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Fluctuating environmental conditions are ubiquitous in natural systems, and populations

have evolved various strategies to cope with such fluctuations. The particular

mechanisms that evolve profoundly influence subsequent evolutionary dynamics. One

such mechanism is phenotypic plasticity, which is the ability of a single genotype

to produce alternate phenotypes in an environmentally dependent context. Here, we

use digital organisms (self-replicating computer programs) to investigate how adaptive

phenotypic plasticity alters evolutionary dynamics and influences evolutionary outcomes

in cyclically changing environments. Specifically, we examined the evolutionary histories

of both plastic populations and non-plastic populations to ask: (1) Does adaptive

plasticity promote or constrain evolutionary change? (2) Are plastic populations better

able to evolve and then maintain novel traits? And (3), how does adaptive plasticity

affect the potential for maladaptive alleles to accumulate in evolving genomes? We

find that populations with adaptive phenotypic plasticity undergo less evolutionary

change than non-plastic populations, which must rely on genetic variation from de novo

mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic

populations undergo more frequent selective sweeps and accumulate many more

genetic changes. We find that the repeated selective sweeps in non-plastic populations

drive the loss of beneficial traits and accumulation of maladaptive alleles, whereas

phenotypic plasticity can stabilize populations against environmental fluctuations. This

stabilization allows plastic populations to more easily retain novel adaptive traits than

their non-plastic counterparts. In general, the evolution of adaptive phenotypic plasticity

shifted evolutionary dynamics to be more similar to that of populations evolving in a

static environment than to non-plastic populations evolving in an identical fluctuating

environment. All natural environments subject populations to some form of change; our

findings suggest that the stabilizing effect of phenotypic plasticity plays an important role

in subsequent adaptive evolution.
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1. INTRODUCTION

Natural organisms employ a wide range of evolved strategies for
coping with environmental change, such as periodic migration
(Winger et al., 2019), bet-hedging (Beaumont et al., 2009),
adaptive tracking (Barrett and Schluter, 2008), and phenotypic
plasticity (Ghalambor et al., 2007). The particular mechanisms
that evolve in response to fluctuating environments will also shift
the course of subsequent evolution (Wennersten and Forsman,
2012; Schaum and Collins, 2014). As such, if we are to understand
or predict evolutionary outcomes, we must be able to identify
which mechanisms are most likely to evolve and what constraints
and opportunities they impart on subsequent evolution.

In this work, we focus on phenotypic plasticity, which can be

defined as the capacity for a single genotype to alter phenotypic
expression in response to a change in its environment (West-
Eberhard, 2003). Phenotypic plasticity is controlled by genes
whose expression is coupled to one or more environmental
signals, which may be either biotic or abiotic. For example, the

sex ratio of the crustacean Gammarus duebeni is modulated by
changes in photoperiod and temperature (Dunn et al., 2005),
and the reproductive output of some invertebrate species is
heightened when infected with parasites to compensate for
offspring loss (Chadwick and Little, 2005).

Evolutionary biologists have long been interested in how

evolutionary change is influenced by phenotypic plasticity
because of its role in generating phenotypic variance (Gibert
et al., 2019). The effects of phenotypic plasticity on adaptive
evolution have been disputed, as few studies have been able to
observe both the initial patterns of plasticity and the subsequent
divergence of traits in natural populations (Ghalambor et al.,
2007, 2015; Wund, 2012; Forsman, 2015; Hendry, 2016). In
changing environments, adaptive phenotypic plasticity provides
a mechanism for organisms to regulate trait expression within
their lifetime, which can stabilize populations through those
changes (Gibert et al., 2019). In this context, the stabilizing effect
of adaptive plasticity has been hypothesized to constrain the
rate of adaptive evolution (Gupta and Lewontin, 1982; Ancel,
2000; Huey et al., 2003; Price et al., 2003; Paenke et al., 2007).
That is, directional selection may be weak if environmentally-
induced phenotypes are close to the optimum; as such, adaptively
plastic populations may evolve slowly (relative to non-plastic
populations) unless there is a substantial fitness cost to plasticity.

Phenotypic plasticity allows for the accumulation of genetic
variation in genomic regions that are unexpressed under current
environmental conditions. Such cryptic (“hidden”) genetic
variation can serve as a source of diversity in the population,
upon which selection can act when the environment changes
(Schlichting, 2008; Levis and Pfennig, 2016). It remains unclear to
what extent and under what circumstances this cryptic variation
caches adaptive potential or merely accumulates deleterious
alleles (Gibson and Dworkin, 2004; Paaby and Rockman, 2014;
Zheng et al., 2019).

The “genes as followers” hypothesis (also known as the
“plasticity first” hypothesis) predicts that phenotypic plasticity
may facilitate adaptive evolutionary change by producing
variants with enhanced fitness under stressful or novel conditions

(West-Eberhard, 2003; Schwander and Leimar, 2011; Levis
and Pfennig, 2016). Environmentally-induced trait changes
can be refined through selection over time (i.e., genetic
accommodation). Further, selectionmay drive plastic phenotypes
to lose their environmental dependence over time in a process
known as genetic assimilation (West-Eberhard, 2005; Pigliucci,
2006; Crispo, 2007; Schlichting and Wund, 2014; Levis and
Pfennig, 2016). In this way, environmentally-induced phenotypic
changes can precede an evolutionary response.

Phenotypic plasticity may also “rescue” populations from
extinction under changing environmental conditions by
buffering populations against novel stressors. This buffer
promotes stability and persistence and grants populations time
to further adapt to rapidly changing environmental conditions
(West-Eberhard, 2003; Chevin and Lande, 2010).

Disparate predictions about how phenotypic plasticity may
shift the course of subsequent evolution are not necessarily
mutually exclusive. Genetic and environmental contexts
determine if, and to what extent, phenotypic plasticity promotes
or constrains subsequent evolution. Figure 1 overviews how
we might expect different forms of phenotypic plasticity to
result in different evolutionary responses after an environmental
change. In Figure 1A, we would expect non-plastic populations
to experience strong directional selection toward the new
optimum (OE2) after the environment changes. We would
expect an adaptively plastic population (Figure 1B) to remain
relatively stable after the environment changes, as plasticity
shifts organisms’ phenotypes to the new optimum. In Figure 1C,
we would expect the non-adaptively plastic population to
experience strong directional selection on their response to
the new environmental conditions; indeed, such maladaptive
plasticity may even put the population at risk of extinction in the
absence of beneficial mutations.

Experimental studies investigating the relationship between
phenotypic plasticity and evolutionary outcomes can be
challenging to conduct in natural systems. Such experiments
would require the ability to irreversibly toggle plasticity followed
by long periods of evolution during which detailed phenotypic
data would need to be collected. Digital evolution experiments
have emerged as a powerful research framework from which
evolution can be studied. In digital evolution, self-replicating
computer programs (digital organisms) compete for resources,
mutate, and evolve following Darwinian dynamics (Wilke and
Adami, 2002). Digital evolution studies balance the speed and
transparency of mathematical and computational simulations
with the open-ended realism of laboratory experiments. Modern
computers allow us to observe many generations of digital
evolution at tractable time scales; thousands of generations can
take mere minutes as opposed to months, years, or millennia.
Digital evolution systems also allow for perfect, non-invasive
data tracking. Such transparency permits the tracking of
complete evolutionary histories within an experiment, which
circumvents the historical problem of drawing evolutionary
inferences using incomplete records (from frozen samples
or fossils) and extant genetic sequences. Additionally, digital
evolution systems allow for experimental manipulations and
analyses that go beyond what is possible in wet-lab experiments.

