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The damage of Riptortus pedestris is exceptional by leading soybean plants to keep
green in late autumn. Identification of the salivary proteins is essential to understand how
the pest-plant interaction occurs. Here, we have tried to identify them by a combination
of proteomic and transcriptomic analyses. The transcriptomes of salivary glands from
R. pedestris males, females and nymphs showed about 28,000 unigenes, in which
about 40% had open reading frames (ORFs). Therefore, the predicted proteins in the
transcriptomes with secretion signals were obtained. Many of the top 1,000 expressed
transcripts were involved in protein biosynthesis and transport, suggesting that the
salivary glands produce a rich repertoire of proteins. In addition, saliva of R. pedestris
males, females and nymphs was collected and proteins inside were identified. In total,
155, 20, and 11 proteins were, respectively, found in their saliva. We have tested the
tissue-specific expression of 68 genes that are likely to be effectors, either because
they are homologs of reported effectors of other sap-feeding arthropods, or because
they are within the top 1,000 expressed genes or found in the salivary proteomes. Their
potential functions in regulating plant defenses were discussed. The datasets reported
here represent the first step in identifying effectors of R. pedestris.

Keywords: plant-insect interaction, stink bug, legume, elicitor, plant immunity

INTRODUCTION

Many hemipterans are important pests that pierce their needle-like mouthparts (stylets) into crop
plants and feed on sap. They eject gelling saliva during the feeding that solidifies quickly and forms
a continuous sheath in host plants. The sheath is a feeding channel and protects stylets against
plant toxins. Meanwhile, watery saliva is used to digest food, regulate plant defenses and facilitate
pathogen transmissions (Miles, 1999; Will et al., 2012; Huang et al., 2019c). In order to study the
molecular mechanism in interactions between pests and crops, we need to identify the salivary
proteins and analyze their functions. Transcriptome analysis of salivary glands and proteome
analysis of secreted proteins are two efficient ways to identify salivary proteins. The analyses have
been performed on some agriculturally important hemipterans, such as aphids (Carolan et al., 2011;
Boulain et al., 2018), planthoppers (Ji et al., 2013; Huang et al., 2018), whiteflies (Su et al., 2012) and
leafhoppers (Coudron et al., 2007; DeLay et al., 2012).
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Though many stink bugs are also important pests,
identification of salivary effectors has been largely ignored
and previous studies have mainly focused on the activities
of digestive enzymes. For example, salivary glands of some
pod-sucking coreid bugs produce a large amount of proteinases
that are probably used to digest proteins in beans (Soyelu et al.,
2007). The coreid bug Mictis profana (Fabr.) uses a sucrase to
hydrolyze sucrose into monosaccharides during feeding, thereby
increasing local osmotic pressure and unloading the solutes
of neighboring plant cells (Miles and Taylor, 1994; Taylor and
Miles, 1994). The mirid bug Apolygus lucorum (Meyer-Dür) is
able to produce a series of digestive enzymes by salivary glands,
such as pectinases, polygalacturonases, amylases, cellulases and
proteinases (Tan et al., 2016; Li et al., 2017; Zhang et al., 2017).
Transcripts of salivary glands were sequenced in some true bug
species (Francischetti et al., 2007; Zhu et al., 2016). Still, the
studies paid main attention to digestive enzymes again, whereas
very few discussed the effector functions of the salivary proteins.
However, a recent study found that a glutathione peroxidase
was highly expressed in the salivary glands of A. lucorum, who
probably use it to eliminate the reactive oxygen species (ROS)
accumulation in plants (Dong et al., 2020).

In other hemipterans, a variety of salivary effectors that
affect plant immunity have been identified (Hogenhout et al.,
2009; Sharma et al., 2014). For example, physical puncturing
of phloem sieve elements normally leads to a rapid occlusion
of sieve elements because of the formation of insoluble
protein complexes (e.g., forisomes) inside that are valves of
sieve tubes. Phloem-feeding hemipterans, such as aphids and
planthoppers, prevent phloem occlusion and the related defense
responses by using salivary proteins, including calcium-binding
proteins. The proteins bind calcium, thereby weakening the
signaling of defenses and avoiding the occlusion of sieve
elements (Will et al., 2007; Sharma et al., 2014; Ye et al.,
2017; Huang et al., 2019c). In addition, hemipteran herbivores
commonly use catalases and peroxidases that are ubiquitous
heme enzymes to remove hydrogen peroxides in feeding sites
(Sharma et al., 2014). Some salivary enzymes, such as phenol
oxidases, dehydrogenases and cytochrome P450s, are often used
to detoxify plant toxic compounds (Nicholson et al., 2012;
Sharma et al., 2014). In addition, non-enzymatic proteins have
been increasingly identified in hemipteran saliva, and they often
affect plant defenses via different mechanisms (Elzinga et al.,
2014; Matsumoto and Hattori, 2018; Xu et al., 2019).

The bean bug Riptortus pedestris (Fab.) (Hemiptera:
Heteroptera: Alydidae) is an important pest on soybeans
in East Asia. Very recently, the genome of R. pedestris was
assembled (Huang et al., 2021b), which provides an important
dataset in analyzing the functions of their genes. The pest
invades soybean fields during flowering period and causes
severe damage to soybeans by sucking pods (Endo et al., 2011;
Xu et al., 2021). Severely damaged plants stay green in the
stem and leaf in late autumn (Li et al., 2019), indicating that
the salivary proteins of R. pedestris have possibly changed
the plant development. Identification of the salivary proteins
is the first step in understanding the plant’s response. Their
salivary proteins have been identified by a combination of

proteomic and transcriptomic analyses on salivary glands
(Huang et al., 2021a). However, whether the proteins are
able to be secreted into food is still unknown. And the
comparisons among different developmental stages and
between sexes are missing. Here, we studied the transcripts
of the salivary glands of males, females and nymphs, with
a special attention on identifying candidate effectors. In
addition, the proteomes of male, female and nymph saliva were,
respectively, analyzed. As a result, about 170 salivary proteins,
in total, were found and their potential functions as effectors
were also discussed.

