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Flower colour is mainly due to the presence and type of pigments. Pollinator preferences
impose selection on flower colour that ultimately acts on flower pigments. Knowing how
pollinators perceive flowers with different pigments becomes crucial for a comprehensive
understanding of plant-pollinator communication and flower colour evolution. Based
on colour space models, we studied whether main groups of pollinators, specifically
hymenopterans, dipterans, lepidopterans and birds, differentially perceive flower colours
generated by major pigment groups. We obtain reflectance data and conspicuousness
to pollinators of flowers containing one of the pigment groups more frequent in flowers:
chlorophylls, carotenoids and flavonoids. Flavonoids were subsequently classified in UV-
absorbing flavonoids, aurones-chalcones and the anthocyanins cyanidin, pelargonidin,
delphinidin, and malvidin derivatives. We found that flower colour loci of chlorophylls,
carotenoids, UV-absorbing flavonoids, aurones-chalcones, and anthocyanins occupied
different regions of the colour space models of these pollinators. The four groups of
anthocyanins produced a unigue cluster of colour loci. Interestingly, differences in colour
conspicuousness among the pigment groups were almost similar in the bee, fly, butterfly,
and bird visual space models. Aurones-chalcones showed the highest chromatic
contrast values, carotenoids displayed intermediate values, and chlorophylls, UV-
absorbing flavonoids and anthocyanins presented the lowest values. In the visual model
of bees, flowers with UV-absorbing flavonoids (i.e., white flowers) generated the highest
achromatic contrasts. Ours findings suggest that in spite of the almost omnipresence
of floral anthocyanins in angiosperms, carotenoids and aurones-chalcones generates
higher colour conspicuousness for main functional groups of pollinators.

Keywords: anthocyanins, carotenoids, chlorophylls, colour space models, flavonoids, flower colour, flower
pigments, pollinators

INTRODUCTION

The colours of flowers, usually those of petals, mainly act as a signal to attract pollinators by
making flowers highly conspicuous against the vegetative background. Thus, flower colour largely
affects floral advertising to pollinators, which has subsequent implications in plant reproduction
(Fenster et al., 2004; Phillips et al., 2020). Although abiotic agents of selection may be involved
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in driving flower colour evolution, this trait is mostly influenced
by selection pressures exerted by biotic agents, specifically
antagonistic florivores and most importantly mutualistic
pollinators (Strauss and Whittall, 2006; Dalrymple et al., 2020;
Sullivan and Koski, 2021). Hence, a deeper insight into how
flowers produce their colours and how animals perceive them
becomes crucial for a comprehensive understanding of both
plant-pollinator interactions and flower colour evolution.

Flower colour is mainly produced through pigmentation, in
which chemical compounds, i.e., pigments, can absorb certain
wavelengths of light and reflect the remaining (van der Kooi
et al., 2019). The vast range of flower colours relies on four
major pigment classes: chlorophylls, carotenoids, flavonoids, and
betalains (Lee, 2007; Narbona et al., 2021). Each pigment class
has a distinctive chemical structure, which ultimately affects
the specific wavelengths it absorbs and thereby the colour
it generates (Grotewold, 2006; Glover, 2007; Tanaka et al,
2008). Chlorophylls absorb in the blue and red regions of the
spectrum, generating green colourations for humans; carotenoids
mainly absorb in the blue region, giving rise to yellow-orange
colourations; and betalains absorb in either the blue or green
regions, generating yellow or pink colourations, respectively
(Grotewold, 2006; Narbona et al., 2021). Flavonoids are the
most widespread and diverse class of pigments in angiosperms
(Iwashina, 2015). Flavonoids include important groups such as
aurones and chalcones absorbing in the blue region (hereafter,
aurones-chalcones; yellow colouration), and flavonols, flavones
and flavanones absorbing in the ultraviolet spectrum (hereafter,
UV-absorbing flavonoids; white and pale-yellow colourations)
(Harborne, 1984; Tanaka et al., 2008; Narbona et al., 2021).
Yet, anthocyanins are the flavonoids that generate the most
varied colouration to flowers; they absorb in different parts of
the green region of the spectrum and produce shades of blue-
pink-orange-red floral colours (Grotewold, 2006). Anthocyanins
are classified depending on the hydroxylation level of the basic
structures, the anthocyanidins, being the six more common
in angiosperms (in this order): cyanidin (pink colourations),
delphinidin (blue), pelargonidin (orange-red), peonidin (red),
petunidin (purple), and malvidin (blue) (Castafieda-Ovando
et al,, 2009). Furthermore, each of the major classes of pigments
and subcategories contains hundreds or thousands of different
compounds that vary in the configuration of the core molecular
structure (Davies, 2009), which generally affect the absorption of
light and thereby the resulting colour (i.e., hue).

