing conditions, the
downregulations of ecdysteroid biosynthesis and 20E signaling
indirectly suppress JH biosynthesis via ETH, yet this fascinating
possibility has not been experimentally tested in D. melanogaster
so far (Figure 3B).

Interestingly, a recent study has shown that ecdysteroids
regulate dormancy via ETH in the cabbage beetle Colaphellus
bowringi (Guo et al, 2021). In this insect, reduction of
ecdysteroid biosynthesis is required for suppressed oogenesis
and accumulated lipid storage in the fat body in dormancy-
inducing conditions. The reduction of ecdysteroid biosynthesis
causes a decrease in ETH expression level, leading to a decrease
in JH biosynthesis, which is essential for entering reproductive
dormancy. The study on C. bowringi beetle nicely demonstrated
that the ecdysteroid-ETH-JH relay is important to regulate
reproductive dormancy. This study is an excellent example of
how findings on the regulation of JH biosynthesis from analyses
with D. melanogaster led to an understanding of the mechanisms
of reproductive dormancy in other insects. Conversely, it
would be intriguing to examine whether the ecdysteroid-ETH-
JH-mediated mechanism found in C. bowringi also exists in
D. melanogaster.

Is There a Direct Neuronal Regulation of
Juvenile Hormone Biosynthesis in the
Corpus Allatum in Drosophila
melanogaster?

In some insects other than D. melanogaster, JH-mediated
reproductive dormancy is regulated by not only humoral factors
remotely acting on the CA but also by direct inputs from neurons
projecting to the CA (de Wilde and de Boer, 1969; Shiga and
Numata, 2000; Shimokawa et al., 2008). For example, in the
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northern blowfly P. terraenovae and the bean bug R. pedestris,
the neurons projecting to the CA (hereafter referred to as the
CA-projecting neurons) are essential for inducing reproductive
dormancy in dormancy-inducing conditions (Shiga et al., 2003;
Shimokawa et al., 2008). In adults of the brown-winged green
bug Plautia stali, the CA-projecting neurons co-produce several
neuropeptides, such as Diuretic hormone 44, Insulin-like peptide
1, and Plautia stali myoinhibitory protein (Plast-MIP). In
particular, Plast-MIP is considered to suppress JH biosynthesis
in the CA directly (Matsumoto et al., 2017; Hasegawa et al., 2020;
Hasebe and Shiga, 2021). In these insects, reproductive dormancy
can be broken by surgically removing the CA-projecting neurons,
confirming the importance of the CA-projecting neurons in the
regulation of reproductive dormancy. However, in almost all
cases, except P. stali, the neurotransmitter and/or neurohormone
produced in the CA-projecting neurons has not been clarified.
For a better understanding of the neuroendocrine mechanisms
of JH biosynthesis in the CA, clarification and characterization of
such neurotransmitters and/or neurohormones are crucial.

In D. melanogaster larvae, two types of neurons, designated
CA-LP1 and CA-LP2 neurons, have been reported to directly
innervate the CA (Siegmund and Korge, 2001). These neurons
are involved in the epithelial movement of male genitalia by
inhibiting JH biosynthesis during pupal development in non-
dormancy-inducing condition (Addm et al., 2003). It is possible
that these neurons are also present in the adult stage and
positively regulate reproductive dormancy via inhibiting JH
biosynthesis. In addition, our recent study has reported new
CA-projection neurons that produce the neuropeptide hugin in
D. melanogaster adults, which is unexpected given that the CA-
projecting hugin neurons may not have a significant impact on
JH biosynthesis in the CA (Mizuno et al., 2021). Further studies
would be needed to clarify the role of the CA-projecting neurons
in reproductive dormancy in D. melanogaster (Figure 3B).

