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Urban trees play an important role in helping cities adapt to climate change, but
also are vulnerable to changes in climate themselves. We developed an approach for
assessing vulnerability of urban tree species and cultivars commonly planted in cities in
the United States Upper Midwest to current and projected climate change through the
end of the 21st century. One hundred seventy-eight tree species were evaluated for their
adaptive capacity to a suite of current and future-projected climate and urban stressors
using a weighted scoring system based on an extensive literature review. These scores
were then evaluated and adjusted by leading experts in arboriculture in the region.
Each species or cultivar’s USDA Hardiness Zone and American Horticultural Society
Heat Zone tolerance was compared to current and future heat and hardiness zones
for 14 municipalities across Michigan, Wisconsin, and Minnesota using statistically
downscaled climate data. Species adaptive capacity and zone tolerance was combined
to assign each species one of five vulnerability categories for each location. We
determined the number of species and trees in each category based on the most
recent municipal street tree data for each location. Under a scenario of less climate
change (RCP 4.5), fewer than 2% of trees in each municipality were considered highly
vulnerable across all 14 municipalities. Under a scenario of greater change (RCP 8.5),
upward of 25% of trees were considered highly vulnerable in some locations. However,
the number of vulnerable trees varied greatly by location, primarily because of differences
in projected summer high temperatures rather than differences in species composition.
Urban foresters can use this information as a complement to other more traditional
considerations used when selecting trees for planting.

Keywords: climate change, hardiness zones, vulnerability, urban forest, street tree, inventory, adaptive capacity,
midwest and great lakes

INTRODUCTION

Urban forests are being increasingly recognized for their important role in helping cities adapt
to and mitigate climate change (Janowiak et al., 2021). Urban trees can also be impacted by
climate change, facing highly variable environmental conditions that produce a wide range of
growth responses based on species, site interactions, and climatic variability (Fahey et al., 2013;
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North et al., 2018). The effects of both urbanization and climate
change can create significant challenges in managing future
urban forests (Khan and Conway, 2020). As urban population
increases, vegetation density tends to decrease contributing to
the rise in surface temperatures by several degrees (Andersson
et al., 2020). Rising temperatures from both land use change and
climate change can lead to reductions in growth and indicators
of stress such as crown dieback, dead branches, and epicormic
growth (Zhang and Brack, 2021).

Climate change-induced stress on trees is amplified in urban
environments, where the urban heat island effect, impervious
surfaces, reduced air quality, and altered soils create conditions
that can dramatically reduce growth and survival (Nowak et al.,
2010). Urbanization can alter urban soil chemistry and microbial
communities, reducing growth rates compared to trees planted
in natural areas (Ward et al., 2021). The urban heat island effect
combined with rising global temperatures can create conditions
beneficial to insect pests, which may also be able to better take
advantage of already-stressed urban trees (Tubby and Webber,
2010; Long et al., 2019). The increases in storm severity combined
with growing space limitations has caused increased mortality of
street trees (Johnson et al., 2019). Substantial crown dieback due
to increases in drought and heatwave severity (Zhang and Brack,
2021) and reduced tree canopy increases the urban heat-related
illness of residents, exacerbating existing inequalities in urban
canopy distribution (Jung et al., 2021).

Climate change is also driving broadscale shifts in temperature
and precipitation that can influence productivity and distribution
of trees in both urban and natural systems (Vose et al., 2012).
Precipitation and temperature during the growing season have
been widely demonstrated as the primary climate variables
influencing growth for most tree species globally (Kipfmueller
et al., 2010; Dymond et al., 2016). Precipitation during the
growing season also exhibits a strong positive relationship with
urban tree growth (Cedro and Nowak, 2006; Monteiro et al.,
2017). Precipitation during other parts of the year can also
influence growth. Fall precipitation, for example, can also have
positive effects on tree growth in the subsequent growing season
(Romagnoli et al., 2018).

Increasing temperatures can have positive effects on growth,
but only when these increases are relatively modest and when
there is also sufficient moisture (Gustafson et al., 2017). High
temperatures during the growing season can reduce urban
tree growth, particularly during periods of low precipitation
resulting in low levels of growth during warm, dry periods
(McLaughlin et al., 2003; Cedro and Nowak, 2006; Zweifel et al.,
2006; Monteiro et al., 2017). Work in forested settings has
demonstrated the influence that local site conditions have on
climate sensitivity within a tree species (Gewehr et al., 2014).
Given the range of growing environments in urban areas, an
understanding of the impacts of local growing conditions on
climate response of urban trees is critical for evaluating the
vulnerability of urban forests to future global change.

Urban trees have shown a reduced life span and increased
maintenance costs due in part to climate stressors (Zhang and
Brack, 2021). Risk assessment of urban trees, assessing the
likelihood of failure and consequences due to the presence

of defects in trees, is critical for those responsible for the
management of urban forests (Miller et al., 2015). Decay is
a chronic defect that is associated with whole or partial tree
failures (Smiley and Fraedrich, 1992; Mattheck et al., 1993; Terho
and Hallaksela, 2008). A tree’s ability to minimize and contain
decay in scaffold branches, trunks, and supportive roots is a
function of its genetic potential and overall health (Shigo, 1984).
Therefore, a decline in the overall health of urban trees due to
heat and precipitation stresses will negatively impact their ability
to minimize decay, becoming more vulnerable to failures due to
wind, ice, and snow loading events.

