',\' frontiers

in Ecology and Evolution

ORIGINAL RESEARCH
published: 23 September 2021
doi: 10.3389/fevo.2021.724876

OPEN ACCESS

Edited by:
Lucy Alice Hawkes,
University of Exeter, United Kingdom

Reviewed by:

Yufeng Zhang,

University of Memphis, United States
Theunis Piersma,

University of Groningen, Netherlands

*Correspondence:
Audrey Le Pogam
audreylp@wanadoo.fr

Specialty section:

This article was submitted to
Behavioral and Evolutionary Ecology,
a section of the journal

Frontiers in Ecology and Evolution

Received: 14 June 2021
Accepted: 06 September 2021
Published: 23 September 2021

Citation:

Le Pogam A, O’Connor RS,

Love OR, Drolet J, Régimbald L,
Roy G, Laplante M-F, Berteaux D,
Tam A and Vézina F (2021) Snow
Buntings Maintain Winter-Level Cold
Endurance While Migrating to the
High Arctic.

Front. Ecol. Evol. 9:724876.

doi: 10.3389/fevo.2021.724876

Check for
updates

Snow Buntings Maintain
Winter-Level Cold Endurance While
Migrating to the High Arctic

Audrey Le Pogam™2*, Ryan S. O’Connor™2, Oliver P. Love3, Justine Drolet2,
Lyette Régimbald’, Gabrielle Roy’, Marie-Pier Laplante’2, Dominique Berteaux?2,
Andrew Tam* and Francois Vézina'?

! Département de Biologie, Chimie et Géographie, Université du Québec & Rimouski, Rimouski, QC, Canada, 2 Groupe
de Recherche sur les Environnements Nordiques BOREAS, Centre d’Etudes Nordiques, Centre de la Science de la
Biodiversité du Québec, Université du Québec a Rimouski, Rimouski, QC, Canada, ° Department of Integrative Biology,
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Arctic breeding songbirds migrate early in the spring and can face winter environments
requiring cold endurance throughout their journey. One such species, the snow bunting
(Plectrophenax nivalis), is known for its significant thermogenic capacity. Empirical
studies suggest that buntings can indeed maintain winter cold acclimatization into the
migratory and breeding phenotypes when kept captive on their wintering grounds.
This capacity could be advantageous not only for migrating in a cold environment,
but also for facing unpredictable Arctic weather on arrival and during preparation for
breeding. However, migration also typically leads to declines in the sizes of several
body components linked to metabolic performance. As such, buntings could also
experience some loss of cold endurance as they migrate. Here, we aimed to determine
whether free-living snow buntings maintain a cold acclimatized phenotype during spring
migration. Using a multi-year dataset, we compared body composition (body mass,
fat stores, and pectoralis muscle thickness), oxygen carrying capacity (hematocrit)
and metabolic performance (thermogenic capacity — Mgym and maintenance energy
expenditure — BMR) of birds captured on their wintering grounds (January—February,
Rimouski, QC, 48°N) and during pre-breeding (Apri-May) in the Arctic (Alert, NU,
82°). Our results show that body mass, fat stores and Mgy were similar between
the two stages, while hematocrit and pectoralis muscle thickness were lower in pre-
breeding birds than in wintering individuals. These results suggest that although tissue
degradation during migration may affect flight muscle size, buntings are able to maintain
cold endurance (i.e., Mgym) up to their Arctic breeding grounds. However, BMR was
higher during pre-breeding than during winter, suggesting higher maintenance costs in
the Arctic.