Petals may advertise with simple homogenous colours in some
species, through to extremely complex colour patterns in other
plant species. Our ability to interpret such complex signals is just
starting to emerge (Lunau et al., 2021; Tunes et al., 2021). Even
in petals or petal parts with homogeneous colour, one or several
types of major pigment classes may be accumulated to generate
a unique colour (Kay et al., 1981; Grotewold, 2006; Davies,
2009). For example, it is common to find flowers with different
types of anthocyanins or with the presence of anthocyanins
and carotenoids coexisting (Glover, 2007; Ng and Smith, 2016;
Narbona et al., 2021). Only the accumulations of betalains and
anthocyanins are mutually exclusive, being the production of the
former restricted to some families of the order Caryophyllales

(Moghe and Smith, 2018; Timoneda et al., 2019). Pigments are
usually located in the epidermal and mesophyll cell layers of
petals, and each single cell may accumulate one or several major
pigment classes (Kay et al., 1981). In this way, the production
of each major class of pigments within the cell is completely
independent from each other due to the biosynthetic pathways
are unrelated (Tanaka et al., 2008; Fattorini and Glover, 2020;
Li et al, 2020). The evolutionary gain and loss of one or
various major flower pigment classes in species of the same
linage is common across the angiosperms (Rausher, 2008; Smith
and Goldberg, 2015; Ng and Smith, 2016; Landis et al., 2018;
Wessinger et al., 2019; Roguz et al., 2020; Berardi et al.,, 2021).
Those shifts are often reversible, suggesting that the functionality
of the underlying biochemical pathways is conserved (Ng et al.,
2018). Evolutionary changes in major floral pigment groups are
ubiquitous, and there are attempts in some lineages to assess how
different pigment groups are perceived by their main pollinators
(Muchhala et al., 2014; Ng and Smith, 2016; Kellenberger et al.,
2019; Wessinger et al., 2019; Ogutcen et al., 2020). However,
broad comparative studies directly linking pigment biochemistry
with pollinator visual system models need to be done (see
An et al,, 2018; Stavenga et al., 2021).

The pollinator’s visual system clearly determines how colour
is perceived (Garcia et al,, 2020; Dyer et al, 2021), differing
strikingly among higher-level taxonomical groups but showing
greater similarity within more closely related animal groups
(Price et al., 2019). In this regards, insect colour vision has been
thoroughly studied, namely in the honeybee Apis mellifera, and
several butterflies, hawkmoths, flies and beetles, and marked
differences have been found among orders and even among
families (van der Kooi et al., 2021). Among insect pollinators,
Lepidoptera species present receptor’s visual systems particularly
diverse with up to 15 different photoreceptors, but not all are
equally involved in colour perception (van der Kooi et al,
2021). In contrast, the visual system of main hymenopteran
pollinators (bees) is rather constant, and most species have three
photoreceptors sensitive to UV, blue and green light (Goldsmith,
1990; Briscoe and Chittka, 2001); however, an additional receptor
sensitive to red is found in some few species (Peitsch et al., 1992;
van der Kooi et al., 2021). Likewise, main dipteran pollinators
(Syrphidae, Muscoidae, and Bombyliidae) have similar visual
systems with four types of photoreceptors involved in colour
processing, with sensitivity peaks at approximately 330, 340,
460, and 540 nm (Lunau, 2014; An et al.,, 2018; Hannah et al.,
2019). Birds, the main pollinator group aside insects, have four
kinds of photoreceptors, but two types of visual systems occur
depending on the sensitivity of receptor with peak at lowest
wavelengths (UVS or VS types, that is ultraviolet or violet
sensitive), the remaining three being sensitive to blue, green, and
red wavelengths (Goldsmith, 1990; Vorobyev and Osorio, 1998;
Hart and Hunt, 2007).

In order to represent colour stimuli into perceptual
spaces of different pollinator groups, different colour vision
models have been developed taking into consideration their
photoreceptor spectral sensitivities and their mechanisms of
neuronal processing. The colour vision system of bees has
been extensively studied and several vision models have been
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proposed (Backhaus, 1991; Chittka, 1992; Vorobyev and Brandt,
1997; Vorobyev and Osorio, 1998). The colour hexagon (Chittka,
1992) is the most widely used vision model for bees and is
applicable to a wide range of bee species; it allows measurement
of perceived chromatic differences and categorisation of bee
colours, but it is unclear if and how bees might form colour
categories (Renoult et al., 2017). Our understanding of colour
vision system of flies is considerably lesser; yet, Troje (1993)
developed a vision model for blowflies and found strong
evidence of a categorical colour vision, and blowflies were unable
to distinguish stimuli falling within a colour category. However,
it has been proved that hoverflies can discriminate colours
throughout a continuous variation, although neural mechanisms
underlying their colour vision are similar to those proposed
by Troje for blowflies; thus, Troje’s model can also be used to
measure chromatic differences as perceived by hoverflies (An
et al., 2018; Hannah et al,, 2019). Generating a colour space
model for butterflies is more complex due to the diversity of
their visual systems and their high number of photoreceptors
(Arikawa, 2017; van der Kooi et al, 2021). Yet, in Papilio
xuthus it has been proved that not all eight photoreceptors
are involved in colour vision and a tetrachromatic vision
systems has been proved (Koshitaka et al, 2008; Arikawa,
2017); from this, a tetrahedral colour space, similar to that
of birds (see below), has been proposed to represent colours
under Papilio vision and measure the perceived chromatic
differences (Ohashi et al., 2015; Kantsa et al., 2017). To represent
colour stimuli under bird vision, a tetrahedral colour space is
used, this space being a representation of the stimulation of
the four photoreceptors involved in avian colour perception
(Endler and Mielke, 2005; Stoddard and Prum, 2008; Burd et al.,
2014). As the previous ones, this model also allows to measure
perceived chromatic differences among stimuli (Endler and
Mielke, 2005; Stoddard and Prum, 2008; Camargo et al., 2019).
A considerable number of studies show that functional groups
of pollinators can perceive differently the same flower colour
(e.g., Ohashi et al., 2015; Bergamo et al., 2018; Whitney et al,,
2020). In fact, it has been demonstrated that flower colours
have evolved in different regions of the world to match the
visual capabilities and preferences of local pollinator fauna
(Burd et al., 2014; Shrestha et al.,, 2016; Camargo et al., 2019;
Coimbra et al., 2020). Recently, it has been found in species
of the Gesneriaceae that the production of certain groups of
anthocyanins may generate flower reflectance spectra that are
adapted to the specific pollinator groups (Ogutcen et al., 2020).
Thus, it is particularly relevant to assess if major pigment groups
generate visual signals which conspicuousness differs for the
main pollinator groups.