MECHANISMS OF DORMANCY
CONTROL BY CIRCADIAN CLOCKS

In general, dormancy is significantly influenced by
photoperiodism  (Denlinger, 2002; Saunders, 2014). In
D. melanogaster, although a low temperature is the main
environmental cue to induce reproductive dormancy,
photoperiodism additionally influences the dormancy entry; the
short-day but not the long-day condition accelerates the entry
of reproductive dormancy in D. melanogaster (Saunders et al.,
1989; Saunders and Gilbert, 1990; Nagy et al., 2018). In a wide
range of insects, photoperiodism and photoperiodism-associated
dormancy are under the control of the circadian clock system
(Bloch et al., 2013; Meuti and Denlinger, 2013; Meuti et al., 2015;
Saunders, 2020). Indeed, photoperiodism significantly influences
JH titers in D. melanogaster (Saunders, 1990) and other insects
(Kramer, 1978; Khan et al.,, 1982; Meuti and Denlinger, 2013;
Matsumoto et al., 2017), although molecular and cellular
mechanisms of this phenomenon remain largely unclear. On
the other hand, recent studies have shown that circadian clock
neurons and circadian clock genes play an important role in

modulating the neuroendocrine system to control reproductive
dormancy in D. melanogaster. Below, we mainly summarize the
role of clock neurons and circadian clock genes in reproductive
dormancy, and briefly mention a possible contribution of the
clock machinery to JH biosynthesis in the CA.

The molecular machinery of the circadian clock has been
extensively studied in D. melanogaster, where the circadian
master clock comprises about 150 neurons located in the central
brain (Helfrich-Forster, 2004). Among the identified circadian
clock neurons, the small ventral lateral neurons (s-LNvs) act as
central circadian pacemakers to regulate various daily changes
in D. melanogaster physiology. Indeed, s-LNvs are involved in
the dormancy-dependent regulation of neuronal activity of IPCs
(Nagy et al., 2019). The axons of D. melanogaster s-LNvs project
to the dorsal protocerebrum, where the cell bodies and dendrites
of IPCs are located, implying that s-LNvs and IPCs might have
direct synaptic contact with each other (Figure 3A).

The s-LNvs are known to produce and release two
neuropeptides required for the normal functioning of the
behavioral circadian rhythm, namely pigment-dispersing factor
(Pdf) (Park et al., 2000) and short neuropeptide F (sNPF) (Johard
et al,, 2009). Overexpression of either Pdf or sNPFE specifically
in s-LNvs, decreases the percentage of reproductively dormant
flies in dormancy-inducing condition. Furthermore, inhibition
of the sNPF receptor only in IPCs also increases the percentage
of dormant flies in dormancy-inducing condition. Consistent
with these results, administration of synthetic Pdf or sNPF
ligand to cultured brains evokes an increase in intracellular
cAMP, which acts as a second messenger for the Pdf receptor
and sNPF receptor in IPCs (Nagy et al.,, 2019). According to
these data, it is hypothesized that the change in day length
during winter suppresses the production and secretion of Pdf and
sNPF in s-LNvs, which might provide less stimulation for IPCs
and consequently induce reproductive dormancy (Figure 3B).
Therefore, the suppression of IPC neuronal activity might be due
to reduced activation of the receptors for Pdf and sNPF (Ojima
et al., 2018). In addition, it is very likely that Dilp-mediated
regulation of JH biosynthesis in the CA would be under the
control of Pdf- and sNPF-dependent regulation of the circadian
rhythm; however, this hypothesis has not been closely examined.

It has been reported that Pdf-dependent regulation of
reproductive dormancy has been observed in the blow fly
Protophormia terraenovae (Shiga and Numata, 2009), the
mosquito Culex pipiens (Meuti et al., 2015), and the bean bug
Riptortus pedestris (Ikeno et al., 2014). These data imply that Pdf-
producing clock neurons are involved in reproductive dormancy
beyond Drosophilidae species.