MATERIALS AND METHODS

Insects
The bean bug R. pedestris adults were collected in soybean fields,
Nanjing, East China, in the summer of 2020. They were reared in
tents (30 × 30 × 30 cm) in an incubator (25◦C, LD = 16:8 h),
where soybean seedlings (3–5 weeks old) and seeds (variety
Lindou 10) were provided as food.

RNA Extraction, cDNA Library
Construction and Illumina Sequencing
Thirty adults (male or female, 10-d old) or fourth-instar nymphs
were anesthetized on ice and subsequently dissected to obtain
salivary glands (Figure 1). The RNA was extracted by the TRIzol
Total RNA Isolation Kit (Takara, Dalian, China), following the
manufacturer’s instructions. The quality of extracted RNA was
verified by the Agilent 2100 Bioanalyzer (Agilent Technologies,
CA, United States). Polyadenylated RNA (mRNA) was purified
from the total RNA by using oligo(dT) magnetic beads and
then the total mRNA was fragmented into short sequences
in the presence of divalent cations at 94◦C for 5 min. The
cleaved RNA was transcribed, and the second-strand cDNA
was obtained. After end-repair and adaptor ligation, the
products were PCR-amplified and purified using Ampure XP
Beads (Agencourt Bioscience, MA, United States) to create
the cDNA library.

The library was sequenced on the Illumina sequencing
platform and the raw data were generated using Solexa GA
pipeline 1.6. Low quality reads were removed, and the rest
sequences were assembled using Short Oligonucleotide Analysis
Package (SOAP) de novo software (Li et al., 2008), and then
clustered by TGICL v2.0.6 to gain unique genes (Pertea et al.,
2003). The clean reads of the transcriptomes have been deposited
to SRA database with the accession number of PRJNA690963.

Annotations of Unigenes and Predicted
Peptides
The sequences of unigenes were searched in one of four databases
to obtain their annotations, including the NR database (NCBI1);

1http://www.ncbi.nlm.nih.gov/
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FIGURE 1 | The procedure of the experiment and sequence analyses: salivary glands were dissected from the bean bugs (taking a male as an example here), and
then the transcriptome was sequenced and analyzed. We tested the tissue-specific expression of 18 genes with secretion signals in the top 1,000 expressed genes,
as well as 19 homologs of reported effectors of other sap-feeding arthropods. In addition, saliva of the bean bugs were collected and the proteomes were analyzed
by LC-MS/MS. The tissue-specific expression of 31 secreted salivary proteins was tested. The genes that are expressed more in salivary glands have a high
potential as effectors, and their functions were discussed in the text.

the Gene Ontology (GO2), the KEGG Orthology (KEGG3) and
the EuKaryotic Orthologous Groups (KOG4).

TransDecoder.LongOrfs was used to extract the long open
reading frames (ORFs). The ORFs were blasted in the SwissProt5

and Pfam databases6 by Diamond Blastp and Hmmscan,
respectively. The coding sequences (CDSs) were extracted from
the transcripts by TransDecoder 3.0.1 (Kim et al., 2015), and then
the predicted proteins were obtained. Then, the SignalP 5.07 was
used to test whether sequences have secretion signal peptides or
not (Armenteros et al., 2019), while the TMHMM 2.08 was used to
check the transmembrane areas of sequences (Krogh et al., 2001).

The predicted proteins with secretion signal peptides and
simultaneously without transmembrane areas are likely to be
secreted by salivary glands into saliva (Nielsen, 2017), and
therefore with a relatively high potential in modulation of plant
defenses. We had paid attention to the genes with secretion
signals (about 192 individuals, Supplementary Table 1) in the
top 1,000 expressed genes of the transcriptomes, and 18 genes
were selected for testing their expression levels in different tissues
(see below). In addition, the amino acid sequences of most

2http://www.geneontology.org
3http://www.genome.jp/kegg
4http://www.ncbi.nlm.nih.gov/COG/
5http://www.uniprot.org
6http://pfam.xfam.org/
7http://www.cbs.dtu.dk/services/SignalP/
8http://www.cbs.dtu.dk/services/TMHMM/

reported effectors in sap-feeding arthropods were compared to
the predicted proteins in the male transcriptome, and 19 proteins
had a relatively high similarity (≥30%) with the effectors. Their
expression levels were also compared between different tissues of
R. pedestris.

Saliva Collection and In-Solution
Digestion
Riptortus pedestris saliva was collected in a Petri dish
(2 cm × 11 cm) whose open was covered by two layers of
Parafilm with 2 ml sterile sucrose solution (2.5% in water)
as food in between (Figure 1). The Parafilm was previously
sterilized by 75% ethanol solution. The sucrose solution was
prepared with aseptic water and filtered through a 0.22 µm
syringe filter (Millipore, MA, United States) for the removal
of microorganisms. Ten individuals (males, females or fourth-
instar nymphs) were put in each Petri dish and the collection
lasted 24 h. The collection was repeated 30 times. In total, 300
individuals were used. After collections, the sucrose solutions of
each Petri dish were combined (about 60 ml) and concentrated
by ultrafiltration (3-kDa, Amicon Ultra-4 Centrifugal Filter
Tube, Millipore; 5,000 g, 4◦C, 30 min). The proteins were
dissolved in 200 µl of SDT buffer (4% sodium dodecyl sulfate;
1 mM DTT and 100 mM Tris-HCl) and then were incubated in
warm water for 15 min.