Keywords: Arctic bird, Arctic breeding, body composition, basal metabolic rate, cold acclimatization, migration,
phenotypic flexibility, summit metabolic rate
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INTRODUCTION

Arctic breeding birds typically migrate early in the spring
to maximize the chances of successful reproduction during a
relatively short summer (Love et al., 2010; Reneerkens et al.,
2016; van Gils et al., 2016; Ramenofsky and Wingfield, 2017;
Rakhimberdiev et al., 2018). For these species, early arrival allows
for securing the best breeding territories and partners, and for
breeding as soon as conditions become suitable (Drent et al.,
2003; Ramenofsky and Wingfield, 2006), which can improve
reproductive success (Lepage et al., 2000; Guindre-Parker et al,,
2013). However, such early arrival implies migrating through cold
winter conditions and, upon arrival on Arctic breeding grounds,
birds are often faced with substantial snow accumulation, sub-
zero temperatures and unpredictable weather that can persist for
several weeks (e.g., Meltofte, 1983; Walsh et al., 2005; see also
Morrison et al., 2007; Wingfield et al., 2011).

For species that overwinter in cold environments (e.g.,
temperate zones), these arrival conditions may be comparable
or even more constraining than those encountered during
winter (Meltofte, 1983; Wingfield et al., 2011; Snell et al.,
2018). However, the physiological mechanisms involved in
acclimatization to cold and to long-distance migration share
similar physiology (Dawson et al., 1983; Zhang et al., 2015).
For example, heart mass, blood oxygen-carrying capacity
(hematocrit), and flight muscle size increase during cold
acclimatization (Swanson, 1990b; O’Connor, 1995, 1996; Cooper,
2002; Zheng et al., 2008; Liknes and Swanson, 2011; Petit et al,,
2013, 2014; Swanson and Vézina, 2015), and are thought to
improve shivering heat production (Swanson, 1990a; Petit and
Vézina, 2014). Similar changes also occur in preparation for
migration (Battley and Piersma, 1997; Piersma et al., 1999; Krause
et al., 2016) to support active flight (Battley and Piersma, 1997;
Piersma et al,, 1999). Therefore, birds migrating early in the
spring could profit from a carryover of their winter phenotype
to benefit migration in the cold.

Recently, Le Pogam et al. (2021) observed that snow buntings
(Plectrophenax nivalis), Arctic breeding songbirds known for
their cold endurance (Scholander et al.,, 1950; Le Pogam et al.,
2020), were able to maintain a winter phenotype through most of
summer when kept in outdoor aviaries at their wintering latitude
(48°N), at a time when air temperatures can exceed 25°C. More
precisely, the birds were found to maintain thermogenic capacity
and cold endurance comparable to those from the peak of
winter not only throughout migratory fattening, but also during
the period corresponding to migration and Arctic breeding.
Le Pogam et al. (2021) concluded that the winter phenotype
in snow buntings transitioning into spring migration provided
enough thermogenic capacity to migrate in cold, winter-like
environments and to support thermoregulatory needs upon
arrival on their breeding grounds. However, that study was based
on captive individuals that could not migrate, and migration also
has considerable physiological effects, such as the loss of body
mass as well as declines in oxygen carrying capacity and muscle
mass, which together could both potentially lead to a reduction
in thermogenic capacity (O’Connor, 1995; Cooper, 2002; Jenni
etal., 2006; Dubois et al., 2016). Thus, whether this cold specialist

maintains winter-level cold endurance through spring migration
remains to be tested.

The objective of this study was to compare peak of winter
and pre-breeding phenotypes in free-living snow buntings to
determine whether these birds show comparable metabolic
performance and supporting traits at those stages, which would
lend strength to the hypothesis that buntings maintain cold
endurance throughout their spring migration (as proposed by
Le Pogam et al., 2021). To test this hypothesis we compared
phenotypic traits related to thermogenic capacity (Table 1) in
buntings captured around Rimouski, Québec, Canada (48°N)
during the peak of winter (i.e., January and February) to
those of individuals captured in the weeks following arrival
(i.e., May and early June) on breeding grounds at Alert, NU,
Canada (82°N). Based on our previous observations (Le Pogam
et al., 2021), we expected buntings would maintain a winter-
type phenotype (Table 1) throughout both migration and pre-
breeding. Birds would thus be expected to have comparable
metabolic performance during winter in Québec and early
spring in the Arctic. In contrast, if migration leads to body
transformations that negatively impact metabolic performance at
subsequent stages, we would instead expect to find lighter birds
in the spring showing lower performance levels compared to
individuals measured during winter.

