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The small-sized sauropterygian Keichousaurus hui was one of the most abundant marine

reptiles from the Triassic Yangtze Sea in South China. Although Keichousaurus has

been studied in many aspects, including the osteology, ontogeny, sexual dimorphism,

and reproduction, the dentition of this marine reptile was only briefly described in

external morphology. In this study, we provide new information on Keichousaurus

tooth implantation, histology, and replacement based on a detailed examination of

well-preserved specimens collected in the past decades. The tooth histology has been

investigated for the first time by analyzing cross-sections of premaxillary teeth and

the tooth attachment and implantation have been further revealed by X-ray computed

microtomography. We refer the tooth replacement of Keichousaurus to the iguanid

replacement type on the basis of the observed invasion of small replacement tooth into

the pulp cavity of the functional tooth. Given the resemblance to other extinct andmodern

piscivorous predators in the morphology and structure of teeth, Keichousaurus might

mainly feed on small or juvenile fishes and some relatively soft-bodied invertebrates (e.g.,

mysidacean shrimps) from the same ecosystem.

Keywords: pulp cavity, plicidentine, tooth replacement, Keichousaurus, Triassic, South China

INTRODUCTION

Teeth are complex mineralized tissues that originated in jawed vertebrates more than 400 million
years ago (Rücklin et al., 2012). The shape, implantation, and replacement of teeth differ widely
across vertebrates and promote the radiation of this clade (Owen, 1841, 1842; Edmund, 1960,
1962; Peyer, 1968; Mehler and Bennett, 2003; Maxwell et al., 2012; Buchtová et al., 2013; LeBlanc
et al., 2017; McCurry et al., 2019). Reptiles show a diverse array of tooth shapes from homodont
to heterodont (Peyer, 1968; Rieppel, 2002) and from simple unicuspid to complex multicuspid
teeth (Ungar, 2010; Handrigan and Richman, 2011), reflecting functional adaptation to various
diets. Additionally, reptiles exhibit numerous combinations of tooth implantation and attachment
(Peyer, 1968; Mehler and Bennett, 2003; Buchtová et al., 2013; LeBlanc et al., 2017), ranging from
teeth possessing roots and lying within a socket (thecodonty), to teeth lying against the lingual wall
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of the jawbone (pleurodonty), and to teeth without roots or
sockets that are attached to the apex of the marginal jawbones
(acrodonty). Continuous tooth replacement (polyphyodonty) is
common for the vast majority of reptiles, although some groups
(e.g., acrodont lepidosaurs) have lost the ability to replace their
dentition (monophyodonty) (Edmund, 1960, 1962; Peyer, 1968;
Motani, 1997; Rieppel, 2001; Fastnacht, 2008; Maxwell et al.,
2012; Buchtová et al., 2013; Neenan et al., 2014; LeBlanc and
Reisz, 2015).

The small-sized sauropterygian Keichousaurus hui (rarely
exceeding 50 cm in total length) is one of the most abundant
reptiles from the Triassic Yangtze Sea in South China (Young,
1958; Rieppel and Lin, 1995; Jiang, 2002; Holmes et al., 2008;
Cheng et al., 2009; Fu et al., 2013; Xue et al., 2013). The genus was
originally classified by Young (1958) in Pachypleurosauridae or
in its own family (Keichousauridae) (Young, 1965) before formal
phylogenetic analyses. Recent analyses of the sauropterygian
phylogeny place Keichousaurus either at a relative basal
position of the Eosauropterygia (Shang et al., 2020) or within
Pachypleurosauridae (Li and Liu, 2020; Lin et al., 2021).
Represented by large quantities of well-preserved specimens,
Keichousaurus has been studied in many aspects including
the ontogeny, taphonomy, reproduction, sexual dimorphism,
allometry, and living style (Lin and Rieppel, 1998; Cheng et al.,
2004, 2009; Holmes et al., 2008; Fu et al., 2013; Xue et al.,
2013; Motani et al., 2015). However, the teeth of Keichousaurus—
significant organs for taxonomy and ethology (Radinsky, 1961;
Handrigan and Richman, 2011; Hwang, 2011)—were only briefly
described in their external morphology (Young, 1958, 1965; Lin
and Rieppel, 1998; Jiang, 2002; Holmes et al., 2008; Fu et al.,
2013). Compared with those in other marine reptiles (Maisch
andMatzke, 1997; Motani, 1997; Rieppel, 2001; Ciampaglio et al.,
2005; Caldwell, 2007; Maxwell et al., 2012; Neenan et al., 2014;
Sassoon et al., 2015), the teeth of Keichousaurus remain poorly
known in their internal structure, function, and replacement.