Subsequently, DTT was added into protein samples to a
concentration of 100 mM, and then the samples were boiled
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for 5 min. After ultrafiltration (3-kDa; 14,000 g, 25◦C, 10 min),
100 µl iodoacetamide (IAA) buffer (100 mM IAA in UA buffer)
was used to dissolve the proteins, and then the samples were
incubated at room temperature for 30 min in darkness. After
ultrafiltration (3-kDa) again, the samples were washed with
100 µl UA buffer (8 M urea, 150 mM Tris-HCl, pH 8.0) twice,
and then washed with 100 µl NH4HCO3 buffer (25 mM, Sigma)
twice. Finally, the proteins were digested overnight in 4 µg of
trypsin (Sigma) in 40 µl NH4HCO3 buffer (25 mM) at 37◦C. The
digested peptides were collected by ultrafiltration (3-kDa) and
were dissolved in 40 µl NH4HCO3 buffer (25 mM).

Liquid Chromatography With Tandem
Mass Spectrometry
The digested peptides were separated by Thermo Scientific Easy
nanoLC 1000 that was equipped with a C18 column (Thermo
Scientific Acclaim PepMap100, 100 µm × 2 cm). Buffer A (0.1%
formic acid in water) including 5% buffer B (84% acetonitrile and
0.1% formic acid in water) were used as the mobile phase for
gradient separation. The sample was uploaded onto the column
at a flow rate of 0.3 µl/min. Subsequently, the column was eluted
by a linear gradient of buffer B at a flow rate of 0.25 µl/min (0–
50 min, concentration increasing from 0 to 35%; 50–55 min, 35
to 100%; and finally pure buffer B maintained for 5 min).

The eluted peptides were analyzed by the Q-Exactive mass
spectrometer (Thermo Fisher Scientific, United States). Full MS
scans were acquired in the Orbitrap mass analyzer over the
range m/z 300–1800 with a mass resolution of 70000 (at m/z
200). The twenty most intense peaks with charge state ≥2 were
fragmented in the higher-energy collisional dissociation (HCD)
with a normalized collision energy of 30% (the isolation window
was 2 m/z), and tandem mass spectra were acquired in the
Orbitrap mass analyzer with a mass resolution of 17,500 at m/z
200. For all detections, the dynamic exclusion time was set to 60 s.

Proteins were identified and annotated by using Mascot 2.2 to
search UniProt (see footnote 5) with the restriction to R. pedestris
data. The following parameters were used: trypsin was selected
as the enzyme; two missed cleavage sites were allowed; 20 ppm
mass tolerances for MS and 0.6 Da for MS/MS fragment ions;
oxidation was a variable modification; carbamidomethyl was a
static modification.

Testing Tissue-Specific Expression by
Real Time Quantitative PCR
The relative expression of selected genes (68 genes) in different
tissues of R. pedestris males, including salivary glands, mid-guts,
fat bodies and testes, were compared. Those are 31 proteins found
in male saliva, 18 genes that exist in the top 1,000 transcripts
and 19 genes (shown in Table 1) that are homologs to reported
effectors. First, the total RNA of each tissue (30 individuals)
was extracted by the TRIzol Total RNA Isolation Kit (Takara,
Dalian, China). The first strand cDNA was synthesized from
RNA by using the HiScript III RT SuperMix qPCR kit (Vazyme,
Nanjing, China). Then, real time quantitative PCR (RT-qPCR)
was performed on a QuantStudio 5 Real-Time System (Thermo
Fisher Scientific, United States) by using the Top Green qPCR

SuperMix kit (TransGen Biotech, Beijing, China). The reaction
program started with an initial denaturation step at 95◦C for
30 s, and then 40 cycles including two steps per cycle, 95◦C
for 5 s and 60◦C for 34 s, were performed. The gene-specific
primers were designed by using the Primer Premier 5.0 software.
To evaluate the primers, the cDNA concentrations were either
unchanged, or further diluted by 4, 16, or 64 times. When
amplification efficiencies ranged from 90–110%, and the R2

values were over 0.99 in the regression analysis, the primers were
selected. Three biological replicates and three technical replicates
were applied. The individual efficiency–corrected calculation
method was used to compare the fold changes in expression levels
of genes in mid-guts, testes and fat bodies, related to that in
salivary glands (Rieu and Powers, 2009; Rao et al., 2013). Two
housekeeping genes RpEF-1 and actin were used as reference
genes (Lee et al., 2019). The primers and the result of the
regression analysis of each gene were listed in the Supplementary
File 1.

Statistical Analyses
The statistical analyses on RT-qPCR data were carried out by
using SigmaPlot 14 with one-way ANOVA tests. A Holm-Sidak
post hoc analysis was used for pairwise comparisons. When
the expression levels in four tissues (salivary glands, mid-guts,
testes and fat bodies) were fitted with a normal distribution, the
comparisons were performed in one run. Otherwise, pairwise
comparisons were conducted by each pairs, and the normality
always passed. Different lowercase letters above the bars in the
Figure 2 indicate that there are significant differences (P ≤ 0.05).

RESULTS

We obtained about 28,000 unigenes in the transcriptomes
of salivary glands, and about 40% unigenes have complete
ORFs (Supplementary Table 1). The average length of the
unigenes was range from 828 to 1,001 bp with some differences
between treatments. In the top 1,000 expressed genes of the
male transcriptome, there were about 192 genes with the
secretion signals (i.e., with secretion signal peptides and without
transmembrane domain) and they are likely to be secreted
from the gland cells without being anchored to the membranes
(Cherqui and Tjallingii, 2000; Nielsen, 2017).

The top 1,000 expressed genes were mainly involved
in ribosomal functions, amino acid metabolisms and
posttranslational modifications etc. (Supplementary Figure 1),
indicating that the salivary glands are specialized to produce
many proteins. The GO annotations showed that many proteins
in the salivary glands fulfilled binding and catalytic activities
(Supplementary Figure 2).