Frontiers in Ecology and Evolution | www.frontiersin.org 2 August 2021 | Volume 9 | Article 715381

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Lalejini et al. Adaptive Plasticity Stabilizes Evolution

FIGURE 1 | Hypothetical reaction norms for populations comprising genotypes placed in different environments. A reaction norm describes phenotypic change (or

lack thereof) induced by environmental variation (West-Eberhard, 2008). In all panels, two environmental conditions (denoted E1 and E2 ) are shown on the x-axis. The

y-axis indicates the phenotype expressed in each environment with OE1 and OE2 designating the optimal phenotype for E1 and E2, respectively. Each pair of points

connected by a solid black line denotes a genotype, with the points themselves representing its hypothetical phenotypes in each environment. We present three

scenarios for how populations could respond to a change from E1 to E2. (A) A non-plastic population where phenotypes do not change with environmental shifts. (B)

An adaptively plastic population where phenotypes dynamically adjust to the new optimum. (C) A population exhibiting non-adaptive plasticity where environmental

change induces phenotypes further away from the optimum.

Such analyses have included exhaustive knockouts of every
site in a genome to identify the functionality of each (Lenski
et al., 2003), comprehensive characterization of local mutational
landscapes (Lenski et al., 1999; Canino-Koning et al., 2019),
and the real-time reversion of all deleterious mutations as they
occur to isolate their long-term effects on evolutionary outcomes
(Covert et al., 2013). Furthermore, digital evolution studies allow
us to directly toggle the possibility for adaptive plastic responses
to evolve, which enables us to empirically test hypotheses that
were previously relegated to theoretical analyses.

In this study, we conduct digital evolution experiments
to investigate how the evolution of adaptive phenotypic
plasticity shifts the course of evolution in a cyclically changing
environment.We use the Avida Digital Evolution Platform (Ofria
et al., 2009). Avida is an open-source system that has been used
to conduct a wide range of well-regarded studies on evolutionary
dynamics, including the origins of complex features (Lenski et al.,
2003), the survival of the flattest effect (Wilke et al., 2001), and the
origins of reproductive division of labor (Goldsby et al., 2014).
Our experiments build directly on previous studies in Avida
that characterized the de novo evolution of adaptive phenotypic
plasticity (Clune et al., 2007; Lalejini and Ofria, 2016) as well
as previous work investigating the evolutionary consequences of
fluctuating environments for populations of non-plastic digital
organisms (Li and Wilke, 2004; Canino-Koning et al., 2019). Of
particular relevance, Clune et al. (2007) and Lalejini and Ofria
(2016) experimentally demonstrated that adaptive phenotypic
plasticity can evolve given the following four conditions (as
described by Ghalambor et al., 2010): (1) populations experience
temporal environmental variation, (2) these environments are
differentiable by reliable cues, (3) each environment favors
different phenotypic traits, and (4) no single phenotype exhibits
high fitness across all environments. We build on this previous
work, but we shift our focus from the evolutionary causes of
adaptive phenotypic plasticity to investigate its evolutionary

consequences in a fluctuating environment. Specifically, we
examine the effects of adaptive plasticity on subsequent genomic
and phenotypic change, the capacity to evolve and then maintain
novel traits, and the accumulation of deleterious alleles.

Each of our experiments are divided into two phases: in
phase one, we precondition sets of founder organisms with
differing plastic or non-plastic adaptations; in phase two, we
examine the subsequent evolution of populations founded
with organisms from phase one under specific environmental
conditions (Figure 2). First, we examine the evolutionary
histories of phase two populations to test whether adaptive
plasticity constrained subsequent genomic and phenotypic
changes. Next, we evaluate how adaptive plasticity influences
how well populations produced by each type of founder can
evolve and retain novel adaptive traits. Finally, we examine
lineages to determine whether adaptive plasticity facilitated the
accumulation of cryptic genetic variation that would prove
deleterious when the environment changed.

We found that the evolution of adaptive plasticity reduced
subsequent rates of evolutionary change in a cyclic environment.
The non-plastic populations underwent more frequent selective
sweeps and accumulated many more genetic changes over time,
as non-plastic populations relied on genetic variation from
de novo mutations to continuously readapt to environmental
changes. The evolution of adaptive phenotypic plasticity
buffered populations against environmental fluctuations,
whereas repeated selective sweeps in non-plastic populations
drove the accumulation of deleterious mutations and the
loss of secondary beneficial traits. As such, adaptively plastic
populations were better able to retain novel traits than their
non-plastic counterparts. In general, the evolution of adaptive
phenotypic plasticity shifted evolutionary dynamics to be more
similar to that of populations evolving in a static environment
than to non-plastic populations evolving in an identical
fluctuating environment.
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2. MATERIALS AND METHODS

2.1. The Avida Digital Evolution Platform
Avida is a study system wherein self-replicating computer
programs (digital organisms) compete for space on a finite
toroidal grid (Ofria et al., 2009). Each digital organism is defined
by a linear sequence of program instructions (its genome) and
a set of virtual hardware components used to interpret and
express those instructions. Genomes are expressed sequentially
except when the execution of one instruction (e.g., a “jump”
instruction) deterministically changes which instruction should
be executed next. Genomes are built using an instruction set that
is both robust (i.e., any ordering of instructions is syntactically
valid, though not necessarily meaningful) and Turing Complete
(i.e., able to represent any computable function, though not
necessarily in an efficient manner). The instruction set includes
operations for basic computations, flow control (e.g., conditional
logic and looping), input, output, and self-replication.

Organisms in Avida reproduce asexually by copying their
genome instruction-by-instruction and then dividing. However,
copy operations are imperfect and can result in single-instruction
substitution mutations in an offspring’s genome. For this work,
we configured copy operations to err at a rate of one expected
mutation for every 400 instructions copied (i.e., a per-instruction
error rate of 0.0025). We held individual genomes at a fixed
length of 100 instructions (the default genome size in Avida);
that is, we did not include insertion and deletion mutations.
We used fixed-length genomes to control for treatment-specific
conditions resulting in the evolution of substantially different
genome sizes (Lalejini and Ferguson, 2021a)1, which could,
on its own, drive differences in evolutionary outcomes among
experimental treatments. When an organism divides in Avida,
its offspring is placed in a random location on the toroidal grid,
replacing any previous occupant. For this work, we used the
default 60 × 60 grid size, which limits the maximum population
size to 3,600 organisms. As such, improvements to the speed of
self-replication are advantageous in the competition for space.

