
fevo-10-1006416 October 19, 2022 Time: 10:20 # 1

TYPE Methods
PUBLISHED 20 October 2022
DOI 10.3389/fevo.2022.1006416

OPEN ACCESS

EDITED BY

Stefan Dötterl,
University of Salzburg, Austria

REVIEWED BY

Adam Shuttleworth,
University of KwaZulu-Natal,
South Africa
Eva Gfrerer,
University of Salzburg, Austria

*CORRESPONDENCE

Katherine E. Eisen
katherine.eisen@biol.lu.se

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Chemical Ecology,
a section of the journal
Frontiers in Ecology and Evolution

RECEIVED 29 July 2022
ACCEPTED 20 September 2022
PUBLISHED 20 October 2022

CITATION

Eisen KE, Powers JM, Raguso RA and
Campbell DR (2022) An analytical
pipeline to support robust research on
the ecology, evolution, and function
of floral volatiles.
Front. Ecol. Evol. 10:1006416.
doi: 10.3389/fevo.2022.1006416

COPYRIGHT

© 2022 Eisen, Powers, Raguso and
Campbell. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

An analytical pipeline to support
robust research on the ecology,
evolution, and function of floral
volatiles
Katherine E. Eisen1,2*†, John M. Powers3,4†, Robert A. Raguso5

and Diane R. Campbell3,4

1Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States,
2Biodiversity Unit, Department of Biology, Lund University, Lund, Sweden, 3Department of Ecology
and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States, 4Rocky Mountain
Biological Laboratory, Crested Butte, CO, United States, 5Department of Neurobiology
and Behavior, Cornell University, Ithaca, NY, United States

Research on floral volatiles has grown substantially in the last 20 years,

which has generated insights into their diversity and prevalence. These

studies have paved the way for new research that explores the evolutionary

origins and ecological consequences of different types of variation in floral

scent, including community-level, functional, and environmentally induced

variation. However, to address these types of questions, novel approaches

are needed that can handle large sample sizes, provide quality control

measures, and make volatile research more transparent and accessible,

particularly for scientists without prior experience in this field. Drawing upon

a literature review and our own experiences, we present a set of best

practices for next-generation research in floral scent. We outline methods

for data collection (experimental designs, methods for conducting field

collections, analytical chemistry, compound identification) and data analysis

(statistical analysis, database integration) that will facilitate the generation and

interpretation of quality data. For the intermediate step of data processing, we

created the R package bouquet, which provides a data analysis pipeline. The

package contains functions that enable users to convert chromatographic

peak integrations to a filtered data table that can be used in subsequent

statistical analyses. This package includes default settings for filtering out non-

floral compounds, including background contamination, based on our best-

practice guidelines, but functions and workflows can be easily customized

as necessary. Next-generation research into the ecology and evolution of

floral scent has the potential to generate broadly relevant insights into how

complex traits evolve, their genomic architecture, and their consequences

for ecological interactions. In order to fulfill this potential, the methodology
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of floral scent studies needs to become more transparent and reproducible.

By outlining best practices throughout the lifecycle of a project, from

experimental design to statistical analysis, and providing an R package that

standardizes the data processing pipeline, we provide a resource for new

and seasoned researchers in this field and in adjacent fields, where high-

throughput and multi-dimensional datasets are common.

KEYWORDS

analytical chemistry, chemical ordination, GC-MS, floral scent, data processing,
reproducible research, high-dimensional traits