The ability of urban trees to mitigate some of the deleterious
effects of increased climate variability and climatic change
(McPherson et al., 1997) will depend in part on maintaining
large, mature, and healthy tree populations (McPherson, 2003).
Planting urban trees can be an effective method to reduce the
deleterious effects of the urban heat island (Abdulateef and Al-
Alwan, 2021; Li et al., 2021). The increased challenges of tree
planting in harsh urban conditions highlights the importance
of understanding the selection of trees adapted to current and
future climate conditions (Brandt L. et al., 2016; Janowiak et al.,
2021). Projected changes in climate often focus on increases
in mean temperature; however, projected increases do not
necessarily preclude occasional low temperatures consistent with
historical climate conditions, compounding the difficulty in tree
species selection.

Future tree species selection is crucial for developing an
urban forest resilient to changes in climate. Wood and Dupras
(2021), found planting trees species currently represented in
the tree canopy provided fewer services in terms of avoiding
water run-off, reduced heating costs, and air pollution removal
under future urban conditions than if selecting a future-adapted
species palette. Increasing species diversity over current levels
also showed a reduced overall susceptibility to potential future
pests (Wood and Dupras, 2021).

Climate change vulnerability assessments can be used to
assess risks and adaptations in urban tree species. Vulnerability
assessments have been used extensively in adaptation planning,
including urban forests (Ordonez and Duinker, 2015; Brandt L.
et al., 2016; Steenberg et al., 2017a,b). These studies provide
important information about the vulnerability of the entire
urban forest to climate change, including organizational and
social factors that influence urban forest stewardship. However,
few studies have examined the vulnerability and adaptability
of individual urban trees to future climate conditions, and
those that do exist are for only individual cities or a
small subset of species (Brandt et al., 2017, 2020; Khan
and Conway, 2020). A more comprehensive approach can
aid urban foresters in identifying which species are at risk
across geographies.

The goal of this study was to develop a standardized method
for assessing vulnerability of urban trees across cities, with a
focus on the United States Upper Midwest. We aimed to answer
the following questions: (1) How vulnerable are urban tree
populations to projected changes in climate? (2) How much
does this vulnerability vary across cities?, and (3) What factors
contribute to these differences?
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MATERIALS AND METHODS

Tree Inventories
We collected the most recent municipal street tree inventories
from 14 municipalities in Michigan, Wisconsin, and Minnesota,
representing a range of geographic regions and sizes (Table 1).
Inventory data was restricted to public trees planted on rights-
of-way that were part of a municipality’s official complete
street tree inventory (not a sample). Only inventories that
identified trees to the species level were used. Inventories
varied in additional data included in inventories (e.g., diameter
at breast height, condition class), so we focused specifically
on species abundance as a common variable across cities.
We eliminated species that composed less than 0.05% in all
inventories to simplify the analysis. In addition to existing street
trees, we evaluated species that are currently recommended
for planting in southern Midwestern cities as potential new

species for the Upper Midwest. Recommended planting lists
were obtained from Des Moines, IA, St. Louis, MO, and
Kansas City, MO.

Vulnerability Framework
Climate change vulnerability assessments typically define
vulnerability as a function of exposure, sensitivity, and adaptive
capacity (Intergovernmental Panel on Climate Change (IPCC)
Working Group II, 2014). We used this general definition of
vulnerability to develop a framework for assessing vulnerability
of urban tree species (Figure 1). Exposure, the degree which a
species or system is exposed to a climate hazard, was defined
as the projected shift in USDA Hardiness Zones (USDA, 2012)
and American Horticultural Society (AHS) Heat Zones (Brickell,
2011). The sensitivity of that species to the hazard was defined as
the zones in which that species is suitable for planting. Adaptive
capacity, or the species ability to cope with change, was defined as

TABLE 1 | Cities included in vulnerability analysis.

Municipality Pop. Size Median
Income

Mean Annual
Temp. (◦C)

Mean Annual
Precip. (mm)

Area (km2) Species
evaluated

Trees
inventoried

Ann Arbor, MI 120,641 $63,956 9.1 861.3 73 129 51,413

Ashland, WI 7,963 $40,433 4.8 857.0 34 61 4,308

Detroit, MI 677,155 $29,481 10.3 875.3 359 133 152,235

Grand Rapids, MI 197,081 $47,173 9.6 1004.8 115 116 73,735

Green Bay, WI 104,818 $47,797 7.6 805.7 117 89 34,989

Middleton, WI 19,235 $74,141 8.2 947.4 24 74 9,790

Milwaukee, WI 596,886 $40,036 9.6 878.1 249 100 210,342

Minneapolis, MN 416,021 $58,993 8.3 805.4 140 127 208,809

Monroe, WI 10,636 $46,685 8.6 965.5 13 50 4,674

Racine, WI 77,576 $42,767 8.7 896.4 41 86 24,515

Rochester, MN 113,913 $70,749 7.1 891.5 141 54 41,292

Saint Louis Park, MN 48,423 $75,690 8.3 805.4 27 57 19,444

Saint Paul, MN 302,760 $55,085 8.3 805.4 135 112 126,233

Stevens Point, WI 26,402 $45,040 6.6 849.6 44 79 1,866

Population and median income were retrieved form the United States Census. Mean annual temperature and precipitation data (1990–2019) was retrieved for each
location from NOAA Climate At-A-Glance https://www.ncdc.noaa.gov/cag/.