In this study, through a detailed examination of well-
preserved specimens, we aim to describe the tooth morphology,
internal structure, and tooth histology of Keichousaurus and
to discuss the tooth replacement, dental function, and food
preference of this taxon.

MATERIALS AND METHODS

All the studied specimens of Keichousaurus are housed in the
Resource and Environmental Engineering College of Guizhou
University (GZU), China. They were collected from the lower
part of the Zhuganpo (lower) member of the Falang Formation in
southwesternGuizhou (Dingxiao) and eastern Yunnan (Fuyuan),
South China (Figure 1B). This member of fossil beds, composed
of dark gray thin-to medium-bedded limestones or muddy
limestones with dolomitic limestones, indicates a carbonate
platform deposit environment (Liu and Xu, 1994; Wang, 1996,
2002; Rieppel, 1999; Rieppel et al., 2000; Jiang, 2002) (Figure 1A).
Also, from the fossil beds, rich invertebrates, bony fishes, and
several other types of marine reptiles are also found; the whole
fossil assemblage represents the renowned Xingyi Biota (Su,

1959; Jin, 2001; Liu et al., 2002, 2003; Li, 2006; Geng and Jin,
2009; Xu et al., 2012, 2015, 2018a,b; Tintori et al., 2015; Sun
et al., 2016; Ni et al., 2017; Xu and Ma, 2018; Shang et al.,
2020; Xu, 2020). The age of this biota was controversial (Benton
et al., 2013). Biostratigraphical studies of marine reptiles and
ammonites (Young, 1958; Chen, 1985; Li, 2006; Zou et al.,
2015) consistently support a late Middle Triassic (late Ladinian),
but conodont biostratigraphy (Yang et al., 1995; Wang, 1996,
2002; Wang et al., 1998) suggests a younger Late Triassic
(Carnian) age for this biota. Zou et al. (2015) commented that
the previous conodont identification is inaccurate; the conodont
“Paragondolella polygnathiformis” identified by Wang et al.
(1998) is actually a transition Paragondolella polygnathiformis-P.
nodosa recovered from a sample 3m above the vertebrate-bearing
interval. A recent zircon U-Pb age dating (240.8 ± 1.8Ma) (Li
et al., 2016) supports the determination of late Middle Triassic
(Ladinian) for the Xingyi Biota.

The specimens were prepared mechanically with sharp steel
needles and air scribe under optical microscope and some were
washed by dilute oxalic acid to further remove the matrix.
Tooth section and photography were performed at the Key
Laboratory of Vertebrate Evolution and Human Origins of
Chinese Academy of Sciences, Beijing, China. The whole skull
of the specimen (GZU V0056) was removed and embedded
in resin for preparation of transverse sections. Thin sections
of four premaxillary teeth (about 30µm in thickness) were
obtained from the bases of tooth crowns (perpendicular or
nearly perpendicular to the long axis of the tooth). These
sections were analyzed and photographed under cross-polarized
light using the Zeiss Imager A2m microscope. X-ray computed
microtomography was performed at the Yunnan Key Laboratory
for Palaeobiology of the Institute of Palaeontology, Yunnan
University, China, using a micro-CT (Xradia 520 Versa) with a
pixel size of 14.71µm in three axes.

TOOTH MORPHOLOGY AND INTERNAL
STRUCTURE

The general morphology of the dentition of Keichousaurus has
been described by Holmes et al. (2008) in their revision of the
skull of this taxon. The heterodont teeth with variation of sizes
are implanted in deep sockets of the premaxilla and maxilla in
the upper jaw and the anterior portion of the dentary in the lower
jaw (Figures 2A,B). The teeth in the premaxilla are strongly
procumbent (visible in dorsal view) and five in number, larger
than the anterior three teeth in the maxilla. The fourth and fifth
maxillary teeth are fang-like (caniniform), nearly as large as the
largest premaxillary teeth in size (Figures 2A–C), and the sixth
and remaining (about 10) maxillary teeth are notably smaller,
becoming angled more mesial than labial (Figures 2A,C,D). A
nearly complete series of 19 dentary teeth is discernable in
the specimen GZU V0028 including 6 enlarged teeth near the
symphysis followed by 13 smaller teeth posteriorly.

