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Ever since the development of James Watt’s steam engine in 1784, and particularly after the
SecondWorldWar, human societies have expanded across the world and are now acknowledged to
overwhelm the Great Forces of Nature and the planetary boundaries (sensu Rockström et al., 2009).
This, in turn, drove changes in the environment and the biogeochemical cycles in unprecedented
ways (Gulev et al., 2021). We are experiencing the onset of a new geological epoch coined the
“Anthropocene” and characterized by the overexploitation of resources (e.g., extensive soil use
changes for agriculture and urbanization, and overfishing), the buildup of CO2 in the atmosphere,
massive extinctions of biodiversity, etc., all leading to major and systemic changes at the planetary
scale (Crutzen and Stoermer, 2000; Crutzen, 2002; Diaz et al., 2019).

Nowadays, there is undisputable evidence that the rise of Homo sapiens was –and still is–
sadly associated with the widespread and often-irreversible demise of multitude of life forms on
the planet, including negative population trends, population extirpations and significant range
contractions leading eventually to species extinctions (Dirzo et al., 2014; Wagner et al., 2021).
The survival of the remaining wildlife through the Anthropocene requires the evolution of new
adaptations to today’s rapid and extreme changes in environmental conditions and/or biological
interactions. However, the plasticity required for species to be able to adapt to the current changing
conditions has grown exponentially, and the speed at which species must adapt nowadays is many
orders of magnitude faster in comparison with what they have experienced in the course of their
evolution (see Otto, 2018; Halsch et al., 2021).

Understanding the plasticity and adaptability of individual species and communities, and
how these enable them to survive the “Anthropocene filter” is a very challenging and key issue
to predict to what extent the associated shifts and/or losses in biodiversity will translate into
changes in ecosystem function and services. Wild bees are often depicted as a textbook case of
a trait d’union between biodiversity and ecological processes, as they are actively involved in the
sexual reproduction of insect-dependent wildflowers and crops alike, encompassing almost 90%
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of the angiosperm plants on the planet (Ollerton et al., 2011).
They represent an excellent model group to tackle these questions
as they show high species diversity with over 20,000 wild bee
species described at the worldwide scale (Michener, 2007; Engel
et al., 2016; Ascher and Pickering, 2020), >2,000 recorded in
Europe (Michez et al., 2011), all with various population trends
(Nieto et al., 2014; Cameron and Sadd, 2020). Indeed, different
bee species display a large variation in morphological traits (e.g.,
body size from 3mm to 4 cm), and contrasting “partial habitat”
requirements (Westrich, 1996) that make them more or less
successful in the Anthropocene. They also include exotic species
that currently thrive in many different regions of the world (e.g.,
Megachile sculpturalis; Lanner et al., 2020). Recent studies suggest
that the diversity of wild bees is increasingly threatened by
Anthropocene-associated processes, with reports on the decline
of bees emerging in various regions of the world such as in
Europe (Nieto et al., 2014), as well as in South andNorth America
(Cameron et al., 2011; Maharramov et al., 2013; Jacobson et al.,
2018). One of the core messages of these studies on pollinator
decline is that spatial and temporal population trends are not
consistent among species: many species are declining (e.g., 33%
of species recorded in Belgium are threatened with extinction
as reported by Drossart et al., 2019), while others are currently
expanding their distribution range (Dellicour et al., 2014; Dew
et al., 2019; Ghisbain et al., 2021). Bees are therefore a very
appropriate model group to study pollinator insect plasticity and
adaptability to the Anthropocene across different ecological and
evolutionary contexts, with the potential to uncover key facets
of the mechanisms associated with bee population trends and,
consequently, to propose accurate mitigation strategies (Engel
et al., 2016).

While potential mechanisms of plasticity and adaptation
of bees to the threats posed by the Anthropocene are still
explored, an increasing number of studies have demonstrated the
importance and the key functional role of bee gut microbiome
as a toolbox regulating bee nutrition and promoting bee health
(Zheng et al., 2018; Steffan et al., 2019;Miller et al., 2021). Bees are
characterized by a derived herbivorous diet (i.e., their ancestors
were carnivorous) which can be broad (generalist) or narrow
(specialist) based on the breadth of the taxonomic spectrum of
host plants visited for the collection of floral resources (mainly
pollen, nectar and/or oil) by the adult females to feed their
larvae (Dötterl and Vereecken, 2010; Vaudo et al., 2015; Michez
et al., 2019; Rasmussen et al., 2020). Recent evidence points
toward the key role of the bee microbiome in their ability to
process their pollen-rich diet (Steffan et al., 2019; Keller et al.,
2021;Miller et al., 2021). Furthermore, growing evidence suggests
that the fermenting microbial biomass itself contributes to the
nutritional value for the brood: a good example is that larval
stages of different bee species likely acquire bacteria essential to
their development through their diet (Dharampal et al., 2019;
Rothman et al., 2019; Voulgari-Kokota et al., 2019a,b). Besides its
role in nutrition, the microbiota can also protect the brood cell
environment against pathogens and brood spoilage by lowering
the pH and producing antimicrobial metabolites, and can help
detoxify plant toxins and xenobiotics (Parmentier et al., 2018;
Praet et al., 2018; Cuesta-Maté et al., 2021; Keller et al., 2021).