FIGURE 1 | Urban tree species vulnerability framework.
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TABLE 2 | Adaptive capacity score factors for trees in planted environments.

Factor Type Mod Factor Code Mod Factor Description

Disturbance Disease DISE Accounts for the number and severity
of known pathogens that attack a
species. Defaults: Score = −1,
Uncertainty = 0.75, Future
Relevance = 2.

Disturbance Insect Pests INS Accounts for the number and severity
of insects that may attack a species.
Defaults: Score = −2,
Uncertainty = 0.5, Future
Relevance = 4.

Disturbance Browse BRO The extent to which browsing (by deer
or other herbivores) affects the species,
either positively by promoting growth or
by effective strategies for herbivory
avoidance, or negative by
over-browsing. Defaults: Score = −1,
Uncertainty = 0.75, Future
Relevance = 1.

Disturbance Invasive
Plants

INPL The effects of invasive plants on the
species, either through competition for
nutrients or as a pathogen. Defaults:
Score = 0, Uncertainty = 0.5, Future
Relevance = 4.

Disturbance Drought DRO The degree to which a species is
tolerant or susceptible to drought.
Defaults for all species are: Defaults:
Score = −1, Uncertainty = 0.75, Future
Relevance = 3.

Disturbance Flood FLO The degree to which a species is
tolerant or susceptible to flooding.
Defaults: Score = −1,
Uncertainty = 0.75, Future
Relevance = 3.

Disturbance Ice ICE The damaging effects of ice storms and
potential for ice heaving on a species.
Defaults: Score = −1,
Uncertainty = 0.5, Future
Relevance = 2.

Disturbance Wind WIN The damaging effects of windstorms
and uprooting potential (and top
breakage) of a species. Defaults:
Score = −1, Uncertainty = 0.75, Future
Relevance = 2.

Disturbance Temperature
Gradients

TEM The effects of variations in the
temperature gradient associated with a
species Defaults: Score = 1,
Uncertainty = 0.75, Future
Relevance = 2.

Disturbance Air Pollution AIP Airborne pollutants that affect, mostly
negatively, a species’ growth, health,
and distribution. Includes acid rain,
ozone. Defaults: Score = −2,
Uncertainty = 0.75, Future
Relevance = 3.

Disturbance Soil and
Water

Pollution

SWP Pollutants in the soil and water that
affect, mostly negatively, a species’
growth, health, and distribution.
Defaults: Score = −2,
Uncertainty = 0.5, Future
Relevance = 1.

(Continued)

TABLE 2 | (Continued)

Factor Type Mod Factor Code Mod Factor Description

Disturbance Salt SAL The tolerance of a species to salt. This
may include road salt and other urban
salt pollution in soils, as well as sea
spray for coastal areas. Defaults:
Score = −2, Uncertainty = 0.5, Future
Relevance = 1.

Biological Competition-
Light

COL The tolerance of a species toward
shade. Defaults: Score = 0,
Uncertainty = 0.5, Future
Relevance = 1.

Biological Edaphic
Specificity

ESP The specific soil requirements (e.g., pH,
texture, organic content, horizon
thickness, permeability) for a species to
survive in a suitable habitat. Includes
long-term soil moisture capacities of
the soil. Defaults: Score = 0,
Uncertainty = 0.75, Future
Relevance = 3.

Biological Landscape
and Planting

Site
Specificity

LPS The ability for the species to be planted
in a variety of site types (street,
residential, park, campus). Defaults:
Score = 0, Uncertainty = 0.75, Future
Relevance = 3.

Biological Restricted
Rooting

Conditions

RRC The ability of a species to grow and
survive in narrow boulevards and other
constrained spaces. Defaults:
Score = −1, Uncertainty = 0.75, Future
Relevance = 3

Biological Nursery
Propagation

NUP The ease and/or cost of producing the
species in a nursery. Also relates to
how widely available it is. Defaults: 0,
Uncertainty = 0.75, Future
Relevance = 4.

Biological Planting
Establishment

PLE The ease with which the species
establishes itself after planting. Also
relates to the amount of care required
to establish. Defaults: Score = 1,
Uncertainty = 0.75, Future
Relevance = 2.

Biological Maintenance
Required

MAR The degree to which pruning or other
maintenance is needed after
establishment. Defaults: Score = −1,
Uncertainty = 0.75, Future
Relevance = 2.

Biological Invasive
Potential

INPO Likelihood the species could become
invasive if planted. Applies to both
native and non-native species.
Score = 0, Uncertainty = 0.75, and
Future Relevance = 3. If species is
known to be invasive, Score = −3 with
the assumption that it will not be
selected for future plantings.

a function of its ability to withstand disturbances such as drought
and flooding and its biological adaptations that allow it to survive
in a variety of growing conditions in an urban environment.
This framework was designed to focus specifically on trees
using data which is consistent across communities with the
exception of future temperatures, and thus did not include other
factors that can vary across communities such as socioeconomic
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indicators or tree condition or age. Other frameworks have been
developed to assess the vulnerability of urban forests systems
that incorporate socioeconomic indicators (e.g., Ordonez and
Duinker, 2014, 2015). Additionally, urban forest managers will
have to account for local factors that may affect vulnerability of
individual trees such as age, condition, or planting site.