Introduction

Volatile organic compounds (VOCs) are studied in many
subfields of chemical ecology, in both aquatic and terrestrial
environments. Over the last 20 years, research on floral VOCs
has increased dramatically and moved beyond descriptive
studies. This progression in the field has led to the emergence
of insights in three key areas, which has laid the groundwork
for next-generation research in floral scent. First, despite the
existence of nearly 2,000 described floral scent compounds
(Knudsen et al., 2006), most studied plants share a core set of
“greatest hits,” ubiquitous compounds (e.g., limonene, linalool,
β-caryophyllene, benzaldehyde) that are produced by a small
number of pathways (Pichersky and Dudareva, 2006) and in
some cases, have multiple demonstrated functions (Kessler et al.,
2013; Raguso, 2016). Second, despite an initial bias that floral
scent was exclusively relevant to specialized pollination systems,
it is now clear that floral scent is critical for pollinator attraction
in more generalized systems (e.g., Johnson and Hobbhahn,
2010; Lemaitre et al., 2014; Larue et al., 2016; Schiestl et al.,
2018). Third, despite an early expectation that floral scent
would be a reliable phylogenetic marker, some phylogenetic
studies have found evidence for convergent evolution and
homoplasy across groups of flowering plants, in addition to
substantial population-level variation (see below). In light of
these insights, which suggest that floral scent composition may
be less dauntingly complex, more broadly relevant, and more
evolutionarily labile than was thought previously, we need to
deepen our understanding of what determines variation in
floral scent, what consequences this variation has for species
interactions, and how such variation evolves.

Sources of variation in floral scent include genetics, plant
morphology and phenology, the abiotic environment, and the
biotic community context (across and within trophic levels). In
the small number of systems studied so far, single genes can
allow for emission of a particular compound (Box 1, section 1A),
but the extent to which scent is regulated by a small number of
genes of large effect that could be candidate “speciation genes”
(Schlüter et al., 2011; Byers et al., 2014) across taxa with different
pollinators is just beginning to be explored. Furthermore, recent

studies suggest that genetic variation and heritability in emission
rate can take on a wide range of values (Box 1, section 1B). Floral
scent is often considered an inflorescence- or plant-level trait,
but significant variation in emissions exists both within flowers
on a plant (due to differential emission across flower parts; Box
1, section 2A) and among flowers on a plant (due to changes in
emissions following visitation from pollinators or herbivores or
to changes in environmental conditions at the time of flowering;
Box 1, section 2B). While the putative roles of floral scents often
are assigned to biotic interactions, environmental factors may
have significant effects on the expression and evolution of floral
scent, by generating patterns of intraspecific variation along
environmental gradients (Box 1, section 3A), or by generating
plastic change in scent “chemotypes” (=chemical phenotypes,
often dominated by one or a few compounds; Box 1, section
3B; rev. by Farré-Armengol et al., 2020). In addition, variation
in floral scent can be influenced by or be a direct product of
associations with other organisms, such as epiphytic bacteria on
plant tissues, microbes in nectar, plant pathogens, or soil and
soil nutrients (Box 1, section 4A). Finally, although variation
in floral scent at the plant community level is well-documented
(Owen et al., 2001; Courtois et al., 2009; Junker et al., 2011;
Junker, 2016), the extent to which such variation in scent affects
ecological interactions is only beginning to emerge through both
correlative (Kantsa et al., 2018) and manipulative (Larue et al.,
2016) studies (Raguso, 2012; Junker, 2016). A small number of
studies provide proof-of-concept that floral scent variation at
the community level can contribute to plant-pollinator network
structure (Box 1, section 5A) and ecological function (Box 1,
section 5B).

Floral scent can vary at many scales, from within-plant
to patch, population, species and phylogenetic scales, but the
functional consequences of variation at different levels are less
well-documented or understood. There are several ways in
which functional variation in scent may differ from observed or
measured variation: only a subset of compounds in a volatile
profile may have functional consequences (Box 1, section 6),
volatiles may play roles in more than one type of species
interaction (Box 1, section 7), and functional responses may
vary across pollinator taxa (Box 1, section 8) or geographically
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BOX 1 Sources, functions, and evolution of variation in floral scent.

Broad
category

Narrow category and insights Systems References

Sources of
variation

(1) Genetic variation (A) The molecular basis for floral
scent is determined primarily by a
relatively small number of loci of
large effect

Petunia sp. Hoballah et al., 2007; Klahre
et al., 2011

Orchids Schlüter et al., 2011; Xu et al.,
2012

Mimulus sp. Byers et al., 2014;
Peng et al., 2017

(B) The extent of genetic variation in
scent emission rate ranges from low
to high.

Brassica rapa
Ipomopsis sp.
Sorbus sp.