During evolution, organism replication rates improve in
two ways: by improving genome efficiency (e.g., using a more
compact encoding) or by accelerating the rate at which the
genome is expressed (their “metabolic rate”). An organism’s
metabolic rate determines the speed at which it executes
instructions in its genome. Initially, an organism’s metabolic
rate is proportional to the length of its genome, but that rate is
adjusted as it completes designated functions, such as performing
Boolean logic functions (Ofria et al., 2009). In this way, we
can reward or punish particular phenotypic traits (i.e., Boolean
logic functions).

2.1.1. Phenotypic Plasticity in Avida
In this work, we measure a digital organism’s phenotype
as the set of Boolean logic functions that it performs (i.e.,
expresses) in a given environment. Sensory instructions in the
Avida instruction set allow organisms to detect how performing

1We repeated our experiments without genome size restrictions and observed

qualitatively similar results (see Supplementary Material, Lalejini and Ferguson

2021a).

a particular function would affect their metabolic rate (see
Supplementary Material for more details, Lalejini and Ferguson
2021a). We define a phenotypically plastic organism as one that
uses sensory information to alter which functions it performs
based on the environment.

Phenotypic plasticity in Avida can be adaptive or non-
adaptive for a given set of environments. Adaptive plasticity
shifts net function expression closer to the optimum for the
given environments. Non-adaptive plasticity changes function
expression in either a neutral or deleterious way. In this work,
optimal plasticity toggles functions to always perfectly match the
set of rewarded functions for the given set of environments.

2.2. Experimental Design
We conducted three independent experiments using Avida to
investigate how the evolution of adaptive plasticity influences
evolutionary outcomes in fluctuating environments. For
each experiment, we compared the evolutionary outcomes of
populations evolved under three treatments (Figure 2): (1) a
PLASTIC treatment where the environment fluctuates, and
digital organisms can use sensory instructions to differentiate
between environmental states; (2) a NON-PLASTIC treatment
with identical environment fluctuations, but where sensory
instructions are disabled; and (3) a STATIC control where
organisms evolve in a constant environment.

Each experiment was divided into two phases that each
lasted for 200,000 updates2 of evolution (Figure 2), which is
equivalent to ∼30,000–40,000 generations. In phase one of
each experiment, we evolved plastic, non-plastic, and control
organisms for use in phase two. In phase two, we founded new
populations with these evolved organisms and examined their
subsequent evolution under given combinations of treatment
and experimental conditions. During phase two, we tracked and
saved each population’s evolutionary history as well as saving the
full final population. Phase one was for preconditioning only;
all comparisons between treatments were performed on phase
two data.

2.2.1. Environments
We constructed three experimental environmental conditions,
abbreviated hereafter as “ENV-A,” “ENV-B,” and “ENV-ALL.” In
ENV-A, organisms are rewarded for expressing the NOT, AND,
and OR Boolean logic functions, and organisms are punished
for expressing the NAND, AND-NOT, and OR-NOT functions.
ENV-B is the reverse of ENV-A; that is, in ENV-B, organisms
are rewarded for expressing the NAND, AND-NOT, and OR-
NOT functions and are punished for expressing the NOT, AND,
and OR functions. In ENV-ALL, organisms are rewarded for
expressing each of the NOT, AND, OR, NAND, AND-NOT,
and OR-NOT functions. In all environmental conditions (ENV-
A, ENV-B, and ENV-ALL), a rewarded function expressed by
an organism doubles their metabolic rate, allowing them to
execute twice as many instructions in the same amount of time.
A punished function halves an organism’s metabolic rate. Each

2One update in Avida is the amount of time required for the average organism to

execute 30 instructions. See Ofria et al. (2009) for more details.
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FIGURE 2 | Overview of experimental design. The three plots in (A) show the environmental conditions used in every experiment and whether they reward or punish

each base function. The two plots in (B) show the additional functions added in phases 2B and 2C. (C) Shows treatment differences and experimental phases.

Treatments are listed on the left, with each treatment specifying its environmental configuration and whether sensors are functional. We conducted three independent

two-phase experiments, each described on the right. Phases 2B and 2C are textured to match their function definitions in (B). Phase one is repeated for each

experiment with 100 replicate populations per treatment per experiment. For each replicate at the end of phase one, we used an organism of the most abundant

genotype to found the second phase population. All STATIC and NON-PLASTIC populations move on to phase two, but PLASTIC populations only continue to the

second phase if their most abundant genotype exhibits optimal plasticity. Metrics are recorded only in phase two.

Boolean logic function is a non-trivial trait to evolve, as they
each require the coordination of multiple genetic instructions to
express (Lenski et al., 2003).

In both the PLASTIC and NON-PLASTIC treatments, the
environment cycles between equal-length periods of ENV-A and
ENV-B. Each of these periods persist for 100 updates (∼15–20
generations). Thus, populations experience a total of 1,000 full
periods of ENV-A interlaced with 1,000 full periods of ENV-B
during each experimental phase. Previous work has shown that
this rate of change reliably allows for the evolution of adaptive
phenotypic plasticity in Avida (Clune et al., 2007; Lalejini and
Ofria, 2016).

Organisms in the PLASTIC treatments differentiate between
ENV-A and ENV-B by executing one of six sensory instructions,
each associated with a particular Boolean logic function; these
sensory instructions detect whether their associated function is
currently rewarded or punished. By using sensory information in
combination with execution flow-control instructions, organisms
can conditionally perform different functions depending on the
current environmental conditions.

2.2.2. Experiment Phase 1—Environment

Preconditioning
For each treatment, we founded 100 independent populations
from a common ancestral strain capable only of self-replication.
At the end of phase one, we identified the most abundant
(i.e., dominant) genotype and sampled an organism with that
genotype from each replicate population to found a new
population for phase two.

For the PLASTIC treatment, we needed to ensure that our
observations during the second phase of each experiment
reflected the evolutionary consequences of adaptive plasticity.
To do so, measured the plasticity of each PLASTIC-treatment
population’s dominant genotype by independently testing
that genotype in each of ENV-A and ENV-B and recording
the phenotype expressed in each environment. We discarded
PLASTIC-treatment phase one populations if the dominant
genotype did not exhibit optimal plasticity (as defined
in section 2.1.1), which ensured that PLASTIC-treatment
phase two populations were founded with an optimally
plastic organism.

Frontiers in Ecology and Evolution | www.frontiersin.org 5 August 2021 | Volume 9 | Article 715381

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Lalejini et al. Adaptive Plasticity Stabilizes Evolution

2.2.3. Experiment Phase 2A—Evolutionary Change

Rate
We conducted experiment phase 2A to test for differences
in evolutionary change—the accumulation of genetic and
phenotypic changes—among populations evolving under each
of our three treatment conditions (PLASTIC, NON-PLASTIC,
and STATIC). Phase 2A continued exactly as phase one,
except we tracked the rates of evolutionary change in each
of the PLASTIC-, NON-PLASTIC-, and STATIC-treatment
populations. Specifically, we quantified evolutionary change
using four metrics (each described in Table 1): (1) coalescence
event count, (2) mutation count, (3) phenotypic volatility, and
(4) mutational robustness.

