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We discuss the interpretation and dimensions of the population dynamic parameters
that are commonly used to quantify the strength of intraspecific and interspecific
interactions. The concept of “interaction strength” is not unequivocal. Its theoretical
formalization relies on the generalized Lotka–Volterra model. However, four different
ways of parameterizing the model have been proposed in the literature, leading to
four different definitions of the term “interaction strength.” In particular, the dimensions
of these four definitions are not identical, some of these incorporating explicitly the
dimension used to measure the population size. Using an individual-based simulation
model as an illustration, we show that, in the latter case, the interaction strength
depends implicitly on the habitat size. As a consequence, it is of crucial importance to
quantify the population as a density rather than an absolute population abundance. We
insist that the dimension of the interaction strength coefficient should not be overlooked
and any quantitative estimation must be given with explicit units.

Keywords: population dynamics, species interactions, interaction strength, generalized Lotka–Volterra model,
logistic model

INTRODUCTION

Species interactions are at the heart of ecology. In community ecology, whether experimental or
theoretical, it is often necessary to quantify the strength with which populations interact with
each other. There is no universally accepted theoretical formalization of this notion of “interaction
strength” but the most common definitions rely on the generalized Lotka–Volterra model (GLV):

dNi

dt
= Ni ·

ri −
s∑

j=1

aijNj

 , i = 1 . . . s. (1)

Traditionally, the parameter ri is called the “intrinsic growth rate” in the sense that it quantifies
the rate with which the species i would grow (exponentially) in the absence of all interactions,
whether intraspecific or interspecific. The word “intrinsic” refers to the fact that this parameter
value only depends on the biological characteristics of the species i, assumed to be in low density and
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free from interactions with other species. Of course, ri can still
depend on general abiotic and biotic environmental conditions.

The parameter aij, often called the interaction coefficient,
quantifies the strength with which the species j affects the
population growth rate of species i. More precisely, it quantifies
the per capita effect of species j on the per capita growth rate of
species i. In mathematical terms, aij is defined as:

aij = −
∂
(

dNi
Nidt

)
∂Nj

. (2)

The minus sign in the parentheses of Equation 1 and on
the right-hand side of Equation 2 is an arbitrary convention to
indicate that the effect of species j on species i is detrimental
if aij is positive, favorable if aij is negative. We follow this
convention here because we will mostly be interested in
competitive systems. With this convention, all matrix elements,
whether intraspecific or interspecific, quantify the competition
strength with a positive number. It is usually assumed (although
rarely said explicitly) that the coefficient aij only depends on
the biological characteristics of the species i and j. In the same
sense as ri, it is assumed to be intrinsic to the pair of species i
and j (in the given abiotic and biotic environment). From these
considerations and from Equation 2, the dimension of aij should
be unequivocal. We will show that this is far from being the case.

A look at Equation 2 shows that the matrix elements aij
have a dimension that is the product of the reciprocals of the
dimensions of the variables Nj and t. With the standard use of
square brackets to designate the dimension of a variable, this can
be written as:

[
aij
]
=
[
Nj
]−1
· [t]−1.

For example, if Nj is a density measured in units of individuals
per square meter and if the time t is measured in units of days,
the units of aij will be m2ind−1 day−1.

The literature about interaction coefficients is huge and we
cannot possibly review it here. Instead, we refer to the very
useful reviews of Berlow et al. (2004) and of Wootton and
Emmerson (2005), which both rely on theoretical and empirical
considerations. An earlier important reference is the paper by
Bender et al. (1984), which introduces the notions of pulse
and press experiments to estimate interaction strength. In both
types of experiments, we have identified the dimension of the
interaction coefficient as

[
density of i

] [
density of j

]−1. Actually,
none of the cited studies considered the issue of dimensions
and units. Instead, all of these reviews show that the expression
“interaction strength” was used indiscriminately for different
quantities, which turn out to have different dimensions. This
remains true in the recent literature: for example, Carrara et al.
(2015) and Novak et al. (2016) review a number of different
approaches to quantify interaction strength. However, these
approaches are not simply alternate methods for measuring the
same quantity. They are in fact different conceptualizations of
the general idea of interaction strength: different definitions with
different dimensions.