Effector proteins normally have cysteine-rich residues and
evolve quickly (Hogenhout and Bos, 2011; Dou and Zhou, 2012).
A higher proportion of the secreted proteins in the transcriptome
have cysteine-rich residues as opposed to that of housekeeping
genes (Supplementary Figure 3). Though a high percentage
of the secreted proteins matched with analogous sequences (E-
value < 1 × 10−5) in the NCBI NR database, with or without
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TABLE 1 | Potential effectors in the transcriptomes.

Annotations* Possible functions NCBI/UniProt no.; secretion signals (Y/N); (published
homologs)N

References

Oxidoreductases

catalases degradation of ROS MW561671/R4WNB5, N (Nl, 76%, AGD80572.1) Petrova and Smith,
2014

peroxiredoxins MW625814, N (Ap, 67%, NP_001280420.1); MW625858,
Y

Chaudhary et al., 2015

glutathione peroxidases MW625813, N (Me, 38%, AGG35949.1) Atamian et al., 2013

glucose dehydrogenases detoxifying allelochemicals MW561670, N (Ap, 30%, XP_001943395.1); MW625827,
N (Te, 38%, AYV89171.1)

Carolan et al., 2011;
Huang et al., 2019a

cytochrome P450 MW625815, N (Phc, 33%, EEB14435.1) Nicholson et al., 2012

Hydrolases

metalloproteases degrading plant-defense proteins MW650859, N (Ap, 45%, XP_001949396.4); MW625833,
Y

Wang et al., 2015b

glucosidases detoxifying phenolic glycosides MW625854, Y Sharma et al., 2014

trehalases destroying trehalose-based defense MW625816, N (Ap, 50%, XP_001950264.1); MW625817,
N

Nicholson et al., 2012

aminopeptidases degrading defense proteins MW625818, N (Ap, 41%, XP_001944764.2) Nicholson et al., 2012

cysteine proteases inducing ROS accumulation MW625819, Y (Mp, 41%, XP_022181855.1); MW625838,
Y

Guo et al., 2020

chitinases protection from fungal infection;
interaction with host plant
chitinases

MW625820, N (Ap, 42%, XP_001947177.2);
MW625856/R4WE69, Y

Nicholson et al., 2012

Calcium binding or related proteins

calcium-binding proteins binding with calcium influx in the
phloem and restricting sieve-tube
occlusion

MW625821, Y (Nl, 57%, AOM63273.1); MW625835, Y;
MW625840, Y; MW625843, Y

Ye et al., 2017

Calreticulin MW625842, Y

protein disulfide isomerases induce calcium influx MW625822, Y (Nl, 55–57%, ASL04987.1, ANJ04677.1; Sf,
AWI63384.1); MW625852/R4WP97, Y

Huang et al., 2016;
Miao et al., 2018; Rao
et al., 2019; Fu et al.,
2021

Others

apolipophorins; suppressing plant-defense sterols MW625845, Y Nicholson et al., 2012

mucin-like proteins stylet-sheath formation MW625824, N (Nl, 38%, BAP87097.1); MW625848, Y;
MW625847, Y; MW625849, Y; MW625846, Y;
MW625851, Y; MW625850, Y

Huang et al., 2017

carbonic andydrases CO2 detoxification MW625825, Y (Nl, 36%, ANJ04649.1); MW625839, Y Huang et al., 2016

DNases destroying secreted DNA signals MW625826, N (Ls, 65%, QCB20005.1) Huang et al., 2019b

Armets inducing defense genes MW625828, Y (Ap, 48%, XP_001949541.1) Wang et al., 2015a

CSPs inducing dwarf and chlorosis
phenotypes

MW625831, Y (Nl, 48%, ASL05052.1; Mp, 37%,
CAG25444.1)

Copenhaver et al.,
2010; Rao et al., 2019

OBPs binding plant defense molecules MW625837, Y; MW625836, Y

spliceosome destroying plant defense transcripts MW625834, Y

chaperonins inducing pattern triggered immunity MW625832, N (Me, 53%, AIC80904.1) Chaudhary et al., 2014

SSCPs inducing cell death MW625844, Y Rao et al., 2019

*The annotations were obtained from one of the six databases (NCBI NR, KEGG, GO, KOG, SwissProt, and Pfam). CSPs, chemosensory proteins; OBPs, odorant binding
proteins; SSCPs, small secreted cysteine-rich protein. NThe homologs in the transcriptome of the reported salivary effectors (≥30% similarities of protein sequences) in
other sap-sucking arthropods were present. Species names (abbreviation) and the accession no. of reported effectors were given in brackets. Nl, Nilaparvata lugens; Sf,
Sogatella furcifera; Ap, Acyrthosiphon pisum; Dn, Diuraphis noxia; Me, Macrosiphum euphorbiae; Mp, Myzus persicae; Ls, Laodelphax striatellus; Bt, Bemisia tabaci. Te,
Tetranychus evansi. Phc, Pediculus humanus corporis. In addition, we also presented a few genes that had secretion signals and were within the top 1,000 expressed
genes. The tissue-specific expression of the genes was tested (Figure 2B). The sequences were uploaded to the NCBI and the accession numbers were given, in which
bold indicated they were highly expressed in salivary glands. Whether the genes had secretion signals was present: Y, Yes; N, None.

the restriction to the R. pedestris data, the relevant ratios of
housekeeping genes in the transcriptome were always higher
(Supplementary Figure 3). The data together suggest that many
secreted proteins in the salivary glands are still unknown and have
a potential as effectors.