While environmental conditions during phases one and 2A
are identical, these phases are distinct in how populations
are founded: each phase one population is founded with a
common ancestor capable only of self-replication, whereas each
phase two population is founded with an organism that was
evolved in its treatment-specific conditions. Thus, during phase
two, phylogenies are rooted with an ancestor that is well-
adapted to its treatment conditions, which, in turn, ensures
that our observations can exclude dynamics associated with
initial adaptation.

2.2.4. Experiment Phase 2B—Novel Function

Evolution
We conducted experiment phase 2B to quantify the extent to
which organisms evolved under PLASTIC-, NON-PLASTIC-,
and STATIC-treatment conditions were able to acquire and retain
novel functions. Phase 2B extended the conditions of phase one
by adding 71 novel Boolean logic functions (Ofria et al., 2009),
which were always rewarded in all treatments. The original six
phase one functions (NOT, NAND, AND, OR-NOT, OR, and
AND-NOT; hereafter called “base” functions) continued to be
rewarded or punished according to the particular treatment
conditions. An organism’s metabolic rate was increased by 10%
for each novel function that it expressed (limited to one reward
per function). This reward provided a selective pressure to evolve
these functions, but their benefits did not overwhelm the 100%
metabolic rate increase conferred by rewarded base functions.
As such, populations in the PLASTIC and NON-PLASTIC
treatments could not easily escape environmental fluctuations by
abandoning the fluctuating base functions.

During this experiment, we used three metrics to quantify
novel function acquisition and retention in evolving populations
(each described in Table 1): (1) final novel function count, (2)
novel function discovery, and (3) novel function loss.

2.2.5. Experiment Phase 2C—Deleterious Instruction

Accumulation
We conducted experiment phase 2C to quantify the extent to
which organisms evolved under PLASTIC-, NON-PLASTIC-,
and STATIC-treatment conditions acquired deleterious
instructions via mutation. Phase 2C extended the instruction
set of phase one with a deleterious instruction. When an
organism executes a deleterious instruction, it performs a
“deleterious” function, which reduces the organism’s metabolic

rate (and thus reproductive success) but does not otherwise
alter the organism’s behavior. We imposed a 10% penalty each
time an organism performed the deleterious function, making
the deleterious instruction explicitly harmful to execute.
We did not limit the number of times that an organism could
perform the deleterious function, and as such, organisms could
perform the deleterious function as many times as they executed
the deleterious instruction.

We tracked the number of times each organism along
the dominant lineage performed the deleterious function.
Specifically, we used two metrics (each described in Table 1):
(1) final deleterious function count and (2) deleterious function
acquisition count.

2.3. Experimental Analyses
For each of our experiments, we tracked and analyzed the
phylogenetic histories of evolving populations during phase two
and generated a set of summary statistics (Table 1). For each
phylogenetic history, we counted the number of times that the
most recent common ancestor for the population shifted and
used this value as the number of coalescence events. Next, at
the final time point, we identified the most abundant genotype
in the evolved population, and chose a representative organism
from that genotype for further analysis. We used the lineage
from the founding organism to the representative organism
to summarize the evolutionary pathway of a population. This
lineage represents the majority of the evolutionary history from
the given population as long as the entire population traces back
to the lineage in recent history. We manually inspected evolved
phylogenies and found no evidence that any of our experimental
treatments supported long-term coexistence. As such, analyses
of the representative lineages reflect the majority of evolutionary
history for a given population.

Some of our metrics (Table 1) required us to measure
genotype-by-environment interactions. Importantly, in the
fluctuating environments, we needed to differentiate phenotypic
changes that were caused by mutations from those that were
caused by environmental changes. To accomplish this, we
produced organisms with the given focal genotype, measured
their phenotype in each environmental condition, and aggregated
the resulting phenotypes to create a phenotypic profile. Although
organisms with different genotypes may express the same set
of functions across environmental conditions, their phenotypic
profiles may not necessarily be the same. For example, an
organism that expresses NOT in ENV-A and NAND in ENV-
B has a distinct phenotypic profile from one that expresses
NAND in ENV-A and NOT in ENV-B. Because phenotypic
profiles encapsulate function expression across all relevant
environmental conditions (ENV-A and ENV-B), a change
in phenotypic profile from parent to offspring indicates a
mutationally-induced phenotypic change.

While most analyses employed here are retrospective metrics
applied to lineages, digital evolution allows precisemanipulations
on individual organisms and genomes. Mutational robustness
uses this technique when looking at the possible mutations on a
representative genotype. Genomes in Avida are linear sequences
of instructions, and as such, possible mutations can be simulated
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TABLE 1 | Metric descriptions.

Metric Description

Coalescence event count Number of coalescence events that have occurred, which indicates the frequency of selective sweeps in the population.

Mutation count Sum of all mutations that have occurred along a lineage.

Phenotypic volatility Number of instances where parent and offspring phenotypic profiles do not match along a lineage.

Mutational robustness Proportion of mutations (from the set of all possible one-step mutations) that do not change the phenotypic profile of a focal

genotype. We also measured realized mutational robustness, which is the proportion of mutated offspring along a lineage whose

phenotypic profile matches that of their parent.

Final novel function count Count of unique novel functions performed by the representative organism in a final population from experiment phase 2B.This

metric can range from 0 to 71 and measures how well the fitness landscape was exploited at a given point in time.

Novel function discovery Number of unique novel functions ever performed along a given lineage in experimental phase 2B, even if a function is later

lost.This metric can range from 0 to 71 and measures a given lineage’s level of exploration of the fitness landscape.

Novel function loss Number of instances along a given lineage from experimental phase 2B where a novel function is performed by a parent but not

its offspring.This metric measures how often a given lineage fails to retain evolved traits over time.

Final deleterious function count Number of times the deleterious function is performed by the representative organism from a final population from experiment

phase 2C.

Deleterious function acquisition count Number of instances along a given lineage where a mutation causes an offspring to perform the deleterious function more times

than its parent.

by substituting other instructions at the desired site. Indeed,
the mutational robustness of a genotype examines all one-step
mutations (i.e., each mutation where exactly one instruction is
substituted). This allows us to disentangle whether the frequency
of mutationally-induced phenotypic changes observed along
a lineage is a consequence of evolved genetic architectures
vs. the result of population dynamics that actively skewed
the distribution of organisms along the lineage; that is, are
genomes organized such that mutations are more likely to induce
phenotypic changes, or are organisms with phenotypes different
from their parents more likely to be successful and thus appear
along the representative lineage?

2.4. Statistical Analyses
Across all of our experiments, we differentiated between sample
distributions using non-parametric statistical tests. For each
major analysis, we first performed a Kruskal-Wallis test (Kruskal
and Wallis, 1952) to determine if there were significant
differences in results from the PLASTIC, NON-PLASTIC, and
STATIC treatments (significance level α = 0.05). If so, we applied
a Wilcoxon rank-sum test (Wilcoxon, 1992) to distinguish
between pairs of treatments. We applied Bonferroni corrections
for multiple comparisons (Rice, 1989) where appropriate.