Whenever numerical values are reported, they must be
given with their units. Unfortunately, this is almost never
done. For example, O’Gorman et al. (2010) report values of
interaction strength between 0 and 0.05 with no units specified
(their figure 1). Only after careful reading of Materials and
Methods can the units be reconstructed as m2mg−1day−1.
Wootton (1997) is a rare study in which care was taken
to specify the units (although with some confusion of the
notions of “dimension” and “unit”). Another exception is
the paper by Osenberg et al. (1999) in which units are
specified in their figure 2 (if corrected as m2fish−1day−1).
In other papers, it is sometimes impossible to understand
what the units are, typically when “interaction strengths” are
studied with statistical models like ANOVAs or structural
equation modeling.

Thus, although there exists a vast literature about the
theoretical and practical aspects of interaction metrics, the issue
of dimensions and units has been largely overlooked. This is
unfortunate because comparisons of quantities with different
dimensions are meaningless.

In this article, we will first examine four common
parameterizations of the GLV model (Equation 1). In particular,
we will make explicit the dimensions of the interaction
coefficients in each case. For some of these parameterizations,
the interaction coefficient dimension incorporates explicitly
the dimension used to measure the population size, i.e., the
dimension of Ni. In this case, we prove that aij can depend on
the habitat size. Therefore, the aij measured in a given habitat
must be used with caution in another habitat, especially if they
differ in size. We will first examine this fundamental question
within the logistic equation and will discuss the consequences
for the four different parameterizations of the GLV. The
single-species case will then be illustrated numerically, using an
individual-based model.

PARAMETER DIMENSIONS IN THE
LOGISTIC EQUATION

In order to expound the problem in the simplest possible way,
we first restrict Equation 1 to a single population with r = r1 and
a = a11:

dN
dt
= rN − aN2

or
1
N

dN
dt
= r − aN, (3)

which is nothing else than the well-known “logistic equation”
in Verhulst’s (1838) original parameterization. It models the
dynamics of a single population as Malthusian growth with the
addition of a so-called “retardation force” or “friction force,”
which is nowadays interpreted as intraspecific competition.
The intraspecific inhibition to growth is quantified by the
positive parameter a. When introduced in this way, it is implied
that a, like r, is a purely demographic-biological parameter
intrinsic to the species (but conditional on the given abiotic and
biotic environment).
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It is instructive to make a dimensional analysis of this
equation (Legendre and Legendre, 2012). The dimension of the
variable t is time, that is, [t] = T. Dimensional homogeneity
requires that:

[r] = T−1,

[a] = [N]−1T−1. (4)

As for the dimension of population size N, it can depend on
the system under study because the population can be measured
in different ways. For example, the population of large-bodied
species can be expressed as total number of individuals in the
system (e.g., wolves in Isle Royale), as density per surface area
(e.g., grass), or per volume (e.g., zooplankton). Equation 4 implies
that the dimension of a will depend on the dimension chosen for
N. Consequently, the value of the parameter a is not intrinsic to
the species but also depends on the habitat size. Before illustrating
this property with the use of an individual-based model, we
study the dimensions of the interaction strength coefficients in
four different commonly used parameterizations of the GLV.

FOUR PARAMETERIZATIONS OF THE
GENERALIZED LOTKA–VOLTERRA
MODEL

The GLV model has been parameterized in several ways. In the
original formulation (Equation 1), the parameter dimensions
are (Table 1):

[ri] = T−1,[
aij
]
=
[
Nj
]−1T−1. (5)

Assuming that ri > 0 for all i = 1 . . . s, the first transformation
of Equation 1 makes explicit the carrying capacities Ki:

dNi

dt
=

ri
Ki

Ni ·

Ki −

s∑
j=1

ãijNj

 , i = 1 . . . s, (6)

TABLE 1 | Parameter dimensions of the generalized Lotka–Volterra model and its
reparameterizations.

Parameter Dimension

Intrinsic growth rate ri T−1

Carrying capacity Ki [Ni ]

GLV interaction coefficient aij (Equation 2)
[
Nj
]−1T−1

“Standardized” interaction coefficient ãij = aij/aii (Equation 6) [Ni ]
[
Nj
]−1

“Relative yield” interaction coefficient aij = aij/aii · Kj/Ki

(Equation 8)
Dimensionless

“Absolute” interaction coefficient âij = aij/ri (Equation 10)
[
Nj
]−1

Jacobian element Jij (Equation 16) T−1

T is the dimension of time. The dimension of populations Ni is either absolute
abundance or density.

where Ki is defined as ri/aii and the new interaction coefficients
ãij equal aij/aii. Note that ãii = aii/aii = 1 by definition, and that
the carrying capacity Ki depends on the intrinsic growth rate ri.
As a consequence, the parameter dimensions are (Table 1):

[ri] = T−1,

[Ki] = [Ni] ,[
ãij
]
= [Ni]

[
Nj
]−1

. (7)

Note that this transformation requires that all ri be positive
(Gabriel et al., 2005). This precludes the use of Equation 6
to describe food web dynamics because the notion of carrying
capacity only makes sense for basal species. This formulation can
be traced back to MacArthur and Levins (1967) or even to Gause
(1934, p. 47). In this parameterization, the dimensions of Ni are
transferred to the carrying capacities and to the “standardized
interaction coefficients” ãij.