In this study, we analysed how flowers containing different
pigments classes are perceived by the main functional groups of
pollinators, specifically hymenopterans, dipterans, lepidopterans,
and birds. We focused our research on flowers with petals
homogenously coloured containing only one group of flower
pigments. We used the flower reflectance spectra of 123 species
with known pigment composition to address the following
questions: How do main groups of pollinators perceive the
colours generated by different major pigment classes? Is there any

pigment class that is more conspicuous for a particular pollinator
group? Theory of pollination syndromes hypothesised that some
groups of pollinators such as bees, flies, butterflies or birds show
preference for certain flower colours (Faegri and Van der Pijl,
1979). However, further studies showed that these predictions
are only met in certain pollinator groups (Reverté et al., 2016).
Flowers visited by bees are expected to be blue or violet, which
is supported in laboratory and field studies (Giurfa et al., 1995;
Dyer et al.,, 2016; Reverté et al., 2016). In addition, honeybees
and bumblebees show inmate flower colour preferences for these
two colours (Chittka and Wells, 2004). Therefore, we predict
that flowers containing blue-violet pigments, i.e., anthocyanin
derivatives (Harborne, 2014), may show higher conspicuousness
for hymenopterans than those containing other pigment groups.
In contrast, flowers visited by dipterans are mostly yellow and
white (Reverté et al., 2016) and hoverflies show innate preferences
to these colours (Lunau, 2014; Dunn et al., 2020); thus, we
expect that flowers containing yellow carotenoids or aurones-
chalcones and those containing white UV-absorbing flavonoids
may show higher conspicuousness for dipterans. Lastly, reported
colour preferences for butterflies are diverse, varying among
species or even between sexes (Yoshida et al., 2015; Arikawa,
2017; Arikawa et al., 2021) and no clear preferences have been
reported for birds (Lunau et al, 2011). However, given that
both birds and many butterflies have red photoreceptors (Peitsch
et al,, 1992; van der Kooi et al., 2021), one would expect that
pelargonidin-containing flowers would be more conspicuous to
both groups of pollinators.

MATERIALS AND METHODS

Groups of Flower Pigments Considered

We chose the pigment classes or groups more frequent in
flowers: chlorophylls, carotenoids, and flavonoids (Figure 1A).
We intentionally excluded betalains because the number of
species with biochemical information on the presence of these
pigments in their flowers is limited (Strack et al., 1981, 2003;
Sakuta, 2014; Polturak and Aharoni, 2018), and no reflectance
data is available for these species. The details of biochemical
information of flowers containing flavonoids are much more
comprehensive than those for the chlorophylls and carotenoids
(e.g., Harborne et al., 1975; Harborne and Williams, 2000;
Andersen and Markham, 2006); thus, for this reason we only
considered pigment subcategories in flavonoids. In addition, in
most studied species containing carotenoids, flowers frequently
show a mix of several subcategories of carotenoids (Ohmiya,
2011, 2013; Yuan et al., 2015; Wang et al., 2018). On the basis
of their molecular and absorption characteristics, we chose the
following groups of flavonoids: UV-absorbing flavonoids (mostly
flavonols and flavones), aurones-chalcones, and anthocyanins
(Mabry et al., 1970; Harborne, 1984; Andersen and Markham,
2006). Furthermore, we subsequently divided anthocyanins
according to the type of anthocyanidins, namely, cyanidin,
pelargonidin, delphinidin, and malvidin derivatives (Figure 1A).
We excluded other anthocyanins, such as peonidin or petunidin
derivatives, from the study because of the low number of known
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FIGURE 1 | (A) Examples of species with flowers containing one of the main groups of pigments considered in this study and its molecular structures (in the boxes).
Rhamnus lycioides (Rhamnaceae), chlorophylls; Ranunculus acris (Ranunculaceae), carotenoids; Crataegus monogyna (Rosaceae), UV-absorbing flavonoids;
Andryala integrifolia (Asteraceae), aurones-chalcones; Silene littorea (Caryophyllaceae), cyanidins; P somniferum (Papaveraceae), pelargonidins; Cichorium intybus
(Asteraceae), delphinidins; Malva sylvestris (Malvaceae), malvidins. The colour of the box represents the approximate colours producing in flowers based on human
vision model. (B) Reflectance spectra of all species used in this study grouped by types of flower pigments. The colour of each spectral line represents the flower
colour based on human vision model.

species containing these pigments (Harborne and Williams, 2000;
Andersen and Markham, 2006).