MATERIALS AND METHODS
Study Species

Snow buntings are an Arctic-breeding, cold-associated migratory
passerine. In the spring, these birds migrate through cold winter
landscapes (Macdonald et al., 2012; McKinnon et al., 2016;
Snell et al., 2018), with males arriving on the breeding grounds
to secure territories (up to 83.6°N) up to a month before
females (March-April, Cramp and Perrins, 1994; McKinnon
et al., 2016; Snell et al., 2018; Montgomerie and Lyon, 2020).
Arrival conditions can be comparable or even harsher than those
experienced at the peak of winter, with extensive snow cover
and air temperatures (T,) reaching —30°C (Meltofte, 1983).
After arrival, buntings can maintain winter-like behavior for
several weeks before dispersing to defend breeding territories
(Tinbergen, 1939; Meltofte, 1983). Although the wintering range
of birds breeding at Alert has yet to be formally established
as no banded individuals have been recovered so far, banding
data analyzed by Meltofte (1983; Figure 1) and Macdonald et al.
(2012) suggest that Alert birds could be wintering in either North
America or in the Siberian steppes. Regardless, in both cases
wintering conditions are similar to that experienced by birds in
Eastern Québec. For example, Snell et al. (2018) tracked snow
buntings breeding at Svalbard and reported a mean temperature
on their wintering range (ie., Siberian steppes) of —10.9°C
to —3.6°C, which encompasses the mean temperature on the
wintering ground for this study (—8.9°C in February, Table 2).

Ethics Statement
All bird handling at Rimouski (QC) and at Alert (NU) was
approved by the Animal Care Committee of the Université du
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TABLE 1 | List of phenotypic traits measured in this study and their responses to cold and winter in passerine birds.

Metabolic performance

Phenotypic traits Interpreted as

cold/winter

Response to

Pertinent references

Summit metabolic rate Maximum shivering thermogenic

(Msum) capacity, index of cold endurance
Basal metabolic rate Maintenance energy expenditure, index Often higher but not in
(BMR) of physiological maintenance costs snow buntings

Typically higher

McKechnie and Swanson, 2010; Swanson, 2010; Petit et al., 2013;
McKechnie et al., 2015; Le Pogam et al., 2020

McKechnie and Swanson, 2010; Swanson, 2010; Petit et al., 2013;
McKechnie et al., 2015 but see Le Pogam et al., 2020

Phenotypic traits underlying metabolic performance

Phenotypic traits Interpreted as

Response to

Pertinent references

cold/winter
Body mass Total body composition Typically higher
Fat store Energy reserves Typically higher
Hematocrit Blood oxygen carrying capacity Typically higher

Pectoralis muscle
thickness

Shivering capacity

Typically increases with
high metabolic rate

Carey et al., 1978; Liknes and Swanson, 1996; Zheng et al., 2008;
Petit et al., 2014; Le Pogam et al., 2020

Blem, 1976; Lehikoinen, 1987; Gosler, 1996; Cooper, 2007;
Le Pogam et al., 2020

Swanson, 1990b; O’Connor, 1996; Le Pogam et al., 2020

O’Connor, 1995; Cooper, 2002; Swanson and Merkord, 2012;
Petit et al., 2013; Swanson and Vézina, 2015; Le Pogam et al., 2020

Québec a Rimouski (Rimouski: CPA-54-13-130 and CPA-71-
17-195 and Alert: CPA-61-15-163 and CPA-71-17-194) and was
conducted under banding (10889E) and scientific (SC-48, NUN-
SCI-15-05) permits from Environment and Climate Change
Canada, and under scientific permits from the Department
of Environment of Nunavut (WL 2016-006, 2017-021, 2018-
010, 2019-002).