As typically in other marine reptiles, the tooth of
Keichousaurus can be divided into three parts: a crown, a
root, and the neck or cervical margin where these two parts
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FIGURE 1 | Maps. (A) Paleogeography of Southwest China near the Middle/Late Triassic boundary (modified from Liu and Xu, 1994). (B) Traffic map of fossil localities.
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FIGURE 2 | CT scans of skull of Keichousaurus. (A) Dorsolateral view (GZU V0028), scale bars = 5mm. (B) Line drawing of (A), scale bars = 5mm. (C) Ventrolateral

view (GZU V0028), scale bars = 5mm. (D) Ventral view (GZU V0516), scale bars = 5mm. ct, caniniform tooth; den, dentary; mx, maxilla; pr, premaxilla; to, tooth.

meet. The root is invisible in situ, but can be observed when it is
detached from the jawbone (Figures 3A,F). It has a contracted
basal pedicel deeply intercalated within the concave alveolus

(Figures 3D,E). The nearly cylindrical root gradually shrinks
from near the neck toward the opened root apex (Figure 3F). The
average length of the root is 0.73mm, accounting for about half
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FIGURE 3 | Teeth of Keichousaurus. (A) Premaxillary teeth (GZU V0036), scale bar = 2mm. (B) Ventral view of the skull (GZU V0095), scale bar = 3mm. (C) Dorsal

view of the skull (GZU V0057), scale bar = 4mm. (D) Premaxillary tooth, showing the root inserted into a concaved alveolus (GZU V0043), scale bar = 500µm. (E) A

(Continued)
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FIGURE 3 | caniniform tooth (GZU V0028), scale bar =1mm. (F) Magnified view of (A), showing an elongated root, scale bar = 1mm. (G) Left mandibular anterior

teeth (GZU V0023), showing the tooth neck, scale bar = 250µm. (H) Right mandibular tooth (GZU V0035), showing the apicobasal ridges, scale bar = 500µm. (I)

Right mandibular teeth (GZU V0095), showing the transverse furrows, scale bar = 500µm. al, alveolus; cb, crown base; ds, distal side; en, enamel; jb, jaw bone; la,

labial surface; li, lingual surface; md, mandible; ms, mesial side; mx, maxilla; ra, root apex; tc, tooth crown; tn, tooth neck; tr, tooth root.

to two-thirds of the whole length of the tooth. The waist-shaped
neck is presented as an annular depression (Figures 3F,G),
having a depth of 0.21–0.34mm. The crown is conical with a
sharp, slightly recurved dental cusp (Figures 3E,F,H). Lingually,
it is concave with an arc-shaped mesial surface (Figures 3G,H).
The crown has a maximal length of 1.51mm in the premaxillary
teeth and the ratio of height to width ranges from 2.5 to 3.5.
The external surface of the crown is ornamented with fine,
longitudinal ridges separated by multiple regularly spaced
grooves (Figures 3G–I). These longitudinal ridges, termed as
apicobasal ridges (Young et al., 2012, 2014a,b; Zverkov et al.,
2018; McCurry et al., 2019), are straight or slightly curved and
unbranched; they extend from the crown base to the apex of
cusp, tapering in width along the basal–apical direction. The
apicobasal ridges are continuous or interrupted by some shallow,
traverse furrows (Figure 3I).