Zone Suitability
Suitability for planting in each municipality was determined by a
species tolerance to current and future projected United States
Department of Agriculture Hardiness Zones and American
Horticultural Society Heat Zones. Hardiness zones are widely
used by growers and gardeners in the United States for selecting
which species can be planted in a given location. They are
calculated based on the average annual extreme minimum
temperature. Zone 1 (−51 to −48◦C) is the coldest hardiness
zone, and zones increase by one integer for each 5.5◦C of
temperature. Heat Zones were developed by the American
Horticultural Society based on the number of days above 30◦C.
Heat zones range from 1 (less than 1 day above 30◦C) to 12 (more
than 210 days above 30◦C).

Current (1980–2009) and future projected (2010–2039, 2040–
2069, and 2070–2099) heat and hardiness zones under two future
climate scenarios (“low” and “high”) were obtained from the
dataset described in Matthews et al. (2018). Hardiness and heat
zone data were calculated from statistically downscaled daily
maximum and minimum values at a one-eighth degree resolution
(∼13.875 × 13.875 km) (Maurer et al., 2007). For the “low”
scenario, the Community Climate System Model (Gent et al.,
2011), a general circulation model with relatively low sensitivity
to CO2 was paired with the RCP 4.5 storyline of relatively rapid
reduction of greenhouse gases (Moss et al., 2008). Given that
urban areas already can be several degrees hotter than their
surrounding landscape and the current rate of greenhouse gas
emissions, we did not include an RCP that simulates an even
more dramatic reduction in carbon dioxide (e.g., RCP 2.6). For
the “high” scenario, we used the Geophysical Fluid Dynamics
Laboratory (GFDL) CM3 model (Donner et al., 2011) with the
RCP 8.5 storyline of continued emissions increases throughout
the 21st century.

A species was considered suitable for planting in a location if
(1) its minimum hardiness zone tolerance was at or below the
lowest hardiness zone at that location currently and for the 3
projected time periods and (2) its maximum heat and hardiness
zone tolerance was at or above the maximum projected hardiness

TABLE 3 | Vulnerability matrix used to assign species to vulnerability categories
based on zone suitability and adaptive capacity.

Zone Suitability High adaptive
capacity

Moderate
adaptive
capacity

Low adaptive
capacity

Suitable Low
vulnerability

Low-moderate
vulnerability

Moderate
vulnerability

Not Suitable Moderate
vulnerability

Moderate-high
vulnerability

High
vulnerability

and heat zone at that location currently and for the 3 projected
time periods. We determined zone suitability for each species in
each municipality for both the low (RCP 4.5) and high (RCP 8.5)
emissions pathways.

Adaptive Capacity
To assess adaptive capacity, we developed qualitative scores
using the methods described for trees in planted environments
in Brandt et al. (2017), which builds on a framework for
assessing adaptability for native trees developed by Matthews
et al. (2011). The scoring system includes 20 Modification Factors
(Mod Factor), divided into two Factor Types: Disturbance and
Biological (Table 2). Disturbance factors affect a species’ ability
to resist or bounce back from disturbances whereas Biological
factors are traits that affect nursery production, establishment,
growth, and long-term maintenance.

Each Mod Factor is given a score, ranging from −3 (negative
effect on establishment, growth, or survival) to +3 (positive
effect on establishment, growth, or survival), that relates to the
potential influence a Mod Factor has on the species throughout
its range at the present. Each Mod Factor is weighted by two
multipliers: Uncertainty and Future Relevance. Uncertainty is the
degree of certainty (based on research and observation) about the
factor’s influence on the species’ establishment, growth, or long-
term survival. Uncertainty multipliers range from 0.5 = highly
uncertain; 0.75 = somewhat uncertain; to 1.0 = high certainty.
Future Relevance is the likely future relevance that a particular
Mod Factor could have on the establishment, growth, or survival
of a species over the next 50 years in a changing climate. Future
Relevance multipliers range from 1 = not highly relevant over the
next 50 years to 5 = likely to be extremely important.

To assign scores, information about each species was
compiled and summarized from existing horticultural databases,
street tree manuals, and silvics literature. The majority of
information was summarized from Gilman and Watson (1993)
with supplementation from Burns and Honkala (1990). Hauer
et al. (2006) and Duryea et al. (2007) were used as supplementary
references on ice and wind tolerance, respectively. When
information could not be found from these sources, we consulted
state extension and arboretum websites. Qualitative descriptions
of each factor for each species were summarized based on the
consensus from these sources and converted to a numerical score
based on the degree of influence the factor had on the species’
growth and long-term survival. When there was insufficient
information in the literature, a species was assigned a default
score and lower certainty (see Table 2).

Raw and weighted sub-scores were developed for both
Disturbance and Biological Mod Factors. Additionally, an
Adaptive Capacity score was calculated by the following equation:

D2
+ B2

= A2

where D is the raw Disturbance sub-score, B is the raw Biological
sub-score, and A is the Adaptive Capacity score. Adaptive
Capacity scores were then assigned to 3 categories: High (>4.5),
Moderate (>3.5 and ≤4.5), and Low (≤3.5). The cut-off points
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were determined by plotting the distribution of the scores and
assigning relatively equal-sized bins around the mean.