Study Sites, Capture, and Measurements

Protocol

On the Breeding Grounds

Snow buntings were studied in the Arctic during the springs
of 2016-2019 at Alert, NU, Canada (82°29'58"N, 62°28'5"W).
Specifically, we studied birds from their arrival to their dispersal
onto breeding territories (hereafter pre-breeding, n = 213 males
and 53 females, see Supplementary Table 1 for detailed sample
sizes per variable). Although single individuals or small groups
(i.e., 2—4 birds) can be observed earlier, the bulk of arrivals at
Alert occur in the last week of May (AL, FV, pers. obs.).

Birds were caught with homemade walk-in traps or potter
traps (Third Wheel, Devon, England) baited with commercial
seed-mix (crushed corn, wheat, sorghum, white millet, red millet,
and black sunflower, Armstrong, Hagersville, ON, Canada).

Immediately after capture, a blood sample (<1% of body
mass) was taken from the brachial vein. Blood samples were
temporarily kept in cold storage and later centrifuged for 10 min
at 8,000 RPM to obtain data on hematocrit (i.e., packed red
blood cell volume). The birds were then weighed (£0.01 g)
and sexed according to Smith (1992). We banded birds with a
USGS numbered metal band as well as a unique combination
of three darvic color bands to allow for individual identification
from a distance. Right wing length was measured as an index
of structural body size. The size of fat stores was also estimated
visually using a standard fat score (from 0 = no visible fat in
furculum area to 6 = fat overlapping pectoralis muscles according

to Canadian Snow Bunting Network guidelines, Love et al,
2012). The birds were then brought into our field laboratory (less
than 6 km distance from capture site, transport time <20 min)
where we estimated pectoralis muscle thickness non-invasively by
ultrasonography (Dietz et al., 1999; Royer-Boutin et al., 2015; Le
Pogam et al.,, 2020, 2021) using a LOGIQ e ultrasound scanner
fitted with a linear probe (12 MHz, GE Healthcare, Wauwatosa,
WI, United States). Since the supracoracoideus muscle is very
thin at the measured location, muscle thickness values essentially
reflect thickness of the pectoralis muscle. Birds were then held in
cages (76 cm W x 46 cm D x 45 cm H) with ad libitum water
and seed (same mix as for captures) until metabolic performance
measurements were complete (see below).

On the Wintering Grounds

Each winter between January and February from 2015 to 2018,
wintering buntings were captured around Rimouski, QC, Canada
(48°27'N, 68°30'W) as part of a snow bunting banding program.
Snow buntings have a differential migration (Macdonald et al.,
2016; McKinnon et al, 2019) and the wintering population
around Rimouski is composed in very large proportion of males
(total captures males = 508, females = 31, see Supplementary
Table 1 for detailed sample sizes per variable). Birds were
captured using walk-in traps baited with crushed corn. Upon
capture, birds were subjected to the same measurement sequence
as described above except that they were banded with only
a USGS numbered metal band. Blood samples were taken
on 51 individuals and later centrifuged for 10 min at 8,000
RPM (UNICO PowerSpin BX Centrifuge C886, Dayton, NJ,
United States) to obtain hematocrit data. In total, 57 birds were
transported to the avian facilities at the Université du Québec
a Rimouski (less than 25 km distance from the capture site,
transport time <25 min) for pectoralis muscle thickness and
metabolic performance measurements. Birds were held in indoor
cages (117 cm W x 310 cm D x 39 cm H) with access to
ad libitum food and water while waiting for measurements.
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Metabolic Performance

For both Alert and Rimouski, we used the set-up and protocol
described by Le Pogam et al. (2020, 2021), except that the oxygen
analyzers used at Alert were two Sable Systems Foxboxes (Sable
Systems, Las Vegas, NV, United States) instead of the Servomex
oxygen analyzer (gas purity analyzer, model 4100, Boston, MA,
United States) used at Rimouski. The following key points are
specific to this study.