Besides the regulation mediated by the central clock
pacemaker neurons, the activity of IPCs is also regulated by
transcription regulators expressed in IPCs. This mechanism
has been revealed in a study on a gene called eyes absent
(eya) (Abrieux et al., 2020). Eya encodes a highly conserved
transcriptional coactivator and protein phosphatase that plays
vital roles in multiple developmental processes in organisms
ranging from Drosophila to humans. While the best-known
function of Eya is to control eye formation, it is also known that
eya is expressed in IPCs. Knockdown of eya in IPCs causes an
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increase in the size of the ovary, implying that Eya negatively
regulates oogenesis through IPCs. Interestingly, the expression
of eya has a circadian rhythm (Abrieux et al, 2020). More
precisely, the peak of Eya protein levels is delayed in the short-day
condition in comparison to the long-day condition. In addition,
the protein levels of Eya in IPCs are higher under the short-day
condition than the long-day condition. In parallel, Eya protein
level is also upregulated under low-temperature conditions.
These observations raise the possibility that the upregulation of
Eya protein in dormancy-inducing conditions is necessary for
oogenesis suppression (Figure 3B).

In the same study (Abrieux et al., 2020), the authors have
demonstrated that the timeless (tim) gene also functions in IPCs
to regulate reproductive dormancy. The tim gene is notable for its
role in the transcriptional-translational autoregulatory feedback
loops of the circadian core clock system in D. melanogaster
(Dunlap, 1999; Hardin, 2005). In the tim mutant, a higher rate
of reproductive dormancy is observed in any daylight length
condition compared to wild type, and the impact of the short-
day condition is less effective to enhance reproductive dormancy
(Tauber et al.,, 2007; Abrieux et al., 2020). Interestingly, Tim
is involved in the regulation of the Eya protein level. For
example, the circadian rhythm of Eya protein is abolished in the
tim mutant under non-dormancy-inducing conditions (Abrieux
et al., 2020). Furthermore, the increased level of Eya protein at
low temperatures is thought to be mediated by Tim. The Tim-
mediated upregulation of Eya seems to be regulated by a unique
splice isoform generated only at low temperature (Anduaga
et al., 2019; Foley et al.,, 2019), which physically interacts with
EYA protein (Abrieux et al, 2020). Based on these findings,
it is hypothesized that the low temperature-specific Tim splice
isoform binds Eya to suppress IPC activity, while the nature of
the cell types in which this physical interaction takes place has
not been precisely elucidated. Taken together, IPCs activity seems
to be regulated by the external and internal regulatory system of
the circadian clock in D. melanogaster, both of which might be
required for regulating reproductive dormancy by inhibiting JH
biosynthesis in the CA (Figure 3B).

Lastly, we would like to mention that a part of the
circadian clock-mediated mechanisms of photoperiodism in
D. melanogaster might be conserved even in mammals. For
example, EYA3, one of the mammalian orthologs of eya, is
required for the photoperiodism-dependent expression change of
the thyroid-stimulating hormone gene in the mouse and the sheep
(Dardente et al., 2010; Masumoto et al., 2010; Hut, 2011; Wood
and Loudon, 2014; Wood et al., 2015).

FUTURE PERSPECTIVES

Although the studies on D. melanogaster in the last decades
have improved our understanding of JH-mediated regulation
of reproductive dormancy, several issues remain to be clarified.
Here, we list the five main possible research lines, in our opinion.

(1) Do hemolymph JH titers change during reproductive
dormancy induction in D. melanogaster and how do they change?
In fact, no previous study using D. melanogaster has made a

conclusive report about the temporal fluctuation of hemolymph
JH titers. This information must be a solid foothold for
D. melanogaster reproductive dormancy studies and, therefore,
should be obtained by the D. melanogaster research community
in the near future. Liquid chromatography-mass spectrometry-
based methods to measure hemolymph JH titers have already
been reported by several groups (Reiff et al., 2015; Lee et al., 2017;
Meiselman et al., 2017; Ramirez et al., 2020; Zhang et al., 2021).