Flower Pigment Composition

We mainly obtained biochemical data of flowers by literature
review (N = 78), and additionally performed our own analyses
(N = 45) to complete the sample of some pigment groups
that are poorly represented in the bibliography, such as
chlorophylls, carotenoids, and UV-absorbing flavonoids (see
below). Regarding literature review, we mainly used the series
"A survey of anthocyanins" published by G. M. Robison
and R. Robison and their collaborator (Lawrence et al,
1938 and references therein) to obtain data of species with
floral anthocyanins, although we also used other studies
(Supplementary Table 1). For species with flowers containing
either carotenoids or aurones-chalcones, we mainly used those

listed in Camara et al. (1995) and Boucherle et al. (2017),
respectively. In total, we obtained biochemical data of seven
species containing chlorophylls, 33 species showing carotenoids
and 83 species containing flavonoids (seven with aurones-
chalcones, nine with UV-absorbing flavonoids, eight with
pelargonidins, 13 with malvidins, 22 with cyanidins, and 24
with delphinidins; Supplementary Table 1). Species belong to 41
families of angiosperms, with a mean of three species per family
and a maximum of 15 in Asteraceae and Fabaceae. We discarded
species which flowers contain traces or mixtures of more than
one group of anthocyanins or even mixtures with other pigments
groups (mainly carotenoids).

For analytical identifications of major pigment groups, we
performed differential extraction method followed by an analysis
of absorbance spectra (Schoefs, 2004; Thrane et al., 2015). Briefly,
we used two solvents to extract and separate the mayor pigments
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classes in each sample: methanol with 1% HCI and pure acetone.
Methanol solution is particularly effective to extract flavonoids,
whereas acetone mainly extracts carotenoids and chlorophylls
(Harborne, 1984; Schoefs, 2004). We placed the same quantity
of floral tissue (6-25 mg of fresh weight) in two microtubes
containing 1.5 mL of each solvent, which overnighted at 4°C in
the dark and kept in the freezer at —80°C until further analysis.
We measured absorbance spectra of the samples in each solvent
using a Multiskan GO microplate spectrophotometer (Thermo
Fisher Scientific Inc., MA, United States) with polypropylene
96-well microplates. We set the scan mode from 280 to
700 nm with 1 nm steps at 22°C constant temperature. We
performed identification of mayor pigment classes by means of
spectrophotometric analysis. The fact that each pigment group
have a particular absorbance spectrum with distinguishable peaks
(Mabry et al., 1970; Ritchie, 2006; Narbona et al., 2021) allowed
us to identify such pigments over the absorbance spectra of floral
extracts (Harborne, 1984; Thrane et al., 2015).

Reflectance Data and Spectral Analysis

For 80 out of the total 123 species used in this study we
downloaded floral reflectance data from the Floral Reflectance
Database (hereafter “FReD”) (Arnold et al., 2010), whereas for
the remaining 43 we obtained them from direct measurements
performed from wild flowers (Supplementary Table 1). For
direct measurements, we used a Jaz portable spectrometer
equipped with a deuterium-tungsten light source (200-800 nm;
Ocean Optics, Dunedin, FL, United States), calibrated with a
white standard (WS-1-SL, Ocean Optics; see more details in Del
Valle et al., 2018). During measurements, light was incident on
the adaxial surface of the petals at an angle of 45°. For species
with multiple floral colours, we considered only the predominant
colour occupying most of the petal area. Similarly, for species
with UV or visible petal colour patterns (i.e., bull’s-eyes), we
studied the outer part of the petal (see specific methods in
Heuschen et al., 2005 and Ortiz et al., 2021).

For the spectral analyses, we considered wavelengths between
300 and 700 nm (Briscoe and Chittka, 2001; Endler and Mielke,
2005). We processed reflectance curves prior to conduct further
analysis and plotting. We first used the “procspec” function
of the pavo R-package (Maia et al, 2019) to handle negative
values, setting the minimum value to zero, but scaling other
values accordingly. Then, for noise removal, we used the
same function to smooth reflectance curves with a smoothness
parameter of 0.20.

To describe the colour produced by each pigment, we
calculated hue from its reflectance spectrum (Renoult et al,
2017; van der Kooi et al., 2019). Hue, is usually defined as the
wavelength of maximum reflectance, which raises problems when
processing reflectance spectra with more than one maximum
(Grill and Rush, 2000; Maia et al., 2019), as is common
in flowers (Chittka et al., 1994). Thus, we used hue from
segment classification analysis (Endler and Mielke, 2005), which
is particularly suitable for analysis of all data distributions and
for detecting broad trends (Kemp et al., 2015), and we used the
modification of Smith (2014) to express hue in degrees. Although
more accurate methods exist to calculate hue as specifically

perceived by some pollinators like bees (Chittka and Wells,
2004; Dyer et al., 2016) the method used here is suitable when
considering a broader pollinator range.