Summit metabolic rate (Mgum — the maximum metabolic rate
in response to the cold, considered a measure of cold endurance;
Dutenhoffer and Swanson, 1996) was measured on up to two
birds simultaneously, allowing for two trials per day. Depending
on the time of capture, measurements began between 10:04 and
22:45 (average: 15:09 £ 3.27 h; duration: 1.68 £ 0.89 h) at
Alert, and between 10:14 and 17:10 (average: 12:26 £ 2.05 h;
duration: 1.88 =+ 0.67 h) at Rimouski. Measurements took
place at least 1 h after ultrasound measurements. Birds were
placed inside stainless steel metabolic chambers (effective volume
1.5 L) and exposed to dry, CO;-free air for 10 min at —18°C
(flow rate of 1,200 mL.min~!), before switching to a helox gas
mixture (21% oxygen, 79% helium, Rosenmann and Morrison,
1974). Chamber temperature was then lowered by 3°C every
20 min until birds became hypothermic [decline of birds” oxygen
consumption (VO,) for several minutes] or reached the end of
the trial programmed time (125 min). At Alert, 5 measurements
out of 30 (16.6%) involved birds that were not hypothermic
at the end of their trial (cloacal temperature >37°C, Swanson
and Liknes, 2006). There were no such cases at Rimouski.
However, since hypothermia is not a prerequisite to confirm
Mgum (Dutenhoffer and Swanson, 1996), we included these five

individuals in our analyses (removing them did not affect results).
Basal metabolic rates (BMR — metabolic rate at rest considered
a measure of physiological maintenance; McNab, 1997; Swanson
et al.,, 2017) were measured overnight on a maximum of four
birds simultaneously. At Alert, BMR trials began between 18:56
and 0:22 (average start time: 21:12 = 1.49 h) and at Rimouski
between 17:03 and 21:19 (average start time: 18:58 =+ 1.27 h).
Since Mgym and BMR were assessed consecutively, we ensured
a minimum 1 h of rest after the My,m measurements. Using the
same metabolic chambers as for Mg, birds were exposed to
25°C, a temperature within snow bunting’s thermoneutral zone
(Scholander et al., 1950) and received dry CO,-free air (650 ml
min~!) for the duration of trials (10.88 + 1.81 h on average at
Alert, 13.49 & 1.84 h at Rimouski). Birds were weighed (£0.01 g)
before and after measurements, and average body mass (My,)
was used in BMR analyses. We used a sampling frequency of
5 s for Mgym and 20 s for BMR. Both Mg,n and BMR were
calculated from the highest and lowest averaged 10 min trace of
VO,, respectively, using equation 10.1 from Lighton (2019) and
using the instantaneous measurement technique (Bartholomew
et al., 1981) for Mgym. The duration of BMR trials ensured that
birds were post-absorptive at the time of BMR measurements.
We estimated energy expenditure for all metabolic measurements
using a constant equivalent of 19.8 kJ L~ 10, and converted units
to Watts (Gessaman and Nagy, 1988).

Weather Data

Weather data for both field sites were obtained from
nearby weather stations. For Rimouski, we used data from
Pointe-au-Peére station (48°30'50”N; 68°28'06”W, Government
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TABLE 2 | Air temperatures recorded at the peak of winter at Rimouski (QC)
averaged from 2015 to 2018 and in the spring at Alert (NU) averaged
from 2016 to 2019.

Ambient air temperature (°C)

Min Mean Max
Winter (Rimouski, QC)
January —-125+5.7 —-8.6 £5.7 —4.0+6.6
February -13.2+6.6 -89+64 —-43+6.8
Spring (Alert, NU)
April —26.3 +4.7 —23.6+4.6 —-20.9+5.0
May —-12.6+4.8 —-10.7 £ 4.6 -88+4.7

of Canada)'. For Alert, we used data collected by Environment
and Climate Change Canada at their Alert weather station (i.e.,
our study site).