Zu et al., 2016
Campbell et al., 2022b
Feulner et al., 2014

(2) Within plant
variation

(A) Volatile emissions vary within
flowers (e.g., among flower parts)

Review García et al., 2021

(B) Volatile emissions vary among
flowers on a plant

Nicotiana sp.

Oenothera sp.

Euler and Baldwin, 1996;
Baldwin et al., 1997
Eisen et al., 2022

(3) Abiotic
environment variation

(A) Intraspecific variation in scent
may occur along environmental
gradients

Latitude
Cypripedium sp.
Encephalartos sp.
Echinopsis sp.

Braunschmid et al., 2021
Suinyuy et al., 2015
Schlumpberger and Raguso,
2008

Elevation
Cypripedium sp.
Gymnadenia sp.
Ficus sp.

Braunschmid et al., 2017
Gross et al., 2016
Souto-Vilarós et al., 2018

(B) Scent chemotypes may change
plastically in response to
environmental factors

Water availability
Ipomopsis sp.
Four species found
in Rocky Mountains,
USA

Campbell et al., 2019
Burkle and Runyon, 2016

Nutrients
Arabis sp. Luizzi et al., 2021

Ozone

Fagopyrum sp. Rering et al., 2020

Brassicaceae sp. Saunier and Blande, 2019

Multiple
environmental
factors

Hesperis sp. Majetic et al., 2009

Four species found
in Rocky Mountains,
USA

Glenny et al., 2018

(4) Associations with
other organisms

(A) Microorganisms affe ct volatile
emissions, or are the source of
“floral” volatiles

Epiphytic bacteria Peñuelas et al., 2014;
Helletsgruber et al., 2017;
Burdon et al., 2018

Nectar microbes Rering et al., 2018; Yang et al.,
2019

Plant pathogens Majetic et al., 2017;
Cellini et al., 2019

(5) Plant community
variation

(A) Variation can affect network
structure in communities

Two species in a
German grassland

Larue et al., 2016

Mediterranean
scrubland
communities in
Greece

Kantsa et al., 2018

Montane meadow
in Northern Rocky
Mountains

Burkle and Runyon, 2019

(B) Variation can affect ecological
function in communities

Mediterranean
scrubland
community in Spain

Filella et al., 2013

Functional
consequences of
variation

(6) Volatiles that have functional consequences are
often a subset of all of the compounds produced by
the plant

Bat pollinated sp. in
Costa Rica

Von Helversen et al., 2000

(Continued)
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BOX 1 (Continued)

Broad
category

Narrow category and insights Systems References

Datura and Agave
sp.

Riffell et al., 2009

Chiloglottis sp. Peakall et al., 2010

Echium sp. Burger et al., 2012

Mimulus sp. Byers et al., 2014

(7) Floral volatiles can serve additional functions
beyond pollinator attraction, such as repelling
antagonists

Rafflesia sp.
Nicotiana sp.
Penstemon sp.
Petunia sp.
Polemonium sp.

Lev-Yadun et al., 2009
Kessler et al., 2008, 2019
Burdon et al., 2018
Kessler et al., 2013
Galen et al., 2011

(8) Different pollinators can have different behavioral
responses to the same compounds

Review Junker and Blüthgen, 2010

Evolution of
variation

(9) Macroevolutionary
processes

(A) Scent is phylogenetically
conserved

Chiloglottis sp. Mant et al., 2002;
Peakall et al., 2010

Nicotiana sp. Raguso et al., 2006

Oil-secreting
orchids in
South Africa

Steiner et al., 2011

Ophrys sp. Joffard et al., 2020

Streptanthoid sp. Weber et al., 2018

(B) Scent displays convergent
evolution

Bat pollinated sp.
Lysimachia sp.
Ophrys sp.
Passiflora sp.
Seven fly pollinated
sp. with fetid odors

Knudsen and Tollsten, 1995
Schäffler et al., 2012
Stökl et al., 2005
Clifford, 2017
Johnson and Jürgens, 2010

(C) Scent displays homoplastic
variation

Stanhopea and
Embreea sp.

Williams and Whitten, 1999

Acleisanthes and
Mirabilis sp.