Dozens of effectors have been reported in hemipterans and
other sap-sucking arthropods to date, and 19 homologous
proteins (≥30% similarity in amino acids) were also found in the
transcriptomes (Table 1). The expression levels of those genes
were compared in different tissues (salivary glands, mid-guts,
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FIGURE 2 | RT-qPCR testing the tissue-specific expression of genes in salivary glands (Sg), mid-guts (Mg), testes (Te), and fat bodies (Fb) of R. pedestris males.
(A) Expression levels of genes that encoded proteins found in male saliva; (B) genes that were selected from the transcriptome of salivary glands. The graphs were
shown as: first are genes that are highly expressed in salivary glands, then those that are abundantly produced by mid-guts, testes, or fat bodies. In addition, the
expression levels of another 12 genes (6 from the transcriptome and 6 found in saliva) were not biased to a tested tissue and their data were shown in
Supplementary Table 4. Different lowercase letters above the bars indicate that there are significant differences (P ≤ 0.05).
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testes, and fat bodies) of R. pedestris males. In addition, in the
192 proteins with secretion signals in the top 1,000 expressed
genes of the male transcriptome, 18 genes that are likely to be
effectors based on their annotations (Sharma et al., 2014), were
selected and their tissue-specific expression was examined. In
addition, a total of 155 proteins were identified from watery
saliva of R. pedestris males by LC-MS/MS analysis (Table 2).
A significantly fewer proteins were found in female (only 20)
and nymph (11) saliva (Supplementary Table 3). About 60%
of female and nymph saliva proteins were also found in male
saliva (Supplementary Table 3). The functions of many proteins
in the proteomes remained unannotated (Table 2). The tissue-
specific expression of 31 proteins (normally with a secretion
signal) found in the male saliva was compared among different
tissues. The expression levels that were significantly biased
to a tested tissue (56 genes) were shown in the Figure 2.
Otherwise, the data were given in Supplementary Table 4
(12 genes). In a previous paper, the salivary proteins of
R. pedestris adults were identified by proteomic analysis on
salivary glands (Huang et al., 2021a). By comparing to their
data, we found that 127 proteins identified here were still novel
(Supplementary Table 5), indicating that analysis on secreted
proteins in saliva is an important way to identify salivary
proteins of insects.

DISCUSSION

Riptortus pedestris has been one of the main pests on soybeans
for decades in Korea and Japan (Endo et al., 2011). Recently,
its outbreaks have also been found in China (Li et al., 2019).
The severely damaged soybeans stay green in late autumn (Li
et al., 2019). However, the mechanism is not yet understood. In
the seed-filling period in soybean, leaves continuously transport
photosynthates to seeds until leaf senescence (Zhang et al.,
2016). However, damage on pods or sink removal may delay
leaf abscission (Crafts-Brandner and Egli, 1987; Zhang et al.,
2016). Damage by R. pedestris on pods possibly leads to the
staygreen of soybeans with a similar mechanism. For example,
many digestive enzymes were identified in the transcriptomes
and proteomes, and they seemed to be specialized to digest beans
(see below). In addition, the bugs often feed on veins of soybean
leaves, when they possibly inject effectors that might regulate
the soybean development. However, the key effectors remain
to be identified.

Different Number of Salivary Proteins
Found in Males, Females and Nymphs
Male R. pedestris migrate to soybean fields earlier than
females during the flowering period, and then they will release
pheromone and possibly induce plants to release volatiles
for attracting females and nymphs (Endo et al., 2011; Xu
et al., 2021). The release of male pheromone is stimulated
by feeding (Morishima et al., 2005). So males may excrete
more salivary proteins when feeding on newly located plants
to overcome a relatively intact immunity. In addition, adults
express some genes specifically by salivary glands, as opposed

TABLE 2 | Salivary proteins of males identified by LC-MS/MS.

UniProt no., pepcounts
and signal peptide (Y/N)

Annotations and functions

R4WDP5; 41; N α-glucosidase; hydrolyzing O-glycosyl compounds

R4WJB4; 11; Y transferrin; metal ion binding

R4WE69; 6; Y β-hexosaminidase

R4WL96; 6; Y serine protease inhibitor

R4WDR5; 5; N tyrosine-tRNA ligase; tRNA and ATP binding

R4WS22; 4; N calmin

A0A1B4X9A5; 4; Y trialysin 2

R4WRV4; 4; Y signaling receptor activity (endoplasmic reticulum
and plasma membrane)

R4WD44; 3; N glyceraldehyde-3-phosphate dehydrogenase;
NADP and NAD binding

R4WEL6; 3; N carboxylic ester hydrolase

R4WCU3; 3; N succinate-CoA ligase [ADP/GDP-forming] α-subunit
(mitochondrial)

R4WCJ9; 3; N leucyl aminopeptidase; metalloexopeptidase
activity; manganese ion binding

A0A1B4X9A9; 3; Y trialysin 1

R4WP03; 3; Y epsilon protein

R4WDD5; 3; N GRIP and coiled-coil domain-containing protein 1
(putative)

R4WIC6, 3; N Electron transfer flavoprotein, flavin adenine
dinucleotide binding

R4WCV1; 2; N calmodulin; calcium ion binding

R4WKY0; 2; Y COesterase domain-containing protein

R4WRS0; 2; N S-adenosylmethionine synthase; metal ion binding;
ATP binding

R4WT24; 2; N proteasome endopeptidase complex;
threonine-type endopeptidase activity

R4WTZ9; 2; N UTP-glucose-1-phosphate uridylyltransferase

R4WJE8; 2; N uracil phosphoribosyl transferase; transferring
glycosyl groups

R4WCM1; 2; N uncharacterized protein; oxidoreductase activity

A0A5H2VIM2; 1; N serine/threonine-protein kinase TOR; ATP binding

R4WR84; 2; N Gaba(A) receptor-associated protein

R4WSP4; 2; N erythroblast macrophage protein emp

A0A2Z4HQ00; 2; Y chemosensory protein 8

A0A2Z4HQ32; 2; Y odorant-binding protein 4; odorant binding

R4WQG7; 2; N multisynthetase complex, auxiliary protein, p38
(putative)

R4WNU9; 2; N chloride intracellular channel

R4WQT4, 2; N 26S proteasome regulatory subunit S3, enzyme
regulator activity

R4WDF6, 2; N Pom1, DNA helicase activity, ATP binding

R4WCQ5; 1; N peptidyl-prolyl cis-trans isomerase

R4WCQ6; 1; Y proteinase; cysteine-type peptidase activity

R4WCW6; 1; N isocitrate dehydrogenase [NAD] subunit,
magnesium ion and NAD binding