Expert Review
To verify the accuracy of both the suitability and Adaptive
Capacity scores, we recruited 14 urban forestry and horticultural
experts from the United States Upper Midwest. These experts
were university faculty and extension specialists and botanical
garden and arboretum collections staff with expertise in trees
in the horticultural trade. Experts were from Minnesota, Iowa,
Illinois, Wisconsin, North Dakota, and Michigan. Experts had
advanced degrees in their area of expertise and multiple decades
of experience in the field. Each species was assigned a minimum
of two expert reviewers who had experience with growing and/or
maintaining that species in the Midwest. The reviewers were
given detailed instructions to review the species score, assigned
Heat and Hardiness zone, and qualitative descriptions of a species
Mod Factors given the supporting literature. If both experts
agreed that a trait or zone tolerance was inaccurate, we adjusted
the score to align with expert opinion. When experts disagreed,
we deferred to the expert whose opinion most closely aligned with
other existing literature.

Vulnerability
We combined the suitability ratings with adaptive capacity scores
to assess species vulnerability under low and high emissions based
on a vulnerability matrix (Table 3). We analyzed the number of
species and the number of trees (based on inventory data) that
fell into each vulnerability category for each municipality under
each emissions pathway.

RESULTS

Tree Inventories
Averaged across all municipalities, Acer platanoides (a species
native to Europe and considered invasive in the Midwestern
United States) was the most common street tree, accounting for
an average of 17% of street trees among the 14 municipalities
(Figure 2). Species in the genus Acer accounted for 34% of
inventoried trees on average. The next most common genus was
Fraxinus (11%), followed by Gleditsia, Quercus, Tilia, Ulmus,
Celtis, and Picea. The percent Fraxinus in the canopy has likely
been reduced since these inventories were collected because of
local infestations of emerald ash borer (Agrilus planipennis).

Projected Changes in Hardiness and
Heat Zone Suitability
Current Hardiness Zones across the 14 municipalities range from
4 to 6, and are expected to shift to zones 5 to 7 under RCP 4.5
and 7 to 8 under RCP 8.5 (Figure 3). Heat Zones are projected
to have a more dramatic shift from a current range of 3 to 5
to a projected range of 5 to 7 (RCP 4.5) to 8 to 9 (RCP 8.5,
Figure 4). Of the 178 species evaluated, the number of potential
species considered suitable for planting based on current and
future heat and hardiness zones ranged from only 66 under RCP
8.5 in the Minnesota cities to 172 under RCP 4.5 in Racine, WI
(Table 4). Municipalities that had both a warmer initial Hardiness
Zone and less projected change in Heat Zones had more species
that fell within current and projected ranges. Under the RCP
4.5 scenario, each species was suitable for planting in at least
one city. Under RCP 8.5, 74 species were no longer considered

FIGURE 2 | Most common street trees (% of total) across the 14 municipal inventories. Species that accounted for an average of more than 1% across all
municipalities are shown. Species within the same genus are indicated by different patterns within the same color. Municipalities are arranged left to right from
southeast to northwest.
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FIGURE 3 | USDA Hardiness Zones under (A) current climate (1980–2009) and future climates under a low emissions pathway (B–D, 2010–2039, 2040–2069,
2070–2099) or high emissions pathway (E–G, 2010–2039, 2040–2069, 2070–2099). Data from Matthews et al. (2018).

to be within the projected Hardiness Zone or Heat Zone ranges
for any of the municipalities. Most of these were conifer species
common to high latitudes or alpine areas, but Acer platanoides
and Syringa reticulata, two commonly planted temperate species,
also fell into this group.

Adaptive Capacity
Of the 178 species evaluated, 59 were considered to have high
Adaptive Capacity, 94 had moderate Adaptive Capacity, and
25 had low Adaptive Capacity (see supplementary materials).
Which species fell into each category did not change substantially
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FIGURE 4 | AHS Heat Zones under (A) current climate (1980–2009) and future climates under a low emissions pathway (B–D, 2010–2039, 2040–2069,
2070–2099) or high emissions pathway (E–G, 2010–2039, 2040–2069, 2070–2099). Data from Matthews et al. (2018).

following expert review: expert review rather had an influence
on contributing sub-factors (see supplementary material and
numerical scores within categories). The species with the lowest
Adaptive Capacity tended to be intolerant of disturbances such

as drought and flooding and unable to tolerate urban conditions
such as road salt and restricted rooting conditions. Examples
included Prunus serotina, Fraxinus nigra, Tsuga canadensis,
Pinus resinosa, Pseudotsuga menziesii var. glauca, Juglans nigra,
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TABLE 4 | Number of species that are considered suitable for planting based on
current and projected hardiness and heat zones in each municipality.

RCP 4.5 RCP 8.5

Potential Current Potential Current

Ann Arbor 172 125 82 55

Ashland 149 58 112 44

Detroit 172 126 82 59

Grand Rapids 172 113 82 47

Green Bay 171 84 139 67

Middleton 168 72 84 28

Milwaukee 172 96 86 42

Minneapolis 145 103 66 42

Monroe 168 49 84 22

Racine 175 85 143 54

Rochester 145 51 66 24

Saint Louis Park 145 55 66 25

Saint Paul 145 94 66 40

Stevens Point 148 73 112 52

Potential: total number of species out of the 178 evaluated. Current: number of
species that are currently present in that municipality’s inventory.

and Pinus strobus. The species with the highest adaptive
capacity included Ginkgo biloba, Ulmus cultivars resistant to
Dutch elm disease (Ophiostoma novo-ulmi and O. ulmi), as
well as several species known for their invasiveness, including
Rhamnus cathartica, Quercus acutissima, Elaeagnus angustifolia,
and Ailanthus altissima. The number of trees in each category
varied by municipality—Milwaukee had the most trees in the
high Adaptive Capacity category (58%) and Ashland the least
(20%). Cities had on average 7% of their trees in the low Adaptive
Capacity category, with the most in Stevens Point (16%). These
differences among municipalities were primarily due to planting
more of a few highly adaptable or unadaptable species: all cities
had the most species in the moderate adaptability category.