Levin et al., 2003

(10) Microevolutionary
processes

(A) Volatiles can be the targets of
different forms of selection (e.g.,
directional or stabilizing)

Gymnadenia sp. Schiestl et al., 2011;
Gross et al., 2016; Chapurlat
et al., 2019

Brassica sp. Gervasi and Schiestl, 2017

Knauer and Schiestl, 2017;
Schiestl et al., 2018

Anacamptis sp. Joffard et al., 2020

Ipomopsis sp. Campbell et al., 2022a

(B) Volatiles can be under selection
from different agents of selection

Arum sp.
Brassica sp.

Biscutella sp.
Penstemon sp.
Primula sp.
Solanum sp.

Gfrerer et al., 2021
Gervasi and Schiestl, 2017;
Knauer and Schiestl, 2017
Knauer et al., 2018
Parachnowitsch et al., 2012
Ehrlén et al., 2012
Kessler and Halitschke, 2009

(C) Differences in scent are linked to
reproductive isolation or changes in
mating system, while similarities are
linked to hybridization

Arabis sp.
Calendula sp.
Capsella sp.
Chiloglottis and
Ophrys sp.

Petrén et al., 2021
Zito et al., 2018
Sas et al., 2016
Ayasse et al., 2010;
Peakall and Whitehead, 2014;
Whitehead and Peakall, 2014;
Whitehead et al., 2015;
Gervasi et al., 2017

Ipomopsis sp. Bischoff et al., 2015

Mandevilla sp. Rubini Pisano et al., 2019

Phlox sp. Majetic et al., 2018

Platanthera sp. Esposito et al., 2018

Spiranthes sp. Tao et al., 2018
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across the distribution of a plant. A major remaining challenge
is to understand the full spectrum of selective forces acting upon
variation in floral scent, and thereby to establish the functional
significance of different volatile compounds constituting floral
scent blends. This task is daunting, given our underestimation of
the variety of functions involved. For example, it is challenging
enough to demonstrate pollinator-related functions, either
directly through electrophysiological and behavioral assays
(Schiestl and Marion-Poll, 2002; rev. by Raguso, 2020) or
indirectly through studies of selection gradients informed by
such assays (Schiestl et al., 2011). However, there is growing
evidence that natural enemies are just as likely as mutualists to
shape floral scent as selective agents (Galen et al., 2011; Kessler
et al., 2013; Campbell et al., 2022a), even in cases where flowers
are small, scent emissions are miniscule and natural enemies
are microbial (Huang et al., 2012). Thus, there are very few
documented cases in which floral scent composition is simple
and the functions of all components are known (e.g., Wiemer
et al., 2009).

There are open questions about the evolution of floral scent
on both macro- and micro-evolutionary scales. The results of
phylogenetic studies suggest that scent can be evolutionarily
labile (Box 1, section 9), but they do not resolve the extent
to which macroevolutionary patterns result from phylogenetic
constraints and natural selection across many systems (Knudsen
et al., 2006; Raguso et al., 2015). This insight, in combination
with evidence for rapid microevolutionary change in scent
(e.g., Gervasi and Schiestl, 2017; Schiestl et al., 2018), leads
to a number of areas for next-generation research on the
microevolution of floral volatiles, including determining the
most common forms of natural selection on floral volatiles
(e.g., directional, stabilizing; Box 1, section 10A), the most
relevant agents of selection (Box 1, section 10B), and the
relative contribution(s) of floral scent to reproductive isolation,
population structure, and mating system evolution (Box 1,
section 10C).

Although conceptual frameworks exist for addressing these
questions, the development of suitable methods has lagged
in three key areas. First, these types of studies require larger
sample sizes to characterize intraspecific variation in floral scent
and link this variation to differences in community dynamics,
functional responses, environmental variation, or evolutionary
processes (Friberg et al., 2019). As such, computational
tools that make processing large numbers of chromatograms
feasible (Box 2) will be critical, but these types of tools
have not yet been widely adopted in the field. Second,
studies that expand the field into new plant systems or
that address relatively understudied sources of variation will
require analytical chemical methods as well as data processing
methods that provide rigorous quality control. In particular,
the abilities to identify compounds correctly, to retain minor
products consistently, and to remove artifact and contaminant
compounds appropriately in large datasets are all critical