The oval cross-section of the tooth crown (viewed from
its basal part) has two dark-colored layers (enamel and
dentine layer) surrounding a light-colored pulp cavity
(Figures 4A,B,F, 5A,B). A relatively bright and transparent
(unevenly mineralized) globular zone is discernable between the
enamel and dentine layers (Figures 5A,B). The enamel layer is
densely mineralized and very thin (about 5µm), indicated by
a black ring in the tooth section (Figures 5A,B); it gradually
becomes sparse toward the neck (Figure 4C). The dentine
layer, as the main component of the tooth, is relatively low in
density and bears some ridges and cracks in its internal wall
(Figures 4A,B). In tooth sections, the annular dentine is simply
folded, in which irregular white calcites and centripetally curved,
fibril-like dentinal tubules are also present (Figures 5A,C). The
circumpulpal dentinal tubules are closely packed near the pulp
cavity to make this area darker in color than the surrounding
areas of the dentine layer. It appears that some tubules nearly
extend into the center of the pulp cavity, indicated by some
irregular dark patches in the cavity (Figures 5A,D).

The pulp cavity (including pulp chamber and root canal)
is largely spindle shaped (Figures 4A,B,E), completely filled
with euhedral crystal grains of white calcites after the internal
connective tissue decayed. The average length from the recurved
tip of the pulp chamber to the apical portion of the dental cusp
(Figures 4A,B,D,E) is 0.36mm. At the horizontal level of the
base of the tooth crown, the pulp cavity reaches its maximum
width, which ranges from 0.16 to 0.27mm and accounts for about
fourth-fifths of the width of the tooth crown.

TOOTH REPLACEMENT

The tooth replacements of Keichousaurus are traceable in some
specimens (GZU V0021, 0044, 0049, 0053), in which small
replacement teeth are associated with the pulp cavities of larger

predecessor teeth (functional teeth) (Figures 6A–D). Among
them, the replacement teeth in the specimens GZU V0049
(Figures 6A,E) and GZU V0021 (Figures 6B,F) are the smallest
ones, which are exposed near the mesial-lingual side of the
pulp cavities of the predecessor teeth, accounting for slightly
less than half of the cavity of predecessor teeth in size. Both
have only a loose dentine layer without a distinct enamel layer.
In the specimen GZU V0044 (Figures 6C,G), the replacement
tooth is larger, accounting for slightly more than half of the
pulp cavity of the predecessor tooth. Within the predecessor
tooth, the replacement tooth extends anterodorsally from the
posteroventral edge of the root to the mesial-labial margin of the
pulp cavity. The replacement tooth (GZU V0044) (Figure 6C)
bears a triangular pulp cavity larger than that in the replacement
tooth of specimens GZU V0021 (Figure 6B). In specimen GZU
V0053 (Figures 6D,H), the replacement tooth is the largest
one, nearly occupying the whole space of this pulp cavity. The
replacement tooth has enamel and dentine layers with an even
larger pulp cavity.

Two typical tooth replacement types are present in reptiles
(Edmund, 1960; Rieppel, 1978; De Ricqlès and Bolt, 1983):
iguanid and varanid tooth replacement types. In the former,
a replacement tooth germinates at the lingual surface of root
of a functional tooth and then invades into the pulp cavity of
its related functional tooth during tooth growth; in the latter,
the replacement tooth erupts in the interdental location and
does not migrate into the pulp cavity during tooth development.
Moreover, there is an intermediate replacement type in some
reptiles, in which the replacement tooth adopts the replacement
path of the iguanid type (existence of an invasion into the pulp
cavity of the functional tooth), but the erupting position is
similar to that of replacement tooth in the varanid type, with
a distal deviation (Rieppel, 1978; Bertin et al., 2018). Based on
the presence of replacement teeth inside the pulp cavity of the
functional teeth (Figures 6A–H), we conclude that the tooth
replacement of Keichousaurus can largely be referred to the
iguanid replacement type. This replacement type was also found
in plesiosaurs, Jurassic ichthyosaurs, Platypterygius, and extant
crocodilians (Edmund, 1960, 1962; Motani, 1997; Fastnacht,
2008; Maxwell et al., 2012).