Vulnerability
Under a low emissions pathway (RCP 4.5), over 80% of trees in
all municipalities were considered to have low or low-moderate
vulnerability (Figure 5A). However, under the high emissions
pathway (RCP 8.5), fewer than 50% of trees fell into either of these
two vulnerability categories (Figure 5B). Monroe, WI, had the
most trees in the moderate-high and high vulnerability categories
and the fewest in the low vulnerability category under the high
emission pathway. Racine and Green Bay, WI had the fewest trees
in the moderate-high or high vulnerability categories. Ashland
and Racine, WI, had the most trees in the low and low-moderate
vulnerability category.

We averaged vulnerability scores across all locations to find
the most and least vulnerable trees across the region. The 30 most
common species, composing 87.5% of all inventories combined,
primarily fell into the low or low-moderate category under RCP
4.5 and the low-moderate or moderate category under RCP 8.5
(Table 5). The most vulnerable common species were Pyrus
calleryana, Quercus palustris, Q. alba, Q. ellipsoidalis, and Picea
glauca, collectively composing 3.5% of all inventories combined.

We also examined species and cultivars that were under-
represented or not represented at all in the inventories as
potential candidates for expansion in the urban tree canopy
in the United States Upper Midwest. We considered a species
to be under-represented if it fell into the bottom 50% of
species when ranking species by abundance across all inventories.
This corresponded to less than 0.06% of all species and fewer
than 500 individuals present across all 14 inventories. Species
were considered potential candidates for expansion if they
had high Adaptive Capacity and had Hardiness Zone ranges
within the projected ranges for the Upper Midwest. Any species
that was listed as having the potential for being invasive was
eliminated from the list. Twenty-nine species and cultivars from
16 genera met these criteria (Table 6). However, several of these
species are from families and genera that already represent an
overabundance of the total tree canopy.

DISCUSSION

This is the first study that systematically evaluates urban
tree vulnerability across municipalities by combining projected
changes in Hardiness and Heat Zones with expert-derived
assessments of adaptive capacity. This study builds on methods
we developed for individual cities (Brandt et al., 2017, 2020).
Other studies have examined how Hardiness Zone shifts may
affect tree habitat suitability across municipalities but have
not incorporated important considerations of heat tolerance
and adaptive capacity (Lanza and Stone, 2016). Others have
developed comprehensive vulnerability assessments of urban
forests but have not included the vulnerability of individual trees
(Ordonez and Duinker, 2015).

Our results indicate that the most common species used
in street tree planting can contribute to vulnerability. The
most abundant trees in all municipalities evaluated were
maples (genus Acer, family Sapindaceae), and one of the most
dominant species in that genus (Acer platanoides) is potentially
vulnerable in many of the municipalities evaluated. In addition,
northern conifer species (genus Picea and Pinus) may also be
vulnerable, and municipalities that plant a larger proportion
of these species, such as Stevens Point, may also be at an
increased vulnerability to warming temperatures. A recent study
developed a vulnerability matrix for 27 species in the city of
Mississauga, Ontario (43.6◦ N) also found Acer platanoides
and northern conifers to be among the most vulnerable to
increased temperatures (Khan and Conway, 2020), suggesting
that these species may be at risk across North American
temperate cities.

It is important to note that our study only examined species
abundance and only in municipal trees planted along rights-of-
way (also known as “street trees”). Other indicators of species
dominance, such as total basal area or leaf area, may be more
important in influencing ecosystem services at the municipal
scale (Nowak et al., 2016). The composition of street trees is
also not necessarily reflective of species composition in other
municipal land use types such as remnant forests, commercial
land, or residential properties (Bourne and Conway, 2014). Based
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FIGURE 5 | Percent of street trees in each vulnerability category by municipality under an (A) low emissions pathway (RCP 4.5) or (B) high emissions pathway (RCP
8.5). Municipalities are arranged bottom to top from southeast to northwest.

on community inventory data from 14 Minnesota communities
(Bancks et al., 2018), street trees only composed an average of
20% of a community’s managed trees and ranged from 1 to
49% of a community’s total tree population (data unpublished).
For example, Pregitzer et al. (2019) found that remnant forests
in New York were dominated by native species more similar
in composition to natural systems than the composition of
species along rights-of-way. Despite these limitations, street tree
abundance is an important indicator of what species are being
selected by local governments for planting. In addition, local
tree planting initiatives, often led by non-profit organizations,
tend to focus their attention on street trees because of a variety
of constraints on planting in other locations (Salmond et al.,
2016). Thus, street trees represent a large proportion of the
total influence local decisionmakers in urban forestry have on
future tree planting.