R4WD01; 1; N cAMP-dependent protein kinase R1

R4W DR4; 1; N phosphoglycerate kinase; ATP binding

R4WEC6; 1; N Acyl-CoA dehydrogenase; flavin adenine
dinucleotide binding

R4WNB5; 1; N catalase; metal ion binding; heme binding

R4WNH2; 1; N peptidyl-prolyl cis-trans isomerase

R4WP97; 1; Y protein disulfide-isomerase; cell redox homeostasis

(Continued)
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TABLE 2 | (Continued)

UniProt no., pepcounts
and signal peptide (Y/N)

Annotations and functions

R4WPL4; 1; N cyclohex-1-ene-1-carboxyl-CoA hydratase
(putative)

R4WPW8; 1; Y peroxiredoxin

R4WQ14; 1; N RNA lariat debranching enzyme (putative)

R4WIH8; 1; N short chain type dehydrogenase; oxidoreductase
activity

R4WQK1; 1; N serine/threonine-protein kinase; ATP binding

R4WMM0; 1; Y uncharacterized protein; lysozyme activity

R4WQZ0; 1; N dimeric dihydrodiol dehydrogenase; oxidoreductase
activity

R4WRL9; 1; N proteasome α-subunit type; threonine-type
endopeptidase activity

R4WRP8; 1; N protein phosphatase; metal ion binding

R4WRV6; 1; Y cathepsin L; cysteine-type peptidase activity

R4WJ25; 1; N peptidyl-prolyl cis-trans isomerase

R4WSB9; 1; N AMP dependent CoA ligase

R4WST1; 1; N starch branching enzyme II; hydrolyzing O-glycosyl
compounds

R4WSU4; 1; N GTP cyclohydrolase I

R4WPS5; 1; N Ssm4 protein; zinc ion binding

R4WD86; 1; Y Low-density lipoprotein receptor; calcium ion
binding

R4WS06; 1; Y uncharacterized protein; possibly for calcium ion
binding

R4WJC9; 1; N four and a half lim domains; metal ion binding

R4WK33; 1; N zinc finger protein; zinc ion binding

R4WDC2; 1; N prohibitin

R4WDQ7; 1; Y MG-160 (putative)

R4WE00; 1; Y ClassC scavenger receptor

R4WNI1; 1; N autophagy-related protein

R4WQD0; 1; N protein kinase C inhibitor (putative)

R4WJ16; 1; N Rho-GAP domain-containing protein; GTPase
activator activity

R4WT10; 1; N methyltransf_11 domain-containing protein;
methyltransferase activity

R4WCP6; 1; Y pacifastin domain-containing protein; serine-type
endopeptidase inhibitor

R4WD57; 1; Y transmembrane 9 superfamily member

R4WDG5; 1; N guanyl-nucleotide exchange factor activity

R4WDU9; 1; Y cysteine rich secreted protein

R4WE11; 1; N F-box domain-containing protein

R4WQ74; 1; Y cysteine rich secreted protein

R4WR83; 1; N ANK_REP_REGION domain-containing protein

R4WSS7; 1; N WD and tetratricopeptide repeat protein

R4WD55, 1; N transferring acyl groups and amino-acyl groups

R4WKT5, 1; N sodium-dependent phosphate transporter

R4WNG5, 1; N mitochondrial phosphate carrier protein

R4WPP3, 1; N flotillin-1

R4WD81, 1; N J domain-containing protein, unfolded protein
binding

R4WD88, 1; N RNA binding motif protein, RNA binding

R4WD99, 1; N glycine-tRNA ligase activity; ATP binding

R4WDS2, 1; N Groucho

R4WE05, 1; N START domain-containing protein, lipid binding

(Continued)

TABLE 2 | (Continued)

UniProt no., pepcounts
and signal peptide (Y/N)

Annotations and functions

R4WKR4, 1; N parvin, actin binding

R4WLB9, 1; N Gh regulated tbc protein-1

R4WPN1, 1; N 26S proteasome Nn-ATPase regulatory subunit

R4WIA7, 1; N ganglioside induced differentiation associated
protein

R4WIE9, 1; N chaperonin, unfolded protein and ATP binding

R4WQ91, 1; N ablim, actin binding

R4WQH8, 1; N replication factor C, putative, DNA and ATP binding

R4WIM0, 1; N Rab5, GTP binding, GTPase activity

R4WPN1, 1; N 26S proteasome Nn-ATPase regulatory subunit

R4WT32, 1; N homeobox protein nk-2, sequence-specific DNA
binding

R4WTN1, 1; N 26S proteasome Nn-ATPase regulatory subunit 2

R4WUJ6, 1; N Rab gdp/GTP exchange factor

R4WUC4, 1; N MIF4G domain-containing protein, RNA binding

R4WUQ8, 1; N C2H2-type domain-containing protein, nucleic acid
binding

R4WJH4, 1; N chromodomain helicase DNA binding protein, ATP
binding

R4WJK2, 1; N translational activator gcn1, protein kinase binding,
ribosome binding

*R4WCJ3, 7, Y; R4WRN1, 5, Y; R4WHT9, 4, Y; R4WEB6, 3, Y; R4WCQ9, 3, Y;
R4WLF6, 2, N; R4WR48, 2, Y; R4WDL9, 2, N; R4WD17, 1, Y; R4WDI5, 1, N;
R4WDX6, 1, N; R4WDZ2, 1, N; R4WE29, 1, Y; R4WEG9, 1, N; R4WNA8, 1, Y;
R4WMR2, 1, Y; R4WL41, 1, N; R4WNA3, 1, Y; R4WP12, 1, Y; R4WPY4, 1, N;
R4WRA1, 1, N; R4WRQ7, 1, N; R4WSL8, 1, N; R4WSP9, 1, N; R4WUK6, 1, N.
In addition, we presented 30 proteins in the Supplementary Table 2, because
they are less likely to be effectors, such as references genes in qRT-PCR (Lü
et al., 2018), and ribosomal constituent proteins. The relative expression of 31
proteins normally with secretion signals was compared among different tissues
(Figure 2A and Supplementary Table 4). The proteins with bold UniProt ID were
highly expressed in salivary glands or mid-guts. *There are some proteins whose
functions are not yet known.