Flower Colour Conspicuousness to

Pollinators

To assess colour perception of flowers by hymenopterans,
dipterans, lepidopterans and birds, we translated the reflectance
spectra to a position in four widely used colour space models.
We used the colour hexagon model for the trichromatic vision
of bees (Chittka et al., 1992), the categorical space model for the
tetravariant visual system of flies (Troje, 1993) and tetrahedral
colour space models for the tetrachromatic visual systems of
butterflies (Ohashi et al., 2015) and birds (Goldsmith, 1990;
Briscoe and Chittka, 2001). We plotted the processed reflectance
curves as loci in these colour spaces using the function “colspace”
in the pavo R-package (Maia et al., 2019). For bee vision model,
we used photoreceptor sensitivities of the honeybee A. mellifera
(Chittka et al., 1992), for fly vision model those of housefly
Musca domestica (Troje, 1993), for butterfly vision model those
of swallowtail P. xuthus (Koshitaka et al., 2008), and for bird
vision model we used the average photoreceptor sensitivities of
the VS vision system of Trochilidae and Meliphagidae (Odeen
and Hastad, 2010; Burd et al,, 2014), the two largest groups of
bird pollinators (Krauss et al., 2017). All four models incorporate
von Kries adaptation, which assumes that receptors adapt to
light environment (Renoult et al.,, 2017). In all cases, we used
the standard daylight function (D65 irradiance function) as
illuminant, and the average spectrum of green foliage proposed
by Chittka (1992) as background. We calculated the chromatic
contrast against the background (i.e., the Euclidean distance
between the colour loci of the flower and the achromatic centre;
Rohde et al, 2013) according to the photoreceptor spectral
sensitivities of the four colour space models. The stronger is
flower contrast against the green foliage background, the easier
will be the flower detection by pollinators. We also calculated
the achromatic contrast for bees (i.e., green contrast) as the
difference between the excitation value generated by the stimulus
in the green photoreceptor and 0.5, which is the excitation value
generated by the background in that receptor (Spaethe et al.,
2001). This parameter is important because it is known that
bees use this contrast to detect distant flowers under small visual
angles (Spaethe et al., 2001). We did not calculate the achromatic
contrast for flies, butterflies and birds because no behavioural
information was available in this regard (Ohashi et al., 2015).

Statistical Analysis

We used phylogenetic ANOVAs (phylANOVAs) to control the
potential influence of phylogeny when analysing differences
among flowers containing main groups of pigments in hue,
chromatic and achromatic contrasts. To perform phylANOVAs,
we used the “phytools” R-package (Revell, 2012) with 10,000
simulations for each test and Holm-adjusted P-values for post hoc
comparisons. To construct the phylogenetic tree used in the
analyses, we used the “phylo.maker” function implemented in
the “V.PhyloMaker” R-package (Jin and Qian, 2019), which uses
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a mega-tree GBOTB.extended derived from the combination
of GBOTB for seed plants (Smith and Brown, 2018) and the
phylogeny for pteridophytes published in Zanne et al. (2014) as
a backbone. We standardised species names according to The
Plant List' since these are the ones used by V.PhyloMaker. We
set the options “nodes = nodes.info.1” (the genus- and family-
level node information was extracted from the mega-tree) and
“scenarios = S3” (species tips absent from the mega-tree are
bound to genus- or family-level following specific rules described
in Jin and Qian, 2019). All statistical analyses were conducted in
R 4.0.3 (R Core Team, 2021).

RESULTS

Spectral Properties of Flowers

Containing Main Groups of Pigments

Chlorophyll-containing flowers were characterised by a low
reflection, a peak in the green region and a shoulder in yellow
and red regions (Figure 1B). Most flowers with carotenoids
displayed a steep slope before the green region of the spectrum
(~560-600 nm) and a secondary peak in the UV region (300-
400 nm). Flowers containing either UV-absorbing flavonoids
or aurones-chalcones lacked reflectance in the UV wavelengths,
but differed in the range they reflect: while UV-absorbing
flavonoids reflected all visible light (400-700 nm), aurones-
chalcones mostly reflected at wavelengths higher than 500-
550 nm. Flowers with the four groups of anthocyanins showed
reflectance spectra with a generalised low reflectance in the UV
and green regions, but displayed some differences that may
affect the resulting flower colour (Figure 1B). Three species
with flowers containing pelargonidins (Papaver somniferum, P.
rhoeas, and Lysimachia arvensis orange morph) had spectra
with low reflection in the blue region producing human orange
or red colourations. In most flowers containing delphinidins,
reflection was also low in the yellow region, which confers the
distinctive blue colourations, but this characteristic is shared with
other flowers containing cyanidins, pelargonidins, or malvidins.
Flowers containing anthocyanins showed the highest variability
in reflectance spectra within each group. On the other hand,
the groups of pigments showed significant differences in hue
(F = 1484.0, P < 0.001), calculated following the segment
classification method. Hue values were structured in three
significantly different groups: chlorophylls; carotenoids, UV-
absorbing flavonoids and aurones-chalcones; and anthocyanins
(Supplementary Figure 1 and Supplementary Table 2).