2.5. Software Availability
We conducted our experiments using a modified version of
the Avida software, which is open source and freely available
on GitHub (Lalejini and Ferguson, 2021a). Modifications to
Avida included an improved phylogeny tracking system that
enabled us to track coalescence events and the addition of
custom sensory instructions specific to our experiments. We
used Python for data processing, and we conducted all statistical
analyses using R version 4 (R Core Team, 2021). We used
the tidyverse collection of R packages (Wickham et al., 2019)
to wrangle data, and we used the following R packages for
analysis, graphing, and visualization: ggplot2 (Wickham et al.,
2020), cowplot (Wilke, 2020), Color Brewer (Harrower and

Brewer, 2003; Neuwirth, 2014), rstatix (Kassambara, 2021),
ggsignif (Ahlmann-Eltze and Patil, 2021), scales (Wickham and
Seidel, 2020), Hmisc (Harrell et al., 2020), fmsb (Nakazawa,
2019), and boot (Canty and Ripley, 2019). We used R
markdown (Allaire et al., 2020) and bookdown (Xie, 2020)
to generate web-enabled Supplementary Material. All of the
source code for our experiments and analyses, including
configuration files and guides for replication, can be found in our
Supplementary Material, which is hosted on GitHub (Lalejini
and Ferguson, 2021a). Additionally, our experimental data is
available on the Open Science Framework at https://osf.io/sav2c/
(Lalejini and Ferguson, 2021b).

3. RESULTS

3.1. Adaptive Phenotypic Plasticity Slows
Evolutionary Change in Fluctuating
Environments
In experimental phase 2A, we tested whether adaptive phenotypic
plasticity constrained or promoted subsequent evolutionary
change in a fluctuating environment. First, we compared the total
amount of evolutionary change in populations evolved under the
PLASTIC, NON-PLASTIC, and STATIC treatments as measured
by coalescence event count, mutation count, and phenotypic
volatility (Figure 3). According to each of these metrics,
NON-PLASTIC populations experienced a larger magnitude
of evolutionary change than either PLASTIC or STATIC
populations. We observed significantly higher coalescence event
counts in NON-PLASTIC populations than in PLASTIC or
STATIC populations (Figure 3A). NON-PLASTIC lineages had
significantly higher mutation counts (Figure 3B) and phenotypic
volatility than PLASTIC or STATIC lineages (Figure 3C).

Changing environments have been shown to increase
generational turnover (i.e., how rapidly generations elapse) in
Avida populations (Canino-Koning et al., 2016), which could
explain why we observe a larger magnitude of evolutionary
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FIGURE 3 | Magnitude of evolutionary change. Raincloud plots (Allen et al., 2019) of (A) coalescence event count, (B) mutation count, and (C) phenotypic volatility.

See Table 1 for descriptions of each metric. Each plot is annotated with statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests).

Note that adaptive phenotypic plasticity evolved in 42 of 100 replicates from the PLASTIC treatment during phase one of this experiment; we used this more limited

group to found 42 phase-two PLASTIC replicates from which we report these PLASTIC data.

FIGURE 4 | Pace of evolutionary change. Raincloud plots of (A) average number of generations between coalescence events, and (B) realized mutational robustness

(Table 1). Each plot is annotated with statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests).

change at the end of 200,000 updates of evolution in NON-
PLASTIC populations. Indeed, we found that significantly more
generations of evolution elapsed in NON-PLASTIC populations
(mean of 41, 090 ± 2, 702 std. dev.) than in PLASTIC (mean of
31, 016 ± 2, 615 std. dev.) or STATIC (mean of 30, 002 ± 3, 011
std. dev.) populations during phase 2A (corrected Wilcoxon
rank-sum tests, p < 10−4).

To evaluate whether increased generational turnover explains
the greater magnitude of evolutionary change in NON-
PLASTIC populations, we examined the average number

of generations between coalescence events and the realized
mutational robustness of lineages (Table 1). A coalescence event
indicates a selective sweep, which is a hallmark of adaptive
evolutionary change. Realized mutational robustness measures
the frequency that mutations cause phenotypic changes along
a lineage. We expect that static conditions should favor fit
lineages with high realized mutational robustness that no longer
undergo rapid adaptive change and hence do not trigger frequent
coalescence events. Under fluctuating conditions, however,
lineages must be composed of plastic organisms if they are to

Frontiers in Ecology and Evolution | www.frontiersin.org 8 August 2021 | Volume 9 | Article 715381

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Lalejini et al. Adaptive Plasticity Stabilizes Evolution

FIGURE 5 | Mutational robustness. Raincloud plot of mutational robustness of

each representative genotype (Table 1). The plot is annotated with statistically

significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum

tests).

maintain both high fitness and realized mutational robustness.
Without plasticity, we expect fluctuating conditions to produce
lineages with low realized mutational robustness and frequent
coalescence events as populations must continually acquire and
fix mutations to readapt to the environment.

On average, significantly fewer generations elapsed between
coalescence events in NON-PLASTIC populations than in
either PLASTIC or STATIC populations (Figure 4A). We also
found that both STATIC and PLASTIC lineages exhibited
higher realized mutational robustness relative to that of NON-
PLASTIC lineages (Figure 4B); that is, mutations observed
along NON-PLASTIC lineages more often caused phenotypic
changes in offspring. Overall, our results indicate that NON-
PLASTIC populations underwent more rapid (and thus a
greater amount of) evolutionary change than either PLASTIC or
STATIC populations.

While both STATIC and PLASTIC lineages exhibited high
realized mutational robustness, we found that STATIC lineages
exhibited higher realized robustness than PLASTIC lineages
(Figure 4B). Overall, there were rare instances of mutations
that caused a change in phenotypic profile across all PLASTIC
lineages. Of these mutations, we found that over 80% (83 out of
102) of changes to phenotypic profiles were cryptic. That is, the
mutations affected traits that would not have been expressed in
the environment that the organism was born into but would have
been expressed had the environment changed.

Given that NON-PLASTIC lineages exhibited the lowest
realized mutational robustness of our three experimental
treatments, we sought to determine if this effect was driven

by differences in evolved genetic architectures. Specifically,
did the NON-PLASTIC genetic architectures evolve such that
mutations were more likely to result in phenotypic change?
Such a mutational bias would trade off descendant fitness in
the same environment in exchange for a chance of increasing
descendant fitness in alternate environments. This strategy
would be an example of diversifying bet-hedging (i.e., reducing
expected mean fitness to lower variance in fitness; (Childs et al.,
2010). Alternatively, the lower realized mutational robustness
in NON-PLASTIC lineages could be due to survivorship
bias, as we measured realized mutational robustness as the
fraction of mutations observed along successful lineages that
caused a phenotypic change. That is, our measure of realized
mutational robustness concentrates only on mutations that
appear in the representative lineage (i.e., “survivors” of selection),
ignoring mutations that did not. Thus, lower realized mutational
robustness in NON-PLASTIC lineages could simply be due to
phenotype-altering mutations being more frequently favored
by selection.