for expanding our knowledge reputably. Third, research on
plant volatiles has been historically somewhat isolated from
work occurring in related fields including pollination ecology
(Raguso, 2008a,b) and community ecology (Raguso, 2014).
However, the number of publications on floral volatiles has
increased since 2006, when a landmark book on the field
was published (Dudareva and Pichersky, 2006; for additional
reviews, see Stashenko and Martínez, 2008, 2012). This pattern
indicates the beginning of a long-desired integration of research
on floral volatiles into the fields of community ecology, behavior,
and evolution (Raguso, 2001, 2008a). As such, new studies
need to adopt methodological approaches that are transparent,
can be understood by non-chemists, and can be accessible for
meta-analyses.

Literature review

We conducted a literature review of studies that measured
floral scent between 2005 and 2019 (Sections “Methods” and
“Results” in Supplementary material 1, list of studies in
Supplementary material 2) to address two questions: (1) Are
floral scent studies being published in more mainstream journals
at an increasing rate? (2) How many studies provide detailed
data processing protocols? Our review revealed that the number
of publications on floral volatiles has increased at a similar
rate in more general, mainstream journals as in journals that
are specific to the subfields of chemistry, biochemistry, and
plant sciences. At the same time, very few of the studies report
how datasets were cleaned and processed–for instance, under
30% of studies (140 studies out of 509 studies that measured
scent between 2014 and 2019) report collecting ambient control
samples, which are important to compare to biological samples
to determine the extent of background contamination (see
Section “Compound filtering”). Of those studies that did collect
ambient control samples, two-thirds of them (93 studies)
did not identify how ambient control data were used in
the study. Fewer than five percent of studies reported using
other methods of cleaning data, such as removing known
contaminants or removing rare compounds from datasets,
although these are commonly performed practices. Similarly,
while most studies reported using authentic standards or
Kovats retention indices (see Section “Analytical chemistry”) to
identify the detected compounds, about 15% of studies did not
provide any information on how compounds were identified.
In addition, less than 10% of studies published between 2014
and 2019 include archived raw data, which vastly limits our
ability to make advances via meta-analyses (e.g., Junker et al.,
2018).

These three pressing methodological issues are pertinent
to the accessibility of new research in the ecology, evolution,
and function of floral scent, and, more broadly, to cutting-
edge, high-throughput studies of any type of VOC. These issues
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BOX 2 Software for pre-processing GC-MS datasets.

Whereas many investigators will rely upon proprietary instrument software to pre-process a GC-MS data set, a large array of open-source software is also available
and can provide additional capabilities. Key features to look for in these software packages are broad interoperability with equipment and other packages, ease of
batch processing, scripting interfaces that enable reproducible analyses by consolidating parameters, and actively updated, well-documented, open-source
algorithms (Bartlett et al., 2011). Comprehensive solutions that provide the majority of steps for high throughput analyses include: XCMS (Smith et al., 2006)
adapted for identifying compounds in GC-MS datasets with either metaMS (Wehrens et al., 2014) or PyMS (O’Callaghan et al., 2012), eRah (Domingo-Almenara
et al., 2016), and ADAP-GC (Jiang et al., 2010; Ni et al., 2012, 2016; Smirnov et al., 2019) featured in the MZmine software (Katajamaa and Orešič, 2007; Pluskal
et al., 2010). Many other tools exist that implement some but not all of the pre-processing steps: deconvolution in AMDIS (Stein, 1999) followed by tracking
conserved unknowns in SpectConnect (Styczynski et al., 2007); or peak alignment in MetAlign (Lommen, 2009) followed by grouping mass peaks in MSClust
(Tikunov et al., 2012). A detailed comparative listing of 29 packages for GC-MS pre-processing is provided by Spicer et al. (2017).

are especially important as incentives for beginning researchers
to add volatile data to their research programs. To address
these issues, we present recommendations for best practices
and new computational tools that form an analytical pipeline,
given that most recent studies in the field do not report their
data processing and cleaning practices in a reproducible way
(but see Clifford, 2017; Lahondère et al., 2020). While various
aspects of methods in the field have been reviewed previously
(e.g., Tholl and Röse, 2006; Stashenko and Martínez, 2008;
Tholl et al., 2020), here we aim to increase the accessibility
of this expanding field through two primary aims. First, we
blend a synthesis of the existing literature on methods in
this and related fields with our own experiences into a guide
for data collection (experimental design, collection techniques,
analytical chemistry, and compound identification), and for data
analysis (statistics and database integration). Second, for the
intermediate step of data processing, we introduce a new R
package, bouquet, that facilitates transparent, consistent, and
reproducible data filtering and manipulation.