Statistical Analyses

Our objective was to determine whether snow buntings retain
a winter phenotype up to their pre-breeding stage. Given the
known differences between sexes in phenotypic adjustments for
breeding and wintering (see below), we also considered potential
differences in patterns between sexes for body mass and fat
score (not enough data in females for the other variables in
winter). We therefore used linear mixed-effect models with My,
fat score, hematocrit, pectoralis muscle thickness, Mg, and BMR
as separate response variables. All models included “period” (i.e.,
winter or pre-breeding) as categorial predictor variables. The
variable “year” was treated as a random parameter because we
did not have measurements for all years in the two periods.

For My, and fat score, we had sufficient data to consider the
potential (fixed) effect of sex and the interaction “sex x period” in
models. This is pertinent as mass and fat load could differ between
sexes (Laplante et al., 2019). We also considered a potential effect
of daily fattening on My, and fat (e.g., Laplante et al., 2019) by
including a covariate “time at capture.” Analyses on M, further
considered the potential influence of structural body size by
including wing length in models.

For pectoralis muscle thickness, “keel height” measured
by ultrasound was included as a covariate to control for
variation in muscle thickness due to probe positioning
(Le Pogam et al., 2020, 2021).

We first analyzed metabolic performance parameters
considering whole-animal Mg, and BMR. We then included
M, as a covariate in models to examine “mass-independent”
variation. Under scenarios when whole and mass-independent
results were similar, mass-independent values are presented.
Since the birds could be caught at any time of the day, Mgym and
BMR measurements could not always be conducted on the day
of capture. Therefore, models also included “length of captivity.”

Visual inspection of residuals confirmed assumptions of
normality and homogeneity of residuals for all models. All
analyses were conducted using JMP pro (14.0.0) and data are
presented as mean =+ standard error of the mean (SEM) in the

Thttp://climat.meteo.gc.ca

text and 95% confidence intervals (CI) in graphs. Effects were
considered significant and retained in models when P < 0.05.
However, for one model, the interaction was marginally non-
significant at P = 0.06. We therefore opted to keep this
interaction term in the final model.

RESULTS

Weather Conditions

Air temperatures were lower at Alert during pre-breeding (April
and May, Table 2) than at Rimouski during the coldest period of
the winter (January and February, Table 2).

Phenotype Comparisons Between Winter

and Pre-breeding

After considering the significant effects of body size and
time at capture, My and fat score were comparable between
winter and pre-breeding (My: winter = 38.8 £ 0.5 g, pre-
breeding = 38.2 £ 0.5 g; fat score: winter = 3.3 £ 0.15 units,
pre-breeding = 3.4 £ 0.15 units) despite a non-significant
trend for birds being slightly heavier in winter (1.5%, Table 3).
A significant sex effect was observed for M, (Table 3), with
males (39.6 £ 0.4 g) being heavier than females (37.4 £ 0.6 g)
for their size. There was also a tendency for females to have
higher fat reserves on the breeding ground while males remained
unchanged (Table 3), but since there was a large overlap in data,
this trend (not shown) was very weak. Hematocrit was lower
during pre-breeding (52.5 & 0.5%) than in winter (54.6 £ 0.6%;
Table 3 and Figure 1A). Pectoralis muscle thickness differed
between periods (Table 3) with values being 3.12% higher during
winter (5.44 &+ 0.06 mm) than pre-breeding (5.27 £ 0.04 mm,
Figure 1B).

Summit metabolic rate (Mgum), whether considered whole
(not shown) or corrected for My, remained stable between winter
and pre-breeding (Table 3 and Figure 1C, winter = 2.9 £ 0.1W,
pre-breeding = 3.1 4 0.1W). After considering the significant
effect of captivity duration (BMR decreases with captivity
duration, data not shown), BMR, whole (not shown) or corrected
for My, was 22.9% higher during pre-breeding (0.59 4 0.01W)
than in winter (0.48 £ 0.01W, Table 3 and Figure 1D).