Still with the assumption ri > 0, we can use the carrying
capacity to normalize the species abundance, which defines the
so-called “relative yield” Yi = Ni/Ki. Relative yield is a common
currency in agroecology (Vandermeer, 2012) and in the study of
the biodiversity-ecosystem-functioning relationship (Cardinale
et al., 2006; Fort, 2018; Parain et al., 2019). The equations for the
relative yield system are obtained from the GLV Equation 1 by
dividing by Ki:

dYi

dt
= riYi ·

1−
s∑

j=1

aijYj

 , i = 1 . . . s, (8)

where aij = aij/aii · Kj/Ki. This leads to the following dimensions
(Table 1):

[ri] = T−1,

[Ki] = [Ni] ,

Yi dimensionless,

aij dimensionless. (9)

In this parameterization, the dimension of each Ni is
transferred to the corresponding carrying capacity and
consequently both the relative yield Yi and the “relative
yield interaction coefficients” aij are truly dimensionless.

Finally, Chesson (2000) has proposed the following
parameterization:

dNi

dt
= riNi ·

1−
s∑

j=1

âijNj

 , i = 1 . . . s, (10)

where âij = aij/ri (assuming ri > 0). In this parameterization, the
dimensions are (Table 1):

[ri] = T−1,[
âij
]
=
[
Nj
]−1

. (11)
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Therefore, the reciprocal of the dimension of Nj is transferred
to âij, called the “absolute interaction coefficient” by
Chesson (2000).

Note that two of the reparameterizations of the original
GLV model (Equations 6, 8) assume implicitly that the intrinsic
growth rates are all positive: ri > 0. This condition is clearly
a prerequisite to properly defining the carrying capacity since
Ki = ri/aii (Gabriel et al., 2005; Mallet, 2012) and therefore also
the relative yield. In the “absolute” parameterization (Chesson,
2000), if the species has a negative intrinsic growth rate, then the
sign of âij = aij/ri follows the opposite convention to that of the
GLV parameterization.

In the following, we will study the impact of habitat size on
the interaction strength. As mentioned above, the dimension
of the population abundance variable N can be, depending
on the studied system, a total number of individuals or a
density per unit surface or per unit volume. In the next
section, we develop an individual-based model to illustrate this
question in the case of logistic growth. Then, we will explain
how this result translates in the four parameterizations of the
GLV model.

AN INDIVIDUAL-BASED MODEL FOR
LOGISTIC GROWTH

The model incorporates a clear individual-to-individual
interference mechanism such that the model simulation
generates dynamics akin to logistic growth. The model
is purely illustrative, with the only purpose of producing
a negative correlation between the per-capita growth
rate and the population density, and with no claim to
biological realism.

At each time step t = 0, 1, . . .Tmax, the population consists
of Nt individuals. The population is assumed to inhabit a closed
rectangular area � = [0, Lx]×

[
0, Ly

]
. Each individual i is

located at some point
(
xi, yi

)
∈ �. The model starts with some

initial number of individuals N0, each randomly placed in �. The
ensuing dynamics produces a time-series of integer population
numbers (N0, . . . NT) according to the following rules.

1. We suppose that each individual has a negative influence
on the reproduction of conspecifics. This influence Si
declines with distance, with a normal distribution centered
on the individual i:

Si
(
x, y

)
=

1
2πσ2 e

−
(x−xi)

2(y−yi)
2

2σ2 , (12)

with standard deviation σ .
2. At each time step, each individual i replicates with

probability

bi =
b(

1+ c · Stot
i
) , (13)

where b is the maximum birth probability, c is a coefficient
that characterizes the sensitivity to the influence of other
individuals, and Stot

i is the total influence with which all

other individuals reduce the reproduction of the individual
i at position

(
xi, yi

)
:

Stot
i =

∑
j 6=i

Sj
(
xi, yi

)
.

According to Equation 13, the effective birth probability bi
declines hyperbolically to zero with S tot

i .
3. Each individual can die with a constant death probability d.
4. Finally, at the end of each time step, all surviving

individuals are redistributed within the habitat, at random
positions

(
xi, yi

)
∈ �.