We analyzed the mutational robustness of representative
genotypes by calculating the fraction of single-instruction
mutations that change the phenotypic profile. We found
that mutations to representative genotypes on NON-PLASTIC
lineages are less likely to result in a phenotypic change than
mutations to comparable genotypes on either STATIC or
PLASTIC lineages (Figure 5). These data provide evidence
against NON-PLASTIC lineages engaging in a mutation-driven
bet-hedging strategy, and instead, are consistent with the
hypothesis that lower realized mutational robustness in the
NON-PLASTIC treatment was due to survivorship bias.

In general, adaptive plasticity stabilized PLASTIC-treatment
populations against environmental fluctuations, and their
evolutionary dynamics more closely resembled those of
populations evolving in a static environment. We observed
no significant difference in the number and frequency of
coalescence events in PLASTIC and STATIC populations.
We did, however, observe small, but statistically significant,
differences in each of the following metrics: elapsed generations,
mutation counts, phenotypic volatility, realized mutational
robustness, and mutational robustness between PLASTIC and
STATIC populations. We expect that these differences are a result
of plastic organisms needing to simultaneously maintain both
function and function-regulation machinery, resulting in more
genetic components that can be broken by mutations; moreover,
many of these components are under relaxed selection in periods
between environmental changes. Overall, these differences
were not substantial enough to play an obvious role in any of
the dynamics we analyzed, but could be examined further in
the future.

3.2. Adaptively Plastic Populations Retain
More Novel Functions Than Non-plastic
Populations in Fluctuating Environments
We have so far shown that adaptive plasticity constrains the rate
of evolutionary change in fluctuating environments. However, it
is unclear how this dynamic influences the evolution of novel

Frontiers in Ecology and Evolution | www.frontiersin.org 9 August 2021 | Volume 9 | Article 715381

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Lalejini et al. Adaptive Plasticity Stabilizes Evolution

FIGURE 6 | Novel function evolution. Raincloud plots of (A) final novel function count, (B) novel function discovery, and (C) novel function loss. See Table 1 for

descriptions of each metric. Each plot is annotated with statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests). Note that

adaptive phenotypic plasticity evolved in 42 of 100 replicates from the PLASTIC treatment during phase one of this experiment; we used this more limited group to

seed the resulting 42 phase-two PLASTIC replicates.

functions. Based on their relative rates of evolutionary change, we
might expect NON-PLASTIC-treatment populations to evolve
more novel functions than PLASTIC-treatment populations.
But, how much of the evolutionary change in NON-PLASTIC
populations is useful for exploring novel regions of the fitness
landscape vs. continually rediscovering the same regions?

To answer this question, we quantified the number of
novel functions performed by a representative organism in
the final population of each replicate. We found that both
PLASTIC and STATIC populations had significantly higher
final function counts than NON-PLASTIC populations at the
end of the experiment (Figure 6A). The final novel function
count in PLASTIC and STATIC lineages could be higher
than that of the NON-PLASTIC lineages for several non-
mutually exclusive reasons. One possibility is that PLASTIC
and STATIC lineages could be exploring a larger area of the
fitness landscape when compared to NON-PLASTIC lineages.
Another possibility is that the propensity of the NON-PLASTIC
lineages to maintain novel traits could be significantly lower than
PLASTIC or STATIC lineages. When we looked at the total sum
of novel functions discovered by each of the PLASTIC, STATIC,
and NON-PLASTIC lineages, we found that NON-PLASTIC
lineages generally explored a larger area of the fitness landscape
(Figure 6B). Although the NON-PLASTIC lineages discovered
more novel functions, those lineages also exhibited significantly
higher novel function loss when compared to PLASTIC and
STATIC lineages (Figure 6C).

A larger number of generations elapsed in NON-PLASTIC
populations than in PLASTIC or STATIC populations during our
experiment (Lalejini and Ferguson, 2021a). Are NON-PLASTIC
lineages discovering and losing novel functions more frequently
than PLASTIC or STATIC lineages, or are our observations
a result of differences in generational turnover? To answer
this question, we converted the metrics of novel function
discovery and novel function loss to rates by dividing each

metric by the number of elapsed generations along the associated
representative lineages. We found no significant difference in the
frequency of novel function discovery between NON-PLASTIC
and STATIC lineages, and we found that PLASTIC lineages had
a lower frequency of novel function discovery than STATIC
lineages (Figure 7A). Therefore, we cannot reject the possibility
that the larger magnitude of function discovery in NON-
PLASTIC lineages was driven by a larger number of elapsed
generations. NON-PLASTIC lineages had a higher frequency
of function loss than either PLASTIC or STATIC lineages, and
PLASTIC lineages tended to have a lower frequency of novel
function loss than STATIC lineages (Figure 7B).

Next, we examined the frequency at which novel function
loss along lineages co-occurred with the loss or gain of any of
the six base functions. Across all NON-PLASTIC representative
lineages, over 97% (10,998 out of 11,229) of instances of novel
function loss co-occurred with a simultaneous change in base
function profile. In contrast, across all PLASTIC and STATIC
dominant lineages, we observed that approximately 20% (29 out
of 142) and 2% (13 out of 631), respectively, of instances of novel
function loss co-occurred with a simultaneous change in base
function profile. As such, the losses of novel functions in NON-
PLASTIC lineages appear to be primarily due to hitchhiking or
epistatic effects where a mutation that knocks out a maladaptive
base function (after the environment changes) also knocks out a
beneficial novel function.

3.3. Lineages Without Plasticity That
Evolve in Fluctuating Environments
Express More Deleterious Functions
Phenotypic plasticity allows for genetic variation to accumulate
in genomic regions that are unexpressed, which could lead to
the fixation of deleterious instructions in PLASTIC populations.
However, in NON-PLASTIC lineages, we observe a higher rate of
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FIGURE 7 | Rate of novel function evolution. Raincloud plots of (A) novel function discovery frequency and (B) novel function loss frequency. Each plot is annotated

with statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests).

novel function loss, indicating that they may be more susceptible
to deleterious mutations (Figure 7B).

Therefore, in experiment phase 2C, we tested whether
adaptive phenotypic plasticity can increase the incidence of
deleterious function performance. Specifically, we added an
instruction that triggered an explicitly deleterious function and
measured the number of times it was executed. Each execution
of the deleterious instruction reduces an organism’s fitness
by 10%. At the beginning of phase 2C, the deleterious
instruction is not present in the population, as it was not part
of the instruction set during phase one of evolution. Accordingly,
if a deleterious instruction fixes in a population, it must be
the result of evolutionary dynamics during phase 2C, including
cryptic variation, hitchhiking, or as a result of sign epistasis
where a deleterious instruction knocks out an even more
maladaptive trait.

At the end of our experiment, no representative organisms
from the PLASTIC or STATIC treatments performed the
deleterious function under any environmental condition;
however, representative organisms in 14% of replicates of the
NON-PLASTIC treatment performed the deleterious function at
least once. NON-PLASTIC lineages contained significantly more
mutations that conferred the deleterious function as compared to
PLASTIC or STATIC lineages (Figure 8A), and these mutations
occurred at a significantly higher frequency in NON-PLASTIC
lineages (Figure 8B).