DISCUSSION

This study reports the northernmost measurements of
thermogenic capacity ever measured in birds (i.e, Alert,
NU, Canada - only 817 km from North Pole). We aimed to
determine whether pre-breeding snow buntings expressed a
phenotype comparable to that observed while wintering at
lower latitudes, which would support the hypothesis that these
birds maintain winter-level metabolic performance and cold
endurance throughout migration (Le Pogam et al, 2021).
Opverall, although all traits did not show the same pattern, our
results suggest that snow buntings indeed maintain winter-like
cold endurance during migration and during the pre-breeding
period in the Arctic.
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TABLE 3 | Linear mixed-effects models comparing phenotypic traits in snow
buntings measured during wintering at Rimouski and during pre-breeding at Alert.

Variable Body mass Fat score

df F P df F P
Period 1,626 3.53 0.06 1,735 1.08 0.30
Sex 1,793 27.19 <0.0001 1,802 0.0054 0.94
Sex x Period 1,802  3.45 0.06
Structural size 1,792 60.57 <0.0001
Time at capture 1,790 879 0.003 1,800 4.83 0.03
Variable Hematocrit Pectoralis muscle thickness

df F P df F P
Period 1,26  11.96 0.002 1,9 5.24 0.05
Keel 1,98 380.54 <0.0001
Variable Msum BMR

df F P df F P
Period 1,20 1.32 0.26 1,92 87.23 <0.0001
Mass 1,63 13.71 0.0005 1,108 55.50 <0.0001
Length of captivity 1,129 6.90 0.01

Models also considered the effect of sex on body mass and fat scores and included
covariates meaningful to specific dependent variables. See text for details.

Thermogenic Capacity, Body Mass, and
Fat Stores Remain High Up to the
Breeding Grounds

We found that body mass, fat scores, and summit metabolic rate
were globally comparable between wintering and pre-breeding
stages in snow buntings. These results are consistent with
the hypothesis that buntings likely maintain winter-level cold
endurance and energy stores throughout migration and certainly
into early spring on the breeding grounds as suggested previously
by Le Pogam et al. (2021). In fact, pre-breeding birds at Alert
faced environmental conditions colder than those encountered
during winter at Rimouski (Table 2). Therefore, the maintenance
of these traits likely allows buntings to cope with cold and
unpredictable conditions during migration and on arrival on the
breeding grounds (Ramenofsky and Wingfield, 2006). Winter-
level thermogenic capacity could be particularly beneficial for
early arriving males that are known to secure the best breeding
territories well before the onset of breeding (Meltofte, 1983;
Macdonald et al., 2012; Snell et al., 2018).

We also observed that for a given structural size, males tended
to be heavier in winter, but did not differ in fat stores between
winter and pre-breeding. In contrast, females did not differ
in My, but did tend to have larger fat reserves during pre-
breeding. This observation is similar to that reported by Laplante
et al. (2019) in wintering buntings, and suggests that males and
females have a different relative body composition in terms of
lean and fat mass, possibly due to differing wintering strategies
(Macdonald et al., 2016). As male buntings typically arrive before
females on the breeding grounds (Cramp and Perrins, 1994;
McKinnon et al., 2016; Snell et al, 2018; Montgomerie and

Lyon, 2020), they likely face colder temperatures (Table 2),
which may require adjustments in body composition to sustain
thermoregulatory demands that differ from females. For example,
life in the cold leads to increased daily food consumption
and consequently larger digestive organs (Barcel6 et al., 2017),
which could increase lean body mass with no effect on
relative fat storage.