The greatest determinant of the vulnerability of a
municipality’s street tree canopy was its projected shift in
Heat and Hardiness zones. Under a low emissions pathway
(RCP 4.5), Hardiness and Heat zones were not projected to shift
enough where trees would become vulnerable to temperature
increases. Under a high emissions pathway (RCP 8.5), cities
that were projected to shift to a heat zone 9 (>120 to 150 days
exceeding 30◦C) had more than 20% of their trees that were
considered to be vulnerable (moderate-high or high category).
Lanza and Stone (2016), examined shifts in Hardiness Zones
in a national study that included Minneapolis-St. Paul and
Detroit but did not find species in these cities to be at risk.
This study examined a much smaller number of trees (51 and
69, respectively) and did not use downscaled climate data to
project future Hardiness Zones (relying instead on historical
data), nor did they examine Heat Zones. Thus, that study likely
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TABLE 5 | Adaptive capacity and average vulnerability of the 30 most common species across all inventories in the study.

Scientific name Common Name % all inventories Adaptive Capacity Vulnerability RCP 4.5 Vulnerability RCP 8.5

Acer platanoides Norway maple 21.2% High low moderate

Gleditsia triacanthos var. inermis Honeylocust 10.1% Medium low-moderate low-moderate

Fraxinus pennsylvanica Green ash 7.8% Medium low-moderate low-moderate

Celtis occidentalis Common hackberry 4.8% High low low

Acer saccharum Sugar maple 4.5% Medium low-moderate moderate

Tilia cordata Littleleaf linden 4.3% High low low-moderate

Acer saccharinum Silver maple 4.0% Medium low-moderate moderate

Tilia americana American linden 3.0% Medium low-moderate moderate

Acer rubrum Red maple 2.8% Medium low-moderate low-moderate

Ginkgo biloba Ginkgo 2.0% High low low

Ulmus americana American elm 2.0% Medium low-moderate low-moderate

Quercus bicolor Swamp white oak 1.9% High low low-moderate

Acer × freemanii Freeman maple 1.8% High low low-moderate

Gymnocladus dioicus Kentucky coffeetree 1.8% High low low

Syringa reticulata Japanese tree lilac 1.8% High low moderate

Platanus × acerifolia London planetree 1.6% Medium moderate moderate

Quercus macrocarpa Bur oak 1.3% High low low

Fraxinus americana White ash 1.3% Low moderate moderate

Pyrus calleryana Callery pear 1.3% Medium moderate moderate-high

Quercus rubra Northern red oak 1.3% Medium low-moderate low-moderate

Platanus occidentalis American sycamore 1.0% Medium low-moderate low-moderate

Betula nigra River birch 1.0% Medium low-moderate low-moderate

Ulmus pumila Siberian elm 0.9% Medium low-moderate low-moderate

Catalpa speciosa Northern catalpa 0.8% Medium low-moderate moderate

Quercus palustris Pin oak 0.7% Medium low-moderate moderate-high

Quercus alba White oak 0.6% Low moderate moderate-high

Picea pungens Colorado blue spruce 0.5% Medium low-moderate moderate

Picea glauca White spruce 0.5% Medium moderate moderate-high

Ulmus americana ’Princeton’ Princeton elm 0.5% High low low

Quercus ellipsoidalis Northern pin oak 0.4% Low moderate high

underestimates the true risk of these tree canopies to future
extreme heat conditions.

Selection of certain species and groups of species for planting
also played a role in determining vulnerability of a municipality’s
tree canopy. Minneapolis, St. Paul, and St. Louis Park provide an
illustrative case study. These municipalities are directly adjacent
and are projected to experience the same shifts in Hardiness and
Heat Zones. Minneapolis has the most trees that fall into both
the highest and lowest vulnerability categories. The most recent
inventory had a greater abundance of Dutch elm-resistant Ulmus
cultivars (low vulnerability) and a greater abundance of several
northern conifer species (high vulnerability) compared with the
other two cities. All three municipalities are in the process of
replacing a large proportion of their tree canopy lost to emerald
ash borer, so some of these differences may not be reflective of the
current canopy composition in these cities.

To our knowledge, no other study has systematically evaluated
such a large suite of species for their adaptive capacity.
We evaluated 178 species and cultivars based on an already
widely used method for evaluating species adaptive capacity
(Matthews et al., 2011) that has been adjusted for urban
systems and tested in previous assessments for individual

cities (Brandt et al., 2017, 2020). Realizing that information is
limited for some of these species, having each adaptive capacity
score independently reviewed by regional experts was essential
to ensuring our scores reflected on-the-ground observations.
For the most part, expert opinion was consistent with the
established literature, but the reviews provided subtle differences
in weighting of individual adaptive capacity factors.

Reducing the adaptive capacity of a species to a single
qualitative value has its limitations, however. Information on
some species traits that contribute to adaptive capacity is not
always known and can limit our ability to develop strong
indicators (Aubin et al., 2016). In addition, these qualitative
scores are not related to any quantitative measure of the expected
impact on species (e.g., its lifespan, growth rate, or mortality
rate) and the relative contribution of traits and thresholds
that determine what is vulnerable are somewhat arbitrarily
determined by the assessor (Pacifici et al., 2015). For example,
Fraxinus pennsylvanica is highly vulnerable to mortality from
emerald ash borer, but its overall adaptive capacity score is
relatively high due to its other traits. Likewise, a species may be
considered to have high adaptive capacity because it currently
does not have any pest or disease issues, but the arrival of a new
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TABLE 6 | Species and cultivars with high adaptive capacity that are currently
under-represented in upper Midwestern street tree inventories.