TOOTH FUNCTION AND FOOD
PREFERENCE

The teeth of Keichousaurus are thecodont and their roots
deeply insert into individual alveoli (Figures 3D,E), such as
those of some other eosauropterygians (e.g., Nothosaurus and
Simosaurus) and crocodiles (Rieppel, 2001; LeBlanc et al., 2017).
The waist-shaped tooth neck has a certain depth (0.21–0.34mm)
and the interdental gap is likely filled by gums, which contribute
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FIGURE 4 | Internal structure of teeth of Keichousaurus. (A) Dorsal view of teeth (GZU V0049), scale bar = 500µm. (B) Three right premaxillary teeth, showing the

large pulp cavities (GZU V0049), scale bar = 250µm. (C) Two teeth of the central premaxilla side, showing the rare faction of enamel on the neck (GZU V0042), scale

bar = 500µm. (D) Dorsal view (GZU V0050), scale bar = 1mm. (E) Second teeth on the left premaxilla side (GZU V0046), showing the narrower root canals, scale

bar = 500µm. (F) Cross-section (GZU V0049), showing a two-layer structure, scale bar = 250µm. de, dentine; en, enamel; rc, root canal; pc, pulp cavity.

to the tooth stability (Chung et al., 2006; Carnio et al., 2007;
Bourie et al., 2008). The teeth of Keichousaurus in anterior
portions of jaws are elongated, fang like, and loosely arranged
(Young, 1958, 1965; Jiang, 2002; Holmes et al., 2008; Fu et al.,
2013). These teethmight exert themain force used to control prey
by latching onto it and preventing escape (Figures 2A,B,D). The
small teeth in posterior portions of jaws (Figures 2A,C) could act
as a ratchet, transporting the prey posteriorly to the esophagus
(Taylor, 1987; Taylor and Cruickshank, 1993).

The crowns of Keichousaurus are ornamented with apicobasal
ridges (Figures 3G,H). These ridges, also present in other
sauropterygians (e.g., Pliosaurus and Helveticosaurus) and some
crocodylomorphs (Young et al., 2012, 2014a,b), might help pierce
slippery or scaly struggling prey, facilitate blood drain, and
prevent the prey from escaping (Frazzetta, 1966; Wright et al.,

1979; Vaeth et al., 1985; Kardong and Young, 1996; Massare,
1997; Young et al., 2014b; McCurry et al., 2019). Plicidentine
manifested as apicobasal ridges externally (Figures 3H, 5A,C;
Tomes, 1878; Maxwell et al., 2012; Macdougall et al., 2014;
McCurry et al., 2019) is regarded as a functional property of
large predators (Scanlon and Lee, 2002; Modesto and Reisz,
2008). It, commonly seen in labyrinthodonts (Owen, 1841, 1842),
mosasaurs (Schultze, 1970), ichthyosaurs (Maxwell et al., 2011),
plesiosaurs (Owen, 1841), extant varanoids (Zaher and Rieppel,
1999), and snakes (Scanlon and Lee, 2002), could enhance the
stress resistance and strength of the tooth-to-jaw anchoring
(Peyer, 1968; Scanlon and Lee, 2002; Maxwell et al., 2011;
Macdougall et al., 2014).

Based on the conical crown shape, sharp cusp (Figures 3E,H),
moderate size (crown height to width between 2.5 and 3.5), and
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FIGURE 5 | Cross-sectional views of premaxillary teeth of Keichousaurus (GZU V0056). (A) Tooth section (numbers 1 and 2) showing a dense outer ring, globular

zone, and a dentinal bending belt, scale bar = 200µm. (B) Tooth section (number 3), showing a dense enamel ring and globular zone, scale bar = 100µm. (C)

Close-up of (A), showing the dentinal bending belt, with the distribution of firil-like dentinal tubules, scale bar = 50µm. (D) Close-up of (A), showing the densely

packed dentinal tubules, scale bar = 50µm. de, dentine; en, enamel; dt, dentinal tubule; gl, globular zone; pc, pulp cavity.

ornamentation of apicobasal ridges (Figures 3G,H), the teeth
of Keichousaurus could be categorized as pierce II (Massare,
1987). This type of piercing teeth (Figures 3A,D,H), unlike those
in the filter-feeder Atopodentatus with needle-like teeth (Cheng
et al., 2014) or those in durophagous placodontian predators with
bulbous teeth (Neenan et al., 2013), are similar to the “fish-trap”
teeth of exclusively piscivorous predators such as many mesozoic
marine reptiles (ancient plesiosaurs, pliosauroids, teleosaurs,
geosaurs, and nothosaurs) and extant river dolphins and gavial
(Massare, 1987, 1997; Taylor and Cruickshank, 1993; Sander,
1999; Rieppel, 2002; Ciampaglio et al., 2005; Shang, 2007).