Lower Oxygen Carrying Capacity and
Smaller Pectoralis Muscles on the

Breeding Grounds

Not all traits representative of a snow bunting winter phenotype
(Table 1, Le Pogam et al, 2020) were fully similar when
contrasting winter and pre-breeding birds. In fact, both pectoralis
muscle thickness and oxygen carrying capacity (hematocrit) were
lower in pre-breeding individuals than in birds measured during
winter. The difference in muscle thickness could potentially be
a direct consequence of tissue degradation during migration
as observed in several species (Battley et al., 2000; Bauchinger
and Biebach, 2001; Bauchinger et al., 2005; Bauchinger and
McWilliams, 2010). However, pectoralis muscles in shorebirds
have also been reported to decline in size and mass in the first
week after arrival at Alert (Morrison, 2006; Vézina et al., 2012)
which has been suggested to act as protein stores to facilitate
migratory recovery and transition into the breeding phenotype
(Morrison, 2006; Vézina et al., 2012). Although the bulk of snow
buntings seem to arrive at Alert around the end of May (AL, FV,
pers. obs.), which matches our measurements of pre-breeding
birds, local sightings have also confirmed that some individuals
arrive much earlier (end of April), albeit in very small numbers
(AL, FV, pers. obs.). We therefore cannot completely rule out
the possibility that some proportion of the pectoralis muscles
might be lost post arrival. Interestingly, the smaller pectoralis size
of pre-breeding birds was not reflected in lower shivering heat
production measured as Mgym. However, this is not necessarily
surprising since recent studies have suggested that Ms,m can be
upregulated without changes in muscle size (Stager et al., 2015;
Barcel6 et al., 2017; Milbergue et al., 2018), including in snow
buntings (Le Pogam et al., 2020).

The reduced oxygen carrying capacity (lower hematocrit
level) measured in pre-breeding buntings relative to wintering
individuals is surprising. Birds faced with high energy demands,
such as prolonged exercise for migration (Viscor et al., 1985;
Bairlein and Totzke, 1992; Morton, 1994; Piersma et al., 1996) or
high thermoregulatory requirements, typically show high oxygen
transport capacity (Swanson, 1990b; Morton, 1994; O’Connor,
1996; Le Pogam et al., 2020), and birds measured at Alert were
living in a considerably colder environment than those measured
in winter. The reason for this discrepancy is not immediately
clear. However, other studies have also observed a decline in
hematocrit during migration (e.g., Piersma et al., 1996; Landys-
Ciannelli et al., 2002; Jenni et al., 2006). One possible explanation
suggested by Jenni et al. (2006) is that birds could increase their
plasma volume by hemodilution to reduce blood viscosity, which
could reduce the heart’s energy expenditure during migration.
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Physiological Maintenance Costs Are
Higher on the Breeding Grounds

We observed that physiological maintenance costs measured
as BMR were higher during pre-breeding than during winter.
This result contrasts with our predictions (i.e., same or lower
BMR at Alert), but matches observations by Le Pogam et al.
(2021) who reported a spring related increase in BMR in outdoor
captive buntings kept on their wintering range. This elevated
BMR was in fact maintained in captive birds throughout the
periods corresponding to spring migration and most of breeding
(Le Pogam et al., 2021). Several studies on migratory shorebirds
have also reported an elevated BMR during the arrival period
or breeding season in the Arctic (Kvist and Lindstrom, 2001;
Lindstrom and Klaassen, 2003; Vézina et al., 2012) and this
increase in BMR has been interpreted as a result of high
thermoregulatory demands on the breeding grounds (Kersten
and Piersma, 1987; Kvist and Lindstrom, 2001; Jetz et al., 2008).
While the species in these studies typically winter in relatively
warm environments (Kvist and Lindstrom, 2001; Lindstrom and
Klaassen, 2003; Vézina et al., 2012), the snow buntings compared
here were also exposed to colder temperatures in the spring at
Alert than in eastern Québec in winter. As far as we know, this is
the first report of high maintenance costs at Arctic latitudes in a
pre-breeding passerine species. Furthermore, as BMR increased
independently from body mass, our results suggest that the
higher maintenance costs in the Arctic results from tissue level
metabolic activity (i.e., metabolic intensity, Swanson et al., 2017).
Interestingly, as this result was also observed in snow buntings
unable to migrate and exposed to much warmer temperatures,
it could be that some of the underlying variation is driven by
endogenous circannual cycles (Vézina et al., 2011; Karagicheva
etal., 2016).
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