(2) How does the information regarding low temperature
eventually get transmitted to the CA? It has been revealed that
the antenna is a vital organ for detecting cold sensations (Gallio
et al,, 2011; Li and Gong, 2017; Alpert et al., 2020). Therefore,
there must be a neuronal circuit from the antennal cold-sensitive
sensilla to the CA; however, the nature of this circuit is largely
unclear. At least, it is likely that the neuronal circuit may
contain some dopaminergic neurons, based on the observations
that dopamine suppresses JH biosynthesis and is elevated in
dormancy-inducing conditions (Andreatta et al., 2018). On the
other hand, it should be noted that low temperature suppresses
overall biological activity, including feeding. Since a lower level
of feeding results in the suppression of energy expenditure, the
dormancy-inducing low temperature might negatively affect IPC
activity, possibly leading to reproductive dormancy. Meanwhile,
curiously and paradoxically, some studies have reported that IPCs
are activated by cold-sensing neurons at 18°C rather than 25°C
(Li and Gong, 2015; Zhang et al., 2019), whereas the function
of cold-sensing neurons in dormancy-inducing conditions has
not yet been investigated. Further studies will be needed to
clarify how low temperatures influence IPC activity to induce
reproductive dormancy.

(3) How does the reproductive dormancy status influence the
physiology and remodeling in each tissue? It has been reported
that reproductive dormancy suppresses oogenesis and is also
associated with several changes in various organs of the body.
For example, the intestine is markedly shortened, and the innate
immune system is activated during reproductive dormancy in
D. melanogaster (Kubrak et al., 2014); however, the mechanisms
involved are still unknown.

(4) How is male reproductive dormancy regulated? It has
been reported that low temperatures and short-day condition
also induce male reproductive dormancy, such as the slow-
down of spermatogenesis and degeneration of male accessory
glands (Kubrak et al., 2016). However, the molecular and
neuroendocrine mechanisms of male reproductive dormancy
have not been investigated. It has not even been elucidated
whether this process depends on JHs. In the future, it would
be intriguing to examine whether and how the neuroendocrine
regulatory system of female reproductive dormancy resembles
that of male reproductive dormancy.

(5) How does the JH-mediated regulation of reproductive
dormancy contribute to the evolutionary and ecological
adaptation of wild D. melanogaster? To date, most studies on
D. melanogaster reproductive dormancy have been conducted
in laboratories. However, since reproductive dormancy is the
adaptive response of organisms to the severe winter season, it
must be important to investigate the reproductive dormancy
of wild animals. As described earlier, geological differences of
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genetic bias influence reproductive dormancy in D. melanogaster.
Indeed, previous studies have shown that geographic variations
in reproductive dormancy in wild D. melanogaster is associated
with single nucleotide polymorphisms in the loci of tim,
InR, FoxO, and couch potato (Williams et al., 2006; Sandrelli
et al., 2007; Tauber et al., 2007; Schmidt et al., 2008; Paaby
et al., 2010, 2014; Kolaczkowski et al., 2011; Lee et al.,
2011; Fabian et al, 2012; Bergland et al, 2014; Kapun et al,
2016; Zhao et al, 2016; Betancourt et al., 2021; Machado
et al., 2021). In the case of tim, it is hypothesized that the
allelic frequencies of two distinct isoforms, Is-tim and s-tim
(Rosato et al., 1997), may have evolved to cope with winter
when D. melanogaster expanded into Europe (Tauber et al,
2007). This hypothesis is based on the observation that flies
expressing Is-tim have a higher dormancy rate than those with
s-tim (Sandrelli et al., 2007; Tauber et al., 2007). It would
be interesting to investigate whether such genetic variations
and allelic frequencies among these geographically distinct
D. melanogaster populations affect neuroendocrine mechanisms
for reproductive dormancy.

(6) How does the JH-mediated regulation of reproductive
dormancy contribute to the evolutionary and ecological
adaptation of other Drosophilidae species? Other Drosophilidae
species also enter adult dormancy in the winter, and many
biological events during dormancy are essentially the same as
we found in D. melanogaster, although the ease of dormancy
varies among species (Carson and Stalker, 1948; Lumme et al.,
1974; Schmidt and Conde, 2006; Yamada and Yamamoto,
2011; Salminen and Hoikkala, 2013; Zhai et al., 2016; Lirakis
et al., 2018). Therefore, wild non-melanogaster Drosophilidae
species are interesting research subjects for understanding the
evolutionary significance of genetic and ecological variations
in reproductive dormancy, which may influence flies’ fitness
in nature.

Well-developed and sophisticated genetic tools for
D. melanogaster will shed light on the fundamental
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