Flower Pigment Groups as Perceived by

Pollinators

In general, floral colour loci of main pigment groups occupied
different regions in the bee, fly, butterfly, and bird colour space
models (Figure 2; see Supplementary Figures 2-5 for individual
representations of each pigment group in each colour space).
In the hexagonal colour model for bee vision, colour loci of

Lwww.theplantlist.org

flowers containing chlorophylls were located in the green region.
Most flowers with carotenoids were concentrated in the UV-
green zone, whereas aurones-chalcones were mainly located in
the green region; only a few flowers containing carotenoids
also occupied the green region, indeed these flowers showed
spectra with no reflectance in the UV region (Figure 1B). Flowers
with UV-absorbing flavonoids mostly occupied the blue-green
region of the hexagon, and those with anthocyanins are mainly
perceived as blue or UV-blue, with the exception of three species
containing orange-red pelargonidins previously described, which
are perceived as UV (Figure 2A and Supplementary Figure 2).

In the fly model, colour loci of pigment groups occupied
the four quadrants of the colour space (Figure 2B and
Supplementary Figure 3). Flowers containing chlorophylls, UV-
absorbing flavonoids, or aurones-chalcones were mostly located
in the green category. Carotenoids were widespread across the
green, purple, and UV categories of the colour space, being more
predominant in the purple region. Anthocyanins predominantly
occupied the blue category of the colour space, except for the
same three pelargonidin loci previously mentioned, as well as one
cyanidin and three malvidin loci, which occupy the UV region.

In the tetrahedron colour space of butterflies, flowers
containing aurones-chalcones were mainly located towards the
red region, whereas those containing carotenoids showed a
more dispersed distribution between the red and UV regions
(Figure 2C and Supplementary Figure 4). Anthocyanins were
dispersed between the UV and blue regions, apart from
some pelargonidins located towards the UV-red edge. UV-
absorbing flavonoids occupied positions between blue, green,
and red regions of butterfly colour space. Finally, chlorophylls
were located between carotenoids and anthocyanins, near the
centre of tetrahedron.

In the tetrahedron colour space of birds, flowers containing
different groups of pigment showed a similar distribution pattern
that in the butterfly colour space (Figure 2D and Supplementary
Figure 5). Exceptions occurred with carotenoids that were more
clustered towards the red region, and with some pelargonidins
appearing near carotenoids.

Colour Conspicuousness of Pigment
Groups to Pollinators

We found a significant effect of main pigment groups in the
chromatic contrast using the four colour space models (F = 11.72,
P < 0.001 for the bee model, F = 8.08, P < 0.001 for the fly model,
F = 1190, P < 0.001 for the butterfly model, and F = 14.31,
P < 0.001 for the bird model). In general, flowers containing
chlorophylls showed the lowest values of chromatic contrast, and
UV-absorbing flavonoids and the four groups of anthocyanins
also showed low values of chromatic contrast statistically similar
to those of chlorophylls (Figure 3 and Supplementary Table 3).
In contrast, flowers containing aurones-chalcones showed the
highest chromatic contrast, and carotenoids showed intermediate
values. An exception of this general pattern occurred in
the fly colour space, where UV-absorbing flavonoids reached
intermediate values, similar to those of carotenoids. Moreover,
in all visual models, pelargonidins tended to show higher values
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FIGURE 2 | Colour loci of species used in the study according to different colour vision models. The 123 colour loci are represented in the hexagon colour space for
the trichromatic vision of bees (A), the categorical colour space for the tetravariant visual system of flies (B), the tetrachromatic colour space model for butterflies (C),
and the tetrahedral colour space model for birds with VS vision system (D). Coloured blue, green, purple, and red circles in each vertex represent the maximum
signals in the blue, green, UV, and red photoreceptors. Colour loci correspond to each pigment group: green (chlorophylls), orange (carotenoids), grey (UV-absorbing
flavonoids), yellow (aurones-chalcones), pink (cyanidins), red (pelargonidins), blue (delphinidins), and purple (malvidins). See Supplementary Figures 2-5 for
individual representations of each pigment group in the four colour vision models. Animal silhouettes taken from Divulgare (www.divulgare.net) under a Creative
Common licence.

than the other groups of anthocyanins, especially in bird model
and relative to cyanidins, but differences were only marginally
significant due to the high variation within pelargonidin.

With respect the achromatic contrast using the bee colour
space model (i.e., green contrast), we found a significant effect
of main pigment groups as well (F 16.59, P < 0.001;
Figure 4 and Supplementary Table 4). The four groups of
anthocyanins and chlorophylls produced the lowest values while
UV-absorbing flavonoids produced the highest ones. Carotenoids
and aurones-chalcones showed intermediate values that were
statistically similar to those of UV-absorbing flavonoids.

DISCUSSION

The overall goal of this study was to know whether flowers
containing different major groups of pigments generate different
colour signals for pollinators. Our study demonstrated that
flowers containing chlorophylls, carotenoids, UV-absorbing

flavonoids, aurones-chalcones and anthocyanins showed
distinctive reflectance spectra, which differences and similarities
were mostly maintained when the spectral information was
translated into the pollinator’s visual system models. In
general, flower colour loci of these pigment groups occupied
different regions of the bee, fly, butterfly, and bird colour
space models. Within the flavonoids, the four groups of
anthocyanins produced a unique cluster of colour loci in all
the visual colour spaces, UV-absorbing flavonoids were located
within or close to anthocyanins, but aurones-chalcones were
located in an independent region sometimes shared with some
carotenoids samples. The different pigment groups generated
differences in colour conspicuousness in all the four visual space
models of pollinators. Most of these differences showed high
similarity among colour space models, as we found that aurones-
chalcones always showed the highest chromatic contrast values,
carotenoids displayed intermediate values, and chlorophylls,
UV-absorbing flavonoids and anthocyanins presented the
lowest values. Yet, some differences among visual models
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FIGURE 3 | Boxplots representing the distribution of chromatic contrast values for each type of pigment obtained from the vision models of bees (A), flies (B),
butterflies (C), and birds (D). The central line displays the median, the bottom and top of the box are the first and third quartiles, and dots represent sample values.
We performed phylANOVAs with 10,000 simulations and Holm-adjusted P-value. Different letters represent significant differences at 0.05 level. Animal silhouettes
taken from Divulgare (www.divulgare.net) under a Creative Common licence.