Thus, the model runs with the six parameters σ, b, c, d, Lx, and
Ly plus the initial number of individuals N0 and the simulation
time horizon T max.

SIMULATION RESULTS

The simulation algorithm was applied with the following
parameter values and repeated with 25 replications: σ = 0.05,
b = 0.01, c = 0.5, and d = 0.005, with an initial number N0 =

100 and a simulation horizon Tmax = 2700. The parameter values
have no biological meaning other than producing the density
dependence that will be displayed by Figure 1.

At each time step t, and for each replicate, we calculate the
instantaneous per capita growth rate as:

1
Nt

dNt

dt
≈

Nt+1t − Nt−1t

2Nt1t
. (14)

Figure 1A shows the relationship of this quantity vs. Nt
in two habitats of different sizes Lx × Ly: 25× 25 (blue dots)
and 25× 50 (red dots). The lines show the best fits of the
model (3) (with type-II regression). As expected, the estimates
of r (y-axis intercept) are almost the same in both habitats.
However, the estimates of a (slope) are different: the slope
is shallower in the larger habitat, suggesting that interference
is weaker. This might seem paradoxical since nothing in
the individual-based reproduction algorithm refers to habitat
size. However, intraspecific competition is indeed weaker in
the larger habitat because, at each time step, individuals are
redistributed at wider distances from one another. As shown by
Figure 1B, when the variable on the abscissa is population density
(number/area) rather than absolute population abundance N,
both cases superimpose almost perfectly and lead to the same
estimate of a. The conclusion is that model (3) only makes
sense in terms of population density—not in terms of absolute
population abundance. Referring to the dimensional identity
(Equation 4), the proper dimension of the interference coefficient
a is therefore [area]

[
population abundance

]−1T−1 such as, for
example, m2ind−1 day−1.

The soundness of the behavioral rules of the simulation model
can be discussed at length. However, this is an unimportant
question as long as the relationships displayed by Figure 1 are
obtained. The simulation model is only a heuristic support for
clarifying the dimensional properties of the logistic model.
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FIGURE 1 | Simulation results of the individual-based model run in a smaller habitat (blue) and in a twice as large habitat (red). The calculated per capita growth rate
(Equation 14) is expressed (A) vs. absolute population abundance and (B) vs. population density. The lines are the results of type-II regressions; the slope’s absolute
value is an estimate of the interspecific competition a (Equation 3).

IMPLICATION FOR THE FOUR
GENERALIZED LOTKA–VOLTERRA
MODEL PARAMETERIZATIONS

We have shown that the intraspecific interaction coefficient a
depends on the habitat size when the population abundance
variable N is the total number of individuals, while a is
independent of the habitat size when N is the density of
individuals. This result can be paraphrased as follows. By
definition, the net per-capita growth rate (r − aN) has dimension
T−1 and the product aN also has dimension T−1. Therefore, it
must be independent of the habitat size. (a) If N is the total
number of individuals, N will be twice larger if the habitat is twice
larger; since aN needs to remain the same, a must consequently
be twice smaller. (b) If N is the density, then it is independent
of the habitat size and, consequently, a is also independent of
the habitat size.

The same reasoning applies to the four parameterizations
of the GLV model. In the original parameterization (Equation
1) as well as in Chesson’s parameterization (Equation 10), the
interaction strength dimension depends on the population
abundance dimension. Therefore, these two interaction
coefficients behave in the same way as the intraspecific
competition coefficient of logistic growth, and depend on
the habitat size when N is measured as the total number
of individuals.

For the other two parameterizations, which make explicit
use of the carrying capacities (Equations 6, 8), the interaction
coefficients are habitat-size invariant whatever dimension is used
for N. This is obvious in the relative yield parameterization
(Equation 8) since the interaction coefficients are truly
dimensionless. In the parameterization of Equation 6, the
interaction coefficients have dimension [Ni]

[
Nj
]−1. Therefore,

the habitat-size scaling disappears whether Ni and Nj are

measured as densities or as total numbers in the same habitat
(except in the situation in which Ni and Nj would be measured
differently from one another).