Next, we measured how often mutations that increased
deleterious function performance co-occurred with changes
to the base function profile within representative lineages.
A deleterious instruction can fix in a population by

having a beneficial effect that outweighs its inherent cost
(e.g., knocking out a punished function) or through linkage
with a secondary beneficial mutation at another site within
the genome. Across all NON-PLASTIC representative lineages,
we found that ∼49% (956 out of 1,916) of mutations
that increased deleterious function expression co-occurred
with a change in the base function profile (Figure 8C).
In all representative lineages from the PLASTIC treatment,
only 18 mutations increased deleterious function expression,
and none co-occurred with a change in base function
profile (Figure 8C). Likewise, only 58 mutations increased
deleterious function performance in all representative lineages
from the STATIC treatment, and none co-occurred with a
change in base function profile (Figure 8C). We did not find
compelling evidence that the few mutations that increased
deleterious function expression occurred as cryptic variation in
PLASTIC lineages.

We repeated this experiment with 3 and 30% metabolic
rate penalties associated with the deleterious function, which
produced results that were consistent with those reported here
(Lalejini and Ferguson, 2021a).

4. DISCUSSION

In this work, we used evolving populations of digital organisms to
determine how adaptive phenotypic plasticity alters subsequent
evolutionary dynamics and influences evolutionary outcomes in
fluctuating environments. Specifically, we compared lineages of
adaptively plastic organisms in fluctuating environments to both
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FIGURE 8 | Deleterious instruction accumulation. Raincloud plots of (A) deleterious function acquisition, (B) deleterious function acquisition frequency, and (C) the

proportion of mutations that increase deleterious function expression along a lineage that co-occur with a change in phenotypic profile. Each plot is annotated with

statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests). Note that adaptive phenotypic plasticity evolved in 43 of 100 replicates

from the PLASTIC treatment during phase one of this experiment; we used this more limited group to seed the 43 phase-two PLASTIC replicates.

non-plastic organisms in those same environments and other
non-plastic organisms in static environments.

4.1. Evolutionary Change
We found strong evidence that adaptive plasticity slows
evolutionary change in fluctuating environments. Adaptively
plastic populations experienced fewer coalescence events and
fewer total genetic changes relative to non-plastic populations
evolving under identical environmental conditions (Figure 3).
Whereas non-plastic populations relied on de novo mutations
to adapt to each environmental fluctuation, plastic populations
leveraged sensory instructions to regulate function performance.
Indeed, in fluctuating environments, selection pressures toggle
after each environmental change. We hypothesize that in non-
plastic populations such toggling would repeatedly drive the
fixation of mutations that align an organism’s phenotypic
profile to the new conditions. This hypothesis is supported
by the increased frequency of coalescence events in these
populations (Figure 4A) as well as increased rates of genetic
and phenotypic changes observed along the lineages of non-
plastic organisms.

Representative lineages in the non-plastic treatment
experienced lower realized mutational robustness than
plastic and static lineages (Figure 4B). We reasoned that
this lower realized mutational robustness was due to non-plastic
populations evolving a bet-hedging strategy where mutations are
more likely to modify the phenotypic profile. However, when we
switched from measuring the realized mutational robustness of
representative lineages to measuring the mutational robustness
of representative genotypes (i.e., what fraction of one-step
mutants change the phenotypic profile), we observed that non-
plastic genotypes exhibited the highest mutational robustness
of all three treatments (Figure 5). This result runs contrary
to both our expectations and the results of other fluctuating
environment studies in Avida (Canino-Koning et al., 2019).

Canino-Koning et al. (2019) found that mutational robustness
is negatively correlated with the number of function-encoding
sites in the genome. In our work, most plastic and static
genotypes encode all six base functions, while most non-plastic
genotypes only encode functions from one environment; this
results in fewer function-encoding sites, which may increase
mutational robustness in non-plastic genotypes (relative to
plastic and static genotypes). Regardless of the cause, this
higher mutational robustness in non-plastic organisms indicates
that bet-hedging is not driving the low realized mutational
robustness observed in non-plastic lineages. Thus, we expect
the lower realized mutational robustness in non-plastic lineages
to be driven by survivorship bias. Because non-plastic lineages
must rely on mutations to adapt to environmental changes,
phenotype-altering mutations are often highly advantageous,
and their selection decreases the realized mutational robustness
of successful lineages.

To our knowledge, this study is the first in-depth empirical
investigation into how the de novo evolution of adaptive plasticity
shifts the course of subsequent evolution in a cyclic environment.
The relative rates of evolutionary change that we observed in
non-plastic populations, however, are consistent with results
from previous digital evolution studies. For example, Dolson
et al. (2020) showed that non-plastic populations that were
evolved in cyclically changing environments exhibited higher
phenotypic volatility and accumulated more mutations than that
of populations evolved under static conditions. Furthermore,
Lalejini and Ofria (2016) visually inspected the evolutionary
histories of non-plastic organisms evolved in fluctuating
environments, observing that mutations along successful lineages
readily switched the set of traits expressed by offspring.

Our results are also consistent with conventional evolutionary
theory. A trait’s evolutionary response to selection depends on
the strength of directional selection and on the amount of
genetic variation for selection to act upon (Lande and Arnold,
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1983; Zimmer and Emlen, 2013). In our experiments, non-
plastic populations repeatedly experienced strong directional
selection to toggle which functions were expressed after
each environmental change. As such, retrospective analyses of
successful lineages revealed rapid evolutionary responses (that is,
high rates of genetic and phenotypic changes). Evolved adaptive
plasticity shielded populations from strong directional selection
when the environment changed by eliminating the need for
a rapid evolutionary response to toggle function expression.
Indeed, both theoretical and empirical studies have shown
that adaptive plasticity can constrain evolutionary change by
weakening directional selection on evolving populations (Price
et al., 2003; Paenke et al., 2007; Ghalambor et al., 2015).

4.2. The Evolution and Maintenance of
Novel Functions
In fluctuating environments, non-plastic populations explored
a larger area of the fitness landscape than adaptively
plastic populations (Figure 6B). However, adaptively plastic
populations better exploited the fitness landscape, retaining a
greater number of novel functions than non-plastic populations
evolving under identical environmental conditions (Figure 6A).
In our experiment, novel functions were less important to
survival than the fluctuating base functions. In non-plastic
populations, when a mutation changes a base function to better
align with current environmental conditions, its benefit will often
outweigh the cost of losing one or more novel functions. Indeed,
we found that along non-plastic representative lineages, 97% of
the mutations associated with novel function loss co-occurred
with phenotypic changes that helped offspring adapt to current
environmental conditions.

Previous studies have shown that transitory environmental
changes can improve overall fitness landscape exploration in
evolving populations of non-plastic digital organisms (Nahum
et al., 2017). Similarly, changing environments have been shown
to increase the rate of evolutionary adaptation in simulated
network models (Kashtan et al., 2007). In our system, however,
we found that repeated fluctuations reduced the ability of non-
plastic populations to maintain and exploit functions; that
said, we did find that repeated fluctuations may improve
overall function discovery by increasing generational turnover.
Consistent with our findings, Canino-Koning et al. (2019)
found that non-plastic populations of digital organisms evolving
in a cyclic environment maintained fewer novel traits than
populations evolving in static environments.