Moreover, bees and microorganisms experience specific
and contrasting modes and speeds of genetic evolution (e.g.
mutation, gene loss, evolutionary pace; Kwong et al., 2014), but
additional drivers of bacterial evolution can also be mediated
through gene exchange via homologous recombination and
lateral gene transfer. Most bees typically have one generation
per year in temperate regions, although some species can
have several generations per year (Santos et al., 2019); by
contrast, microorganisms reproduce through several thousands
of generations in the course of a “bee season” (Gibson et al.,
2018). This short generation time and rapid genetic evolution of
microorganisms and the possibility of pollinators to use flowers
as microbial transfer hubs provide the bee host with a highly
dynamic adaptive potential (Keller et al., 2021). Bees with a stable
microbiota or those that were able to shift to alternative diets or
which can have rapid plastic responses, are more likely to adapt
to an “Anthropocene diet”.

In the Anthropocene context of changing landscapes and
fluctuating floral resources (e.g. Roger et al., 2016; Gao et al.,
2020), the health and survival of bees, particularly the generalist
species, which are ecological linchpin species and key for
the resilience of ecological networks (e.g., Bascompte and
Stouffer, 2009), are likely to be more intimately associated
with the plasticity of their microbiota than previously thought.
The time is ripe to embrace a “paradigm shift” where the
conservation of bees is intertwined with the conservation of their
microbiome (i.e. bee holobiont conservation). Both holobiont
partners (i.e., bees and microbiome) contribute to its plasticity:
the microbiome is primarily involved in processing food, toxins
and promoting immunity, while the bee host contributes to
thermal tolerance and mobility. Some bee species seem to
be able to face environmental changes through plasticity in
their thermoregulation (e.g., Martinet et al., 2021a,b), thermal
tolerance (Maebe et al., 2021a), phenology (Duchenne et al., 2020;
Gérard et al., 2020a), size (Gérard et al., 2020b, 2021), nesting
behavior (Ghisbain et al., 2021) or diet (Scheper et al., 2014),
which might partly explain their contrasting population trends
(reviewed by Maebe et al., 2021b).

With this opinion paper, we advocate that future research
should embrace and implement the “holobiont” concept
(Bordenstein and Theis, 2015; Carrier and Reitzel, 2017;
O’Malley, 2017) also for bees, as well as obtain and disseminate
innovative and integrated insights into the plasticity mechanisms
and adaptation of the bee holobiont to anthropogenic changes
of the environment. This could be done by disentangling
the evolutionary associations of plant-pollinator-microbiota
networks, how these associations have changed in an
Anthropocene context of human-altered habitats (e.g., intensive
agriculture and urbanization), and by studying each holobiont
partners in isolation. The latter could be achieved by (i) the
development of gnotobiotic (or “germ-free”) bees to assess the
adaptive responses of the bee without the bee’s microbiota, as
recently performed with honeybees and bumblebees (Zheng
et al., 2018; Hammer et al., 2021), and (ii) by creating an in vitro
bee gut simulator to assess the plasticity of the microbiome per
se (e.g., sensitivity to xenobiotics). The combined knowledge
obtained from both study systems, being which microbiota has
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FIGURE 1 | Conceptual diagram showing both holobiont partners with their different eco-evolutionary dynamics, and who together can have a greater chance to

pass through the ongoing pressures of Anthropocene filters, which may better explain the observed bee population trends.

a particular importance for a particular bee species in a specific
environment, together with the effects of a specific xenobiotic
on the microbiota, will provide insights into the key microbiota
for the survival of a bee in a specific environment. For instance,
negative effects of pesticides on the bees’ microbiota – and
thus the bee holobiont – may have deleterious effects for the
adaptation potential of the host, and thus on a longer-term
harbor a sublethal threat to bees that has received virtually no
attention to date. Plant phytochemicals also have this potential
to negatively impact the host microbiota: for instance, several
invasive plants have a high polyphenol content – such as in
honey from Japanese knotweed (Fallopia japonica) (Bobiş et al.,
2019) or in the pollen of the Himalayan Balsam (Impatiens

glandulifera) (Vanderplanck et al., 2019) – which has been shown
to decrease the prevalence of Apicystis bombi in bumblebees
(Vanderplanck et al., 2019), and could potentially impact also the
host microbiota. In turn, this knowledge could set the base for
specific new regulatory measures for the use of these xenobiotics
and invasive plants, for the conservation of bee populations.

Therefore, a framework to monitor the holobiont as a part of
conservation or risk assessment practices should be developed.
While it remains still mostly speculative, as future research still
needs to generate the essential information to produce such a
framework, some general or basic ideas can already be put in
place. By identifying “marker” components of the bee microbiota
such as “indicator” OUT’s (similar to indicator species, see
e.g., Dufrêne and Legendre, 1997), and their possible statistical
association with function loss (e.g. in pesticide detoxification
or food digestion), we will gain insights into the adaptive vs.
random nature of the bee microbiota, i.e. the extent to which
and how its diverse components impact the survival potential of

the bee subject to environmental stressors in a given locale (e.g.,
in agricultural areas). These results could also be used as a lever
toward more sustainable and regenerative land use practices.

To conclude, an integrative and interdisciplinary approach
as summarized in Figure 1 will help uncover how and to what
extent the bee holobiont is adapted to present-day and future
Anthropocene environments. Future research should also
help increase our understanding of how response diversity,
through the presence of bee species with contrasting and
variable microbiota, can contribute to the resilience and
maintenance of ecosystem functioning, and the important
ecosystem service of pollination. The “holobiont approach”
has much potential to understand wild bee population
trends and to provide evidence-based recommendations on
hitherto overlooked aspects of bee conservation relevant to
pollinator protection strategies at all scales, from regional
to global.
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