emerged. The implications of these findings for the evolution
of flower pigmentation and the ecological consequences for
plant-pollinator interaction are discussed.

In general, the clustering patterns of loci observed in the
colour space of bees, flies, butterflies and birds were similar.
Loci of flowers with chlorophylls occupied central position in
all models and showed low chromatic contrast, which suggest
that these flowers are difficult to perceive by the four groups
of pollinators (Chittka et al., 1994; Endler and Mielke, 2005;
Hannah et al., 2019), at least in environments where dominant
background is green foliage (Endler, 2012; Bukovac et al., 2017;
Martins et al., 2021). This fact may explain the low frequency of
green flowers in local floras (Weevers, 1952; Dyer, 1996; Warren
and Mackenzie, 2001). However, the distinct colour signal and
low chromatic contrast of chlorophylls may help to explain
why these pigments are frequently combined with UV-absorbing
flavonoids, anthocyanins, or carotenoids to form visible floral
guides and patterned flowers (Lunau, 1992; An et al, 2018;
Koski, 2020a; Narbona et al., 2021) and thus, to generate highly
perceptible colour patterns for pollinators (van den Berg et al.,
2020; Roguz et al., 2021).

Flowers with aurones-chalcones generated the highest
chromatic contrast in the fly model, thus matching our

predictions, but those with carotenoids did not so. In fact,
flowers with aurones-chalcones exhibited high contrast in
the three colour space models for insects, higher than that
of flowers with carotenoids. The higher colour contrast of
aurones-chalcones in flowers could lead to a higher attraction
for bees, flies and butterflies and, consequently, represent a
selective advantage for this group of pigments over carotenoids.
Nevertheless, the occurrence of aurones-chalcones in flowers is
anecdotic in comparison with carotenoids, being found in certain
lineages of Asteraceae, Fabaceae, Plantaginaceae, Oxalidaceae,
Gesneriaceae, Rosaceae, and Hamamelidaceae (Bohm, 1988;
Iwashina, 2015; Boucherle et al, 2017). The biosynthesis of
aurones requires complex enzymatic machinery, particularly the
enzyme aurone synthase, with an unusual polyphenol oxidase
activity (Molitor et al., 2016; Boucherle et al., 2017), which would
explain the rarity of aurones in flowers. It is worth mentioning
that in flowers, aurones mostly appear in combination with
carotenoids, and to a lesser extend with anthocyanins or UV-
absorbing flavonoids, to form floral guides; only a few species are
known to contain aurones alone (Valdés, 1970; Iwashina, 2015;
Boucherle et al., 2017). Our results support that colour properties
of aurones-chalcones are suitable for shaping spatial patterns in
flowers (see below).
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performed phylANOVAs with 10,000 simulations and Holm-adjusted P-value.
Different letters represent significant differences at 0.05 level. Bee silhouette
taken from Divulgare (www.divulgare.net) under a Creative Common licence.

The conspicuousness of white flowers with UV-absorbing
flavonoids was intriguing for two reasons. On the one hand,
they showed low chromatic contrast values in all visual models,
excepting the fly model where contrast values were intermediate
and only lower than those of flowers with aurones-chalcones,
which matches our predictions of both groups of flowers
generating the highest chromatic contrasts for dipterans. On the
other hand, these flowers showed the highest achromatic contrast
in the bee visual model, as reported in previous studies with white
flowers (Chittka et al., 1994; Lunau et al., 2011; Coimbra et al.,
2020). This fact might be relevant because honeybees use such
achromatic contrast to find small flowers and flowers at long
distance (Giurfa et al., 1997; Spaethe et al., 2001). Besides that,
flowers with UV-absorbing flavonoids are defined by reflectance
spectra with a steep slope around 400 nm (Chittka et al., 1994;
Kevan et al., 2001; Reverté et al., 2016). Insects, and particularly
hymenopterans show a maximum of discrimination capacity
at 400 nm (Chittka, 1996) and can act as selective agents on
UV-absorbing white flowers as has been proposed (Dyer et al.,
2012). This suggests selective pressures for accumulating specific
types or concentrations of these compounds to generate such
UV-absorbing white flowers.