to nymphs (Huang et al., 2021a), which may also contribute
to more proteins found in adult saliva than in nymph saliva.
However, a strong variance sometimes occurs among replicates,
when proteomes in saliva were analyzed in hemipterans,
as reported in other papers (Carolan et al., 2009, 2011;
Huang et al., 2018).

Salivary Digestive Enzymes
In the 814 proteins with secretion signals in the male
transcriptome, many of them are probably used for digesting
proteins and lipids, as also suggested by Huang et al. (2021a),
including 112 proteases (peptidases) and 41 lipases (esterases).
Since R. pedestris prefers to feed on bean pods in nature, the
enzymes are possibly applied to digest proteins and oils in
beans. Similar results were obtained from studies on other seed-
feeding bugs, as well as predator bugs (Soyelu et al., 2007;
Bigham and Hosseininaveh, 2010; Zibaee et al., 2012). Extra-
oral digestion seems to be important for many stink bug species
(Miles and Taylor, 1994). In laboratory, R. pedestris is normally
reared on dry soybean seeds and water supply (Takeshita and
Kikuchi, 2017), indicating the extra-oral digestion is a primary
process of feeding. In addition, enzymes for sugar digestion
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were also found, including 6 α-amylases and other glucosidases.
The enzymes appeared to be less abundant than proteinases in
the salivary glands, as also found in other pod-feeding bugs
(Soyelu et al., 2007).

In the male proteome, we found an α-glucosidase (UniProt ID:
R4WDP5) and a proteinase (R4WQ74), and the both enzymes are
highly expressed in mid-guts (Figure 2A). We also found several
cathepsin L enzymes in the saliva of males and females (Table 2
and Supplementary Table 3), which are normally expected to
occur in lysosomes and never leave the cells. However, the
enzymes are often secreted by digestive systems in insects and act
as cysteine proteinases (Terra and Ferreira, 2005). The cathepsins
L in R. pedestris saliva normally have the secretion signals and are
probably used for extra-oral digestion.

Salivary Effector Candidates:
Oxidoreductases
Catalases, glutathione peroxidases and peroxiredoxins are
oxidoreductases that are well recognized for degrading ROS
and maintaining redox homeostasis in the damaged plant cells
(Petrova and Smith, 2014; Sharma et al., 2014; Chaudhary et al.,
2015; Dong et al., 2020). A catalase (R4WNB5) existed in male
saliva, and the enzyme was abundantly expressed in fat bodies
(Figure 2). A peroxiredoxin (MW625814) and a glutathione
peroxidase (MW625813) were produced by salivary glands in a
relatively high amount (Figure 2B). These enzymes may also play
an important role in suppressing the first-line defense of plants
(Sharma et al., 2014; Dong et al., 2020).

Dehydrogenases may regulate plant defense signaling and
detoxify plant toxic compounds (Sharma et al., 2014). For
example, glucose dehydrogenases were found in the saliva of
some aphid species and the activities of the enzymes were
corresponding to their virulence (Carolan et al., 2011; Nicholson
et al., 2012; Sharma et al., 2014). Several dehydrogenases
(R4WD44, R4WCW6, R4WEC6, R4WIH8, and R4WQZ0)
were found in the saliva of males and females. In addition,
R. pedestris produced two glucose dehydrogenases (MW561670
and MW625827) in a higher amount in salivary glands
(Figure 2B). The functions of these enzymes remained to be
confirmed in R. pedestris.

Hydrolases
Like the brown planthopper, Nilaparvata lugens (Stål) (Huang
et al., 2016), R. pedestris secret leucyl aminopeptidases (R4WCJ9)
in saliva (Table 2). The enzymes cleave defense peptides
(e.g., hormones and neuropeptides) at N-terminus, especially
leucine residues. In addition, an aminopeptidase (MW625818)
in transcriptome was also found to be specific in salivary glands
and testes of R. pedestris. The enzymes were considered to be
essential in defending aphids against plant lectins (Nicholson
et al., 2012). Metalloproteases, in contrast, possibly cleave
peptides at the C-terminal end (Carolan et al., 2011). In
aphids and thrips, they are able to counteract host defenses,
by degrading plant defense proteins (Carolan et al., 2009,
2011; Stafford-Banks et al., 2014; Wang et al., 2015b). The
metalloprotease (MW625833) of R. pedestris appeared to be a

Zn-metallocarboxypeptidase, and it was abundantly expressed
in salivary glands. These enzymes have a great potential in
degrading defense proteins of host plants.

The chitooligosaccharidolytic beta-N-acetylglucosaminidase
(NAGase, R4WE69) is a chitinase. The enzyme was highly
expressed in salivary glands of R. pedestris and found in male
saliva (Tables 1, 2). Plants NAGases act as an antifungal
compound by hydrolyzing N-glycans of polysaccharides and
glycoproteins (Altmann et al., 1999). Therefore, insects may also
use NAGases for inhibiting fungal infection during feeding on
plants (Nicholson et al., 2012; Sharma et al., 2014). In addition,
NAGases in the saliva of sap-sucking herbivores possibly affect
plant immunity by the interaction with NAGases of host plants
(Nicholson et al., 2012; Sharma et al., 2014).