Steps in the study of plant
volatiles, from experimental
design to statistical analysis

Experimental design

We present recommendations for aspects of experimental
design that are particularly important when analyzing variation
in floral volatiles: sampling effort, the use of controls, and the
standardization or measurement of environmental conditions.
Sampling effort varies widely across published studies–for
instance, some studies have used a sample from one plant to
characterize the floral scent of a species, while other studies
have analyzed hundreds of samples from a species. Specifically,
in the subset of papers that we reviewed (see Supplementary
materials 1, 2) that were published in 2018 and 2019, the
number of samples collected per group (e.g., populations,
species, experimental treatments, etc.) ranged from 1 to 154,
with a median of only 3 samples per group. Some of this
variation stems from the inherent trade-off between sampling
within and across species (or any other type of group), but the

variation also results from a lack of agreement in the field as to
what constitutes a suitable sample size for a group (e.g., species,
population) of interest. While a minimum sample size of ten
individuals per species was arbitrarily proposed nearly 25 years
ago by Raguso and Pellmyr (1998), this convention has not been
adopted in the field (only 12% of papers published in 2018–2019
met this minimum number of samples per group). Much larger
samples sizes than typically used (median = 3) are needed to
detect compounds found at low to moderate frequencies and
to properly characterize intraspecific variation. For example,
100 samples were needed to detect 28 out of 34 VOCs emitted
by Oenothera harringtonii (Onagraceae) across their geographic
range [see accumulation curve in Skogen et al. (2022)]. A similar
accumulation curve constructed for 68 plants of Ipomopsis
aggregata (Polemoniaceae) from a single population revealed
that 20 samples were needed to detect 26 of 29 VOCs (data
from Campbell et al., 2019). Given the rise of analytical
methods that can handle larger sample sizes (see Section
“Analytical chemistry”), we encourage researchers to increase
their sampling effort at levels appropriate to their research
questions, simply to be able to capture potential polymorphism,
plasticity, and other sources of variation (Delle-Vedove et al.,
2017). Appropriate sample sizes for other questions will depend
upon levels of variation and how they affect statistical power,
but significantly larger sample sizes may be required for some
studies, including those that estimate heritable variation in and
natural selection on scent production (e.g., Gross et al., 2016),
or that map finer spatial and temporal resolution of variation in
scent composition (Gfrerer et al., 2021; Skogen et al., 2022).

For any method of scent collection (see Section “Sample
collection,” where we review methods briefly and refer to
prior, more detailed reviews), ambient control samples must
be collected from empty headspace chambers as well as from
samples that contain only vegetation, in order to rule out these
potential sources of volatiles. The relative merits of headspace
chambers are reviewed by Stewart-Jones and Poppy (2006) and
Tholl et al. (2020). At least a few ambient and vegetative control
samples should be collected concurrently with each replicate
set (e.g., each day’s sample) of floral samples. A set of floral
samples might consist of all the samples collected on a given
day if plants are close to each other (e.g., within a growth
chamber or on a single greenhouse bench), however, if samples
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that are collected concurrently are more dispersed in space
(e.g., across one or more field sites), then one or more ambient
controls should be collected in each sampling location. One
or more vegetative control samples should be collected from
each group that will factor into the analyses. For instance, in
a study comparing scent profiles of species within the same
community, vegetative controls should be collected from each
species, while in a study comparing scent profiles of several
species across several populations, vegetative controls should be
collected from each species at each population. This is important
for plant lineages bearing complex vegetative trichomes (e.g.,
Lamiaceae, Asteraceae, Polemoniaceae) and when induced
whole plant volatile responses to herbivores or pathogens are
anticipated. Protocols for filtering out compounds detected in
the ambient and vegetative controls are described below (see
Section “Chromatogram to data table pipeline”).

Because environmental conditions can generate plastic
variation in floral scent emissions, floral scent collections should
be made under standardized environmental conditions unless
the natural variation is specifically of interest, as in studies of
plasticity or heritability in the field. When possible, we advise
measuring environmental variables such as temperature and
soil moisture, during each sampling period, as these variables
can influence the composition of floral emissions (e.g., Farré-
Armengol et al., 2014; Glenny et al., 2018).

Sample collection

The suitability of VOC sampling methods for different kinds
of scientific questions has been reviewed comprehensively by
Tholl and Röse (2006), Stashenko and Martínez (2008) and more
recently by Tholl et al. (2020) and is summarized in Figure 1.
Readers are referred to these reviews for detailed methodological
comparisons and practical considerations. Here we present a
guide to selecting and optimizing a method and extracting and
interpreting the data.

Scent collection methods can be generally grouped into
two categories: “static headspace” methods and “dynamic
headspace” methods, although below we describe an additional
method that can be hybrid (micro-SPE or TD-GC-MS).
Static headspace approaches are fully equilibration based
and involve the equilibration of volatile samples within a
standardized headspace volume and passive adsorption onto
a matrix that can be directly thermally desorbed for coupled
gas chromatography–mass spectrometry (GC-MS). Benefits of
static headspace approaches include increasing the range and
sensitivity of volatile trapping, providing better representation
of small, highly volatile compounds often masked by solvents
and, conversely, more complete mass spectra for identification
of large, less volatile compounds due to equilibration (Tholl
et al., 2021). These benefits are weighed against the costs
of losing the entire sample in one injection and additional
challenges associated with sample quantification, specifically

that it is difficult to quantify emission rates (reviewed by Ruiz-
Hernández et al., 2018). Three common methods for sampling
static headspace involve the use of solid phase microextraction
(SPME) fibers, twister, and silicone tube-based traps for thermal
desorption; these methods have all been reviewed extensively
(Tholl et al., 2020). Because the entire sample is lost to injection,
additional replicate samples should be collected when using
these methods.

In contrast, dynamic headspace methods involve the
replacement of headspace air over time. As such, they provide
insight into quantitative aspects of floral scent production by
enabling the estimation of emission rates of each compound
of interest, which can be standardized across samples by
the number or mass of flowers sampled (Tholl et al., 2020).
With solvent-based dynamic headspace methods, volatiles are
collected using an adsorbent material that is packed within a
glass or steel trap, and traps are eluted with solvent following the
collection period for subsequent analysis via GC-MS. Aspects
of the protocol that need to be tailored to the particulars
of each system include the length of the collection period,
the amount of adsorbent in the traps, the volume of eluate,
and the amount of floral material in each sample (Dobson
et al., 2005). In addition to facilitating quantitative analysis, this
method also produces samples that can be frozen and stored
for subsequent (re)analysis (e.g., using different GC columns or
detector systems).

An additional method of dynamic headspace collection
involves the use of volatile adsorbent traps for shorter collection
times, followed by direct thermal desorption of trapped
compounds for GC-MS analysis on an instrument that is set
up for that form of injection (TD-GC-MS). The traps can be
small (e.g., containing only 2–5 mg of Tenax and/or charcoal)
or larger to fit some automated thermal desorption systems.
With small traps, the method is sometimes referred to as micro-
solid phase extraction (micro-SPE) (Amirav and Dagan, 1997;
Dötterl et al., 2005). Advantages of this method include reduced
sample collection times (minutes, instead of hours) and stable
sample storage in the absence of refrigeration. Furthermore,
some thermal desorption systems can recollect some of the
sample prior to entering the GC column, which is generally
not an option when SPME or stir-bar methods are used.
Because collections made using this method are not diluted by a
solvent, thermal desorption-based dynamic headspace sampling
is particularly well suited for trapping compounds emitted in
small amounts (Bischoff et al., 2014), such as volatiles emitted
by pollen or dissected flower parts (Jürgens and Dötterl, 2004)
as well as small compounds (e.g., ethyl acetate) whose evaluation
by GC-MS would be impaired by co-elution with a large solvent
peak (Arguello et al., 2013).

Regardless of the method used, preparing and collecting
samples in a way that minimizes contamination and background
noise is essential, because a clean baseline is critical for
compound identification and quantification (described below).
For all methods, collection vials (e.g., glass scintillation vials,
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FIGURE 1

A graphical illustration of how to develop and optimize methods for the analysis of floral VOCs. Brown text indicates questions and themes that
are primarily quantitative in nature, whereas blue text is relevant for approaches that are often qualitative, and black text applies more generally.
Note that these categories are not exclusive, but are meant to provide guidance to new investigators in this field.

PET cups or bottles) should be cleaned prior to use via
washing with non-scented detergent and baked in a clean oven
that is not used to dry plant material. Similarly, sampling
apparatuses (e.g., SPME fibers, adsorbent traps) should also be
cleaned via the injection port of the GC (for SPME fibers),
heating (for thermal desorption traps) or via rinsing with (or
soaking in) copious volumes of solvents (solvent traps) and
then heating (silicone tubing). Note that specific temperatures
and solvents used will vary with materials and applications.
These steps increase the time required to collect samples,
but, when used in combination with ambient and vegetative
control samples (see Section “Experimental design”), can greatly
reduce the background noise and thus increase the power of a
dataset, while also reducing time wasted during analysis (i.e.,
screening out artifacts).

Analytical chemistry

The combination of gas chromatography (GC) as a means
of separating complex chemical blends, with mass spectrometry

(MS) as a detector system used to identify unknowns, has
played a crucial role in the study of plant volatiles, including
essential oils and floral scent (Adams, 2001). Although many
analytical methods can be applied to the study of floral and
plant volatiles (Stashenko and Martínez, 2012; Ruiz-Hernández
et al., 2018; Tholl et al., 2020), here we focus on the use of
GC-MS to identify floral scent constituents. In Figure 1, we
outline how GC-MS-based analytical approaches might differ
for researchers using floral scent to address quantitative vs.
qualitative questions. It should be clear from this figure that
complementary analytical methods are used to address different
kinds of research questions exploring floral scent at different
levels of biological organization.

Selecting a suitable analytical approach involves several
iterations of data collection and fine-tuning. First, the researcher
must obtain proof-of-concept data confirming that volatiles
can be collected, analyzed and identified from their system.
Such pilot studies can be accomplished through collaboration
with analytical chemists or chemical ecologists with suitable
equipment (Raguso et al., 2015), or through core facilities at
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research institutions, usually for a fee. One consideration at
this stage is the choice of GC capillary column dimensions
and stationary phase polarity, which can be tailored to
efficiently separate different chemical mixtures. The most
commonly available all-purpose GC column, non-polar (5%-
phenyl)-methylpolysiloxane (DB-5, HP-5 or similar product
names) offers the benefits of high stability, a large published
literature for compound retention indices (see Section “Adding
biochemical context”), and an appealing logic for beginners
(retention times generally track compound size and boiling
points). Polar GC columns (DB-WAX, etc.) have polyethylene
glycol as a stationary phase, through which blends are separated
according to relative polarity as well as boiling point differences.
Thus, compound retention order is less intuitive, and the
polar columns have lower maximum temperature, a noisier
baseline and a shorter working life, but they are superb
for separating complex blends of similar compounds (e.g.,
sesquiterpene hydrocarbons) or small, polar volatiles (e.g.,
related to fermentation) that would elute too early on a non-
polar GC column.

When planning projects that involve scent sampling
in new systems or using new methods, we suggest that
investigators dedicate time for developing and revising their
analytical methods (Figure 1)–pilot studies rarely reveal the
full complexity of a volatile bouquet, due to the exploratory
nature of the methodology. For example, the unusual yeast-
like scent of Asimina triloba (Annonaceae) flowers was not
adequately captured using dynamic headspace trapping, solvent
elution with hexane and separation on a conventional non-
polar DB-5 GC column, due to the masking of small, highly
volatile fermentation compounds by the solvent