A clear trend is observed for carotenoids, UV-absorbing
flavonoids and aurones-chalcones to be separately clustered in
all four colour space models, which means that these pigment
groups generate contrasting colour signals for all these pollinators
and has important consequences in flowers with floral guides.
A common pattern in insect-pollinated yellow flowers is an UV-
absorbing centre and UV-reflecting periphery (Papiorek et al,
2016; Lunau et al., 2021). This pattern may be produced in
two ways: by accumulating aurones-chalcones in the centre and
carotenoids in the periphery (e.g., species of the Asteraceae

and Plantaginaceae; Harborne and Smith, 1978; Boucherle
et al., 2017), or by accumulating carotenoids plus UV-absorbing
flavonoids in the centre and only carotenoids in the periphery
(e.g., species of the Asteraceae and Fabaceae; Harbone and
Grayer, 1994; Bohm and Stuessy, 2001). This intrafloral pattern
in yellow flowers could have behavioural consequences for flies
and bees. Hoverflies accept UV-reflecting as well as UV-absorbing
yellow for landing, but they extend their proboscis preferably
to UV-absorbing yellow colours (An et al, 2018). A similar
behaviour is found in bees, which made the first antennal contact
preferably in UV-absorbing areas (Papiorek et al.,, 2013). Our
results suggest that spatial segregation of aurones-chalcones and
carotenoids may produce an UV pattern in yellow flowers that
would be highly different in colour category but also in chromatic
contrast. It has been found that flowers displaying multiple
colours that maximise contrast are more attractive for bees
than flowers with homogeneous colours (Heuschen et al., 2005;
Leonard et al., 2011; Ma et al., 2016).

Finally, it is worth noting that most flowers containing
any of the four groups of anthocyanins here studied clustered
close together in all four colour spaces, and in general showed
no differentiation among them in terms of chromatic and
achromatic contrasts. The case of flowers containing delphinidins
or malvidins deserves special mention. They produce human
blue colourations, which agree with previous studies (Harborne
and Williams, 2000; Yoshida et al., 2009), and also generated
loci that mostly occupied the blue category in both bee and
fly colour spaces. This colour is the preferred for bees and
bumblebees (reviewed in Dyer et al, 2021) but, contrary to
our predictions, flowers with delphinidins or malvidins did not
generate the highest chromatic contrasts in the bee colour space
model. To produce delphinidins or malvidins it is necessary the
enzyme flavonoid 3'5'hydroxylase (F3'5'H), which is proposed
as the most recent addition to the anthocyanin biosynthetic
pathway (Campanella et al., 2014). Our results show that similar
blue loci in both bee and fly colour space may result from
flowers with cyanidin and pelargonidins through a variety of
biochemical or cellular modifications (Harborne and Williams,
2000; Okitsu et al., 2018). Thus, blue colour in flowers can be
produced through the three main biosynthetic branches of the
anthocyanin pathway (i.e., cyanidin, delphinidin, pelargonidin
branches; Grotewold, 2006; Tanaka et al., 2008), which originates
an interesting case of phenotypic convergence (Larter et al.,
2018). It is also worth noting that the highest chromatic contracts
for flowers with pelargonidins were generated in the bird colour
space, which matches our predictions. In fact, flowers with
pelargonidins were the most contrasting to birds along with
those with carotenoids and aurones-chalcones. The role of
pelargonidins in bird-pollinated flowers was previously reported
in species of the Solanaceae and Gesnerioideae (Ng and Smith,
2016, 2018; Ogutcen et al., 2020). Although birds do not show
preferences for a particular colour, they have an excellent colour
discrimination (Lunau et al., 2011; Stoddard et al., 2020; Whitney
et al, 2020). Our results suggest that both carotenoids and
pelargonidins pigments generate a higher conspicuousness to
birds than other pigment groups, which would favour their
accumulation in flowers of bird-pollinated species. In fact, an
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important characteristic of this pollination syndrome is the
presence of red flowers (Chen et al., 2020), which is typically
produced by pelargonidins or by other pigment combinations
(Sakuta, 2014; Ng and Smith, 2016; Ogutcen et al., 2020).

In conclusion, we have found that main groups of flower
pigments generate distinct flower colours with differential
conspicuousness, and each group of pigment showed nearly
similar chromatic contrast values in the four visual models
of pollinators. As expected, yellow aurones-chalcones showed
a high chromatic contrast in the fly visual model, but white
UV-absorbing flavonoids showed intermediate contrast and
carotenoids showed lower values, similar to anthocyanins. As
predicted, pelargonidins generated a higher chromatic contrast in
the bird model. Yet, in contrast to our predictions, anthocyanins
showed low chromatic and achromatic contrasts in the visual
model of bees. Our results suggest that to explain the success of
anthocyanins as the most frequent floral pigment in angiosperms
(Warren and Mackenzie, 2001; Narbona et al., 2018), other
causes than their role in attracting pollinators should be taken
into account. Indeed, an increased body of knowledge indicate
a protective function of anthocyanin against environmental
stressors, which may play an important role in the success and
distribution of anthocyanins in flowers (Strauss and Whittall,
2006; Del Valle et al., 2019; Dalrymple et al., 2020). Our results
must be taken with caution because the visual systems of the
main groups of pollinators are only approximations to their
colour vision and further validation with behavioural tests will
be needed (Renoult et al., 2017; Lunau and Gerten, 2020; Garcia
et al., 2021). Furthermore, our study used specific illumination
and background conditions, and colour signals may notably vary
in different habitats or environmental conditions (Endler, 2012;
Bukovac et al., 2017; Koski, 2020b).
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