Calcium Binding Proteins
Phloem sieve elements respond to the feeding by piercing-
sucking insects by quickly inducing calcium flux which possibly
triggers the occlusion of sieve elements and increases the related
plant defenses (Will et al., 2009). However, the calcium-binding
proteins in saliva possibly reduce the reaction, which guarantees
a continuous feeding (Will et al., 2007; Ye et al., 2017; Tian et al.,
2021). Indeed, several types of calcium-binding proteins were
found in the proteomes and transcriptomes (Tables 1, 2), and one
of them (MW625835) had been found to be highly expressed in
salivary glands of R. pedestris.

Others
Trialysins have been found in saliva of the hematophagous
bug Triatoma infestans (Klug) (Amino et al., 2002). The
protein may lyse cells of both animals and microorganisms,
indicating it plays an important role in interaction with hosts
(Amino et al., 2002). Similarly, two trialysins (A0A1B4X9A5 and
A0A1B4X9A9) were found in the saliva of the bean bug (Table 2).
And the A0A1B4X9A5 was abundantly produced by salivary
glands (Figure 2A).

We also found several mucin-like proteins in the top 1,000
expressed genes of the transcriptomes that were commonly with
secretion signals, and most of them were expressed in a relatively
higher amount in salivary glands (Table 1 and Figure 2). Similar
result was found in N. lugens that secreted mucin-like proteins
into both watery and gelling saliva (Huang et al., 2016). One
of their functions was to form a developed salivary sheath and
increase the adaptation of the brown planthoppers to rice plants
(Huang et al., 2017). In the laboratory, we observed many salivary
sheaths on soybean seeds after fed by R. pedestris under an optical
microscope. The sheaths are normally white tubes with helical
curves and with variable lengths. Whether mucin-like proteins
also contribute the formation of salivary sheaths in R. pedestris
needs further studies.

Two serine protease inhibitors (R4WL96 and R4WCP6) were
found in the salvia of males and females. The proteins have been
found to be essential in regulation of host defenses by various
hematophagous arthropods (Amino et al., 2001; Chmelař et al.,
2017; Soares et al., 2018). Both enzymes of R. pedestriswere highly
expressed in salivary glands (Figure 2), and they are expected to
be important in interaction with plant defenses.
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The effector proteins of fungal pathogens are often small
secreted cysteine-rich proteins (SSCPs) with less than 200
amino acid residues, and have a high cysteine content (>2%)
(Stergiopoulos and de Wit, 2009). The strategy might also
occur in insects. For example, Nl28 is a species-specific SSCP
in N. lugens, which induced cell-death symptoms after the
transient expression in Nicotiana benthamiana (Rao et al., 2019).
The cysteines in the effectors often contribute the formation
of disulfide bonds, thereby supporting effectors a specific
structure (Saunders et al., 2012). Here, we also found three
SSCPs (R4WDU9, R4WQ74, and MW625844) that were greatly
expressed in salivary glands or mid-guts of R. pedestris (Figure 2).
Therefore, R. pedestris might also use SSCPs to modulate host
plant immunity, like fungi and the brown planthoppers.

Insect chemosensory proteins (CSPs) are well known for
their functions in olfaction and gustation (Pelosi et al., 2005).
However, some papers have found that the proteins are
sometimes specifically expressed in salivary glands, and they
trigger chlorosis and dwarf phenotypes of N. benthamiana after
the transient expressions (Copenhaver et al., 2010; Rao et al.,
2019). The MP10, a CSP of the green peach aphid Myzus persicae
(Sulz.), activated the jasmonic acid and salicylic acid signaling
pathways of N. benthamiana during feeding (Rodriguez et al.,
2014; Mugford et al., 2016). Here, two CSPs (A0A2Z4HQ00
and MW625831) were found in saliva or transcriptomes of
R. pedestris. However, their expression levels were not biased to
a tested tissue (Supplementary Table 4).

Similar with CSPs, odorant binding proteins (OBPs) are
also well recognized for the function in sensing odors (Zhu
et al., 2019). Here, an OPB (A0A2Z4HQ32) was found in
the male saliva (Table 2), and another OPB (MW625837) was
largely produced in R. pedestris salivary glands (Figure 2B).
How OBPs could act as effectors in herbivores is not yet
understood. However, some OBPs are used by mosquitoes to
scavenge host amines during feeding, which contributes to
anti-inflammatory effect (Calvo et al., 2006, 2009). Since OBPs
possibly have ligand-binding hydrophobic channels (Calvo et al.,
2009), they may be used by herbivores to bind defense-related
molecules of plants.

Carbonic andydrases are zinc metalloenzymes that catalyze
the reversible hydration of carbon dioxide to bicarbonate.
A carbonic andydrase (MW625839) was specifically expressed in
salivary glands of R. pedestris (Figure 2B). Carbonic andydrases
were also found in the watery saliva of a leafhopper and a
planthopper species (Hattori et al., 2015; Huang et al., 2016).
Silencing the gene resulted in lethality of N. lugens (Huang et al.,
2016). How the enzymes help hemipterans feed on plants is
not clear. They may play a protective role in the elevated CO2
concentration during feeding (Huang et al., 2016).

Summary and Perspectives
Transcriptome analysis indicates that salivary glands of
R. pedestris possibly produce a rich repertoire of proteins, in
which many of them are possibly used to digest proteins and oils
in beans. In addition, rich proteins were found in their saliva,
and a high proportion of the proteins are not yet annotated,
indicating knowledge on the salivary proteins of the pest is

very limited. Therefore, the datasets reported here represent
an important first step in identifying effectors in R. pedestris.
In addition, a few elicitors of moth species are relatively small
molecules that are not complete proteins, such as volicitin and
inceptin peptides (Alborn et al., 1997; Steinbrenner et al., 2020).
Those elicitors might also exist in heteropteran species, in which
they have been ignored so far. The different kinds of elicitors and
effector proteins are likely to work together in facilitating the
feeding success of R. pedestris on soybeans.
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