Our results suggest that adaptive phenotypic plasticity can
improve the potential for populations to exploit novel resources
by stabilizing them against stressful environmental changes. The
stability that we observe may also lend some support to the
hypothesis that phenotypic plasticity can rescue populations
from extinction under changing environmental conditions
(Chevin et al., 2010).

Our data do not necessarily provide evidence for or against the
genes as followers hypothesis. The genes as followers hypothesis
focuses on contexts where plastic populations experience novel
or abnormally stressful environmental change. However, in our
system, environmental changes were cyclic (not novel), and no
single environmental change was abnormally stressful. Further,

the introduction of novel functions during the second phase
of the experiment merely added static opportunities for fitness
improvement. This addition did not change the meaning of
existing environmental cues, nor did it require those cues to be
used in new ways.

4.3. The Accumulation of Deleterious
Alleles
We found that non-plastic lineages that evolved in a fluctuating
environment exhibited both greater totals and higher rates
of deleterious function acquisition than that of adaptively
plastic lineages (Figure 8). There are several, non-mutually
exclusive possibilities that could explain the fixation of explicitly
deleterious instructions: random genetic drift, deleterious
hitchhiking, epistatic effects, and cryptic variation (in plastic
organisms). We find it unlikely that random genetic drift
explains our observations. Each time an organism expresses a
deleterious instruction, the organism incurs a 10% penalty
to their replication rate, which results in strong purifying
selection against mutations that cause offspring to execute
deleterious instructions.

In asexual populations without horizontal gene transfer,
all co-occurring mutations are linked. As such, deleterious
mutations linked with a stronger beneficial mutation (i.e.,
a driver) can sometimes “hitchhike” to fixation (Smith and
Haigh, 1974; Buskirk et al., 2017; Van den Bergh et al., 2018).
Natural selection normally prevents deleterious mutations from
reaching high frequencies, as such mutants are outcompeted.
However, when a beneficial mutation sweeps to fixation
in a clonal population, it carries along any linked genetic
material, including other beneficial, neutral, or deleterious
mutations (Smith and Haigh, 1974; Barton, 2000). Therefore,
deleterious genetic hitchhiking could have contributed to
deleterious instruction accumulation along non-plastic
lineages in changing environments.

Epistatic effects (i.e., interactions between genes) could have
also contributed to deleterious instruction accumulation
along non-plastic lineages. On their own, mutations that increase
deleterious instruction execution are maladaptive; however,
if such a mutation were to also knock out an even more harmful
function, that mutation may have a net beneficial effect. As such,
mutations that confer increased deleterious instruction
execution could directly drive a selective sweep.

Representative lineages from non-plastic populations in the
cyclic environment exhibited higher mutation accumulation
(Figure 3B), novel function loss (Figure 6C), and deleterious
function acquisition (Figure 8A) than their plastic counterparts.
In aggregate, we found that many (∼49%; 956/1,916) mutations
that increased deleterious instruction execution in offspring
co-occurred with mutations that provided an even stronger
benefit by adapting the offspring to an environmental change.We
expect that an even larger fraction of these deleterious mutations
were linked to beneficial mutations, but our analysis only counted
mutations that co-occurred in the same generation. Our analyses
did not distinguish between epistatic effects and deleterious
hitchhiking; however, more fine-grained analyses of secondary
effects of mutations that conferred deleterious instruction
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execution could be performed in future work to disentangle these
two mechanisms.

Theory predicts that under relaxed selection deleterious
mutations should accumulate as cryptic variation in unexpressed
traits (Lahti et al., 2009). Contrary to this expectation, we did
not find evidence of deleterious instructions accumulating
as cryptic variation in adaptively plastic lineages. One possible
explanation is that the period of time between environmental
changes was too brief for variants carrying unexpressed
deleterious instructions to drift to high frequencies before
the environment changed, after which purifying selection would
have removed such variants. Indeed, we would not expect drift
to fix an unexpressed trait since we tuned the frequency of
environmental fluctuations to prevent valuable traits from being
randomly eliminated during the off environment. Additionally,
plastic organisms in Avida usually adjust their phenotype by
toggling the expression of a minimal number of key instructions,
leaving little genomic space for cryptic variation to accumulate.

4.4. Limitations and Future Directions
Our work lays the groundwork for using digital evolution
experiments to investigate the evolutionary consequences of
phenotypic plasticity in a range of contexts. However, the
data presented here are limited to the evolution of adaptively
plastic populations. Future work might explore the evolutionary
consequences of maladaptive and non-adaptive phenotypic
plasticity (e.g., Leroi et al. 1994), which are known to bias
evolutionary outcomes (Ghalambor et al., 2015).

Additionally in our experiments, sensory instructions
perfectly differentiated between ENV-A and ENV-B, and
environmental fluctuations never exposed populations to
entirely new conditions. These parameters have been shown to
influence evolutionary outcomes (Li andWilke, 2004; Boyer et al.,
2021), which if relaxed in the context of further digital evolution
experiments, may yield additional insights. Our experiments
also focused on asexually reproducing digital organisms. Sexual
reproduction has been shown to be advantageous in rapidly
changing environments, such as the cyclic environments used in
our study (Misevic et al., 2010). Future work could investigate
how sexual reproduction affects the evolutionary consequences
of adaptive plasticity.

We focused our analyses on the lineages of organisms with the
most abundant genotype in the final population. These successful
lineages represented the majority of the evolutionary histories of
populations at the end of our experiment, as populations did not
exhibit long-term coexistence of different clades. Our analyses,
therefore, gave us an accurate picture of what fixed in the
population. We did not, however, examine the lineages of extinct
clades. Future work will extend our analyses to include extinct
lineages, giving us a more complete view of evolutionary history,
which may allow us to better distinguish adaptively plastic
populations from populations evolving in a static environment.

As with any wet-lab experiment, our results are in the
context of a particular model organism: “Avidian” self-replicating
computer programs. Digital organisms in Avida regulate
responses to environmental cues using a combination of sensory
instructions and conditional logic instructions (if statements).

The if instructions conditionally execute a single instruction
depending on previous computations and the state of memory.
As such, plastic organisms in Avida typically regulate phenotypes
by toggling the expression of a small number of key instructions
as opposed to regulating cohorts of instructions under the
control of a single regulatory sequence (Lalejini and Ferguson,
2021a). This bias may limit the accumulation of hidden genetic
variation in Avida genomes. However, as there are many model
biological organisms, there are many model digital organisms
that have different regulatory mechanisms (e.g., Lalejini and
Ofria 2018) that should be used to test the generality of
our results.

As with most digital evolution experiments, our mutation
rates were high and population sizes were small (3,600
individuals) relative to experiments with microbes or conditions
common in nature. As such, beneficial mutations can be
generated rapidly and selective sweeps can occur quickly.
Moreover, our analyses were limited to a single rate of
environmental change and simple function reward structures,
which likely influenced the rates of selective sweeps observed in
our experiments. Future studies could address these limitations
by increasing population sizes, decreasing mutation rates,
investigating different function rewards and punishments, and
altering the time spent in each environment.
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