Scientific name Common Name Hardiness
Range

Notable
Adaptability
Traits

Acer truncatum Shantung maple 4–8 drought and heat
tolerant

Amelanchier
arborea

Downy serviceberry 4–9 wide temperature
tolerance

Amelanchier laevis Allegheny
serviceberry

4–8 drought intolerant

Cornus kousa Kousa dogwood 5–8 drought intolerant

Cotinus obovatus Smoketree 4–8 drought tolerant,
flood intolerant

Diospyros
virginiana

Common
persimmon

4–9 flood and drought
tolerant

Eucommia
ulmoides

Hardy rubber tree 4–7 drought tolerant,
flood intolerant

Magnolia
× soulangeana

Saucer magnolia 4–9 drought and flood
intolerant

Nyssa sylvatica Black gum 5–9 flood tolerant

Parrotia persica Persian parrotia 5–8 drought tolerant,
intolerant of salt

Pinus cembra Swiss stone pine 3–7 drought tolerant,
flood intolerant

Prunus “Okame” Okame cherry 6–8 no notable
negative of
positive traits

Prunus maackii Amur chokecherry 3–7 heat intolerant

Quercus imbricaria Shingle oak 4–8 drought tolerant,
susceptible to oak
wilt

Quercus montana Chestnut oak 4–8 drought tolerant,
susceptible to oak
wilt

Quercus
muehlenbergii

Chinkapin oak 4–7 drought tolerant

Quercus × warei Regal prince oak 4–9 drought tolerant,
susceptible to oak
wilt

Quercus lyrata Overcup oak 6–9 drought and flood
tolerant

Styphnolobium
japonicum

Japanese
pagoda-tree

5–8 drought and salt
tolerant, flood
intolerant

Syringa pekinensis Peking tree lilac 3–8 drought and
disease tolerant,
flood intolerant

Tilia × euchlora Crimean linden 3–7 drought tolerant,
Dutch elm disease
resistant

Ulmus “Patriot” Patriot elm 5–9 drought tolerant,
Dutch elm disease
resistant

Ulmus “Morton
Glossy” (Triumph)

Triumph elm 4–7 drought tolerant,
Dutch elm disease
resistant

Ulmus “Morton”
(Accolade)

Accolade elm 4–9 heat tolerant,
Dutch elm disease
resistant

(Continued)

TABLE 6 | (Continued)

Scientific name Common Name Hardiness
Range

Notable
Adaptability
Traits

Ulmus americana
“Princeton”

Princeton elm 3–9 drought, heat, salt,
and flood tolerant,
Dutch elm disease
resistant

Ulmus americana
“New Harmony”

New Harmony elm 4–9 drought, heat, salt,
and flood tolerant,
Dutch elm disease
resistant

Ulmus americana
“Jefferson”

Jefferson elm 5–9 drought, heat, salt,
and flood tolerant,
Dutch elm disease
resistant

Ulmus americana
“Valley Forge”

Valley Forge elm 5–9 drought, heat, salt,
and flood tolerant,
Dutch elm disease
resistant

Ulmus parvifolia Lacebark elm 5–9 drought and heat
tolerant

pest could change that dynamic. In addition, qualitative scoring
systems such as these do not account for the many complex and
cascading interactions that can occur as the climate changes.

Assessing future species planting suitability based in part on
Hardiness and Heat Zones also has its limitations. Data regarding
true Heat and Hardiness tolerance ranges for species and cultivars
is often lacking. These ranges are sometimes based on very
limited information and may not reflect the reality of observation.
In addition, species range limits are often determined by a variety
of climatic and non-climatic factors. More complex models
can create a more complete picture not illustrated by heat
and hardiness zones alone (McKenney et al., 2007). However,
parameterizing such models for many species is currently limited
by a lack of empirical data.

We designed this study to explicitly address the vulnerability
of individual trees, but we recognize this is only one component
of the vulnerability of the overall urban forest to climate change
(Reynolds et al., 2020). Urban forest vulnerability will also
be determined by the structural and functional composition,
economic considerations, maintenance practices, and the social
and organizational capacity of each location (Ordonez and
Duinker, 2014, 2015; Brandt L. et al., 2016; Steenberg et al.,
2017a). Previous research has shown that in fact, the economic
and organizational capacity of individual municipalities can have
more of an influence on vulnerability than the direct impacts of
climate change (Brandt L. A. et al., 2016).

Municipal foresters and others managing urban forests can use
this vulnerability information in concert with other information
about tree height, growing site conditions, aesthetics, and other
factors to inform planting lists for individual municipalities.
Some municipalities may wish to reduce the dominance of
certain species that are considered to be vulnerable in favor
of less common, less vulnerable trees. Many municipalities
are already incorporating species vulnerability information into
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their planting lists (Peterson et al., 2021). Which species are
appropriate will depend on the specific species composition of
that area and the current and projected Heat and Hardiness zones
for that particular place.

CONCLUSION

Our study provides a framework for assessing urban tree
vulnerability that is broadly applicable to temperate urban forests.
Using this framework, we found that most street trees commonly
planted in United States Upper Midwest municipalities are
not vulnerable under a low emissions pathway, but a larger
proportion of trees are likely to be vulnerable under a high
emissions pathway. Differences in the number of vulnerable
trees was driven more by projected changes in the number of
hot days rather than differences in species composition. This
has important implications for urban street tree selection in a
changing climate.
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