The teeth of Keichousaurus with large pulp cavities
(Figures 4A,B,F) might have had sound microcirculation
systems and keen sensory nerves to perform well in many
respects including eliciting endogenous mechanisms of defense,
moderating inflammation, providing pain tolerance, and
promoting postinjury healing (Gazelius et al., 1987; Silverman
and Kruger, 1987; Kimberly and Byers, 1988; Byers et al.,
1990; Olgart, 1990; Taylor and Byers, 1990; Byers and Taylor,
1993; Chen et al., 1994; Walton and Nair, 1995; Evans et al.,
1999; Hahn and Liewehr, 2007; Caviedes-Bucheli et al., 2008;
Couve et al., 2013; Satoko et al., 2013). The large pulp cavities
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FIGURE 6 | Tooth replacement of Keichousaurus. (A) Left premaxillary teeth in dorsal view (GZU V0049), scale bar = 500µm. (B) Right premaxillary teeth in ventral

view (GZU V0021), scale bar = 500µm. (C) Left maxillary teeth in dorsal view (GZU V0044), scale bar = 500µm. (D) Right maxillary teeth in dorsal view (GZU V0053),

showing the, scale bar = 500µm. (E) Line drawing of (A), scale bar = 500µm. (F) Line drawing of (B), scale bar = 500µm. (G) Line drawing of (C), scale bar =

500µm. (H) Line drawing of (D), scale bar = 500µm. al, alveolus; ft, functional tooth; rt, replacement tooth; pc, pulp cavity.

are prevalent among aquatic carnivores such as dolphins and
the crocodilian Alligator (Westergaard and Ferguson, 1990;
Slooten, 1991). Considering the large pulp cavity is surrounded
by a thin wall, the bending resistance and strength of the
tooth might be achieved by the radial foldings of the dentine
(Plicidentine) (Figures 5A–C) (Preuschoft et al., 1991). The teeth
of Keichousaurus, thus, might respond sensitively to external
stimuli and have a relatively strong piercing force.

A rich diversity of small scaly or naked ray-finned fishes
has been recovered from the same fossiliferous layer as
Keichousaurus including thoracopterids, peltopleurids and
luganoiids (Xu et al., 2012, 2015, 2018b; Xu, 2020), holosteans
(Liu et al., 2002, 2003; Xu et al., 2018a), and stem teleosts
(Tintori et al., 2015). These fishes, as primary consumers
in the food web of the Xingyi Biota, appear the potential
prey of Keichousaurus and other piscivorous marine reptiles
(e.g., nothosaurs). Other primary consumers in the same
ecosystem include mysidaceans, gastropods, brachiopods,
bivalves, ammonoids, etc. Among them, the small and relatively
soft-bodied mysidaceans are probably the alternative prey of

Keichousaurus, but other invertebrates with hard shells are
unlikely in the diet of Keichousaurus.

CONCLUSION

Our detailed examination of well-preserved specimens
of Keichousaurus provides new information on its tooth
implantation, histology, and replacement. The thecodont teeth
of Keichousaurus resemble the “fish-trap” teeth of other extinct
and modern piscivorous predators: the cylindrical root deeply
inserts into the alveolus with its depth accounting for about a
half to two-thirds of the tooth; the dental neck is presented as an
annular depression (0.21–0.34mm in depth); and the conical,
thin-enameled crown bears apicobasal ridges on its surface with
a sharp, slightly recurved tooth cusp apically. These ridges might
help pierce slippery or struggling scaly prey, facilitate blood
drain, and prevent the prey from escaping. In the cross-section
of the basal portion of the crown, the tooth has two dark-colored
layers (dense enamel and radially folded dentine) surrounding
a light-colored large pulp cavity, with some dentinal tubules
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invading the cavity. The tooth replacement of Keichousaurus
can largely be referred to the iguanid replacement type on the
basis of the invasion of small replacement tooth into the pulp
cavity of the predecessor tooth. Deduced from the functional
morphology of the tooth, the potential prey of Keichousaurus is
mainly composed of small or juvenile fishes and some relatively
soft-bodied invertebrates (e.g., mysidacean shrimps) from the
same ecosystem.
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