DISCUSSION

In Physics, it is customary to give dimensions and parameter
units explicitly. As emphasized by Legendre and Legendre (2012,
chapter 3), this is far from always being the case in Ecology.
The four different parameterizations that we have reviewed for
the interaction coefficients do not have the same dimensions.
Simply speaking of “interaction strength” can be a source of
confusion if the chosen parameterization is not stated explicitly.
Moreover, the interaction strength coefficients are not, in general,
intrinsic to the interacting species because the values of the aij
of Equation 1 and those of the âij of Equation 10 will depend
on the way that N is measured. If N is the absolute population
abundance, these parameters will change with the habitat size. If
N is the population density, they will remain independent of the
habitat size. The only two definitions that are always independent
of habitat size are the ãij parameterization of Equation 6, with
explicit use of the carrying capacities Ki (defined as ri/aii), and
the aij parameterization of Equation 8, with the relative yields Yi.
These are the only cases for which the expressions “standardized
interaction strength” or “relative yield interaction strength” have
sensible meanings because aij is truly dimensionless and ãij is
generally dimensionless too (Cardinale et al., 2006; Fort, 2018).
However, these two approaches have a cost: the intrinsic growth
rates must be positive (Gabriel et al., 2005) and they require
carrying capacities, which is a problematic notion (Mallet, 2012).

Laska and Wootton (1998) reviewed several definitions of
interaction strength as used by empiricists. Particularly, they re-
explained the famous experiments performed by Paine (1992).
The latter reference illustrates the inconsistencies that can easily
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permeate the definition of interaction coefficients. Paine (1992)
proposed an empirical measure of the interaction coefficient as:

aij =
Ei − Ci

Ci
·

1
Mj

, (15)

with Ci the density of i in absence of j, Ei the density of i in
presence of j, and Mj the density of j in presence of i. The
dimension of aij is therefore

[
density of j

]−1. This definition is
valid for densities at equilibrium. Laska and Wootton (1998)
show how this measure arises from the logistic equation.
Thereafter, they derive from a discrete-time GLV model another
definition of interaction strength when not at equilibrium. In this
second definition, the dimension of the interaction coefficient
is different: it is

[
density of j

]−1 [time]−1. Therefore, these two
definitions cannot be compared.

Adding to the confusion, some authors (e.g., Paine, 1992,
in the very same paper as mentioned above) also identify
the “interaction strength” with the elements of the so-called
“community matrix,” as defined by May (1973) as the Jacobian
at the system equilibrium:

dNi

dt
∼=

s∑
j=1

Jij
(
Nj − N∗j

)
, i = 1 . . . s, (16)

with

Jij =
∂
(
dNi
dt

)
∂Nj

(calculated at N = N∗). (17)

Equations 16, 17 are the linear approximation of the non-
linear dynamical system (Equation 1) around equilibrium. The
Jacobian elements Jij have dimension T−1, which is true of none
of the four parameterizations studied in the present article. It is
therefore incorrect to identify the GLV interaction coefficients
with the elements of the Jacobian matrix, not only because the
dimensions do not match but also because they describe different
phenomena, as can be seen by comparing Equation 1 with
Equation 16, or Equation 2 with Equation 17. More precisely,
the Jacobian element Jij quantifies the effect of a perturbation
of population abundance Nj on the net variation of population
i (i.e., on dNi/dt) while all interaction strength indicators that
we have reviewed (Table 1) quantify the effect on per capita
variation [i.e., on (1/Ni)dNi/dt]. This has been a source of
confusion. For example, Novak et al. (2016) wrote the Jacobian
expressions (Equations 16, 17) with (1/Ni) dNi/dt on the left-
hand side instead of dNi/dt (their Equations 6, 7). While this is

mathematically possible, it is at odds with the standard use in
Ecology (as introduced by May, 1973), for which local stability
can be deduced from the Jacobian’s eigenvalues. Nevertheless,
all expressions in Novak et al.’s Table 1 are correct and their
paper is an excellent review of the various dissenting definitions
of the term “community matrix.” Because this term has no
unambiguous meaning, we prefer not to use it at all.

In their review, Berlow et al. (2004) discussed various metrics
of interaction strength in food webs, although they defined
the interaction matrix only in the GLV form aij, ignoring the
ãij, aij, and âij parameterizations. Bender et al. (1984) used
the ãij parameterization only. Paine’s (1992) experiments, as
re-explained by Laska and Wootton (1998), rest on the use
of the âij parameterization. However, in the final section of
their paper, Laska and Wootton (1998) make use of the aij
parameterization. These examples emphasize the importance
of carefully defining the interaction coefficients with due
consideration of their dimensions.

Finally, we should point out that the present study confirms,
with additional arguments, our previous insistence on the
fact that population size should preferably be measured as a
density rather than an absolute abundance when intraspecific or
interspecific interactions are present (Arditi et al., 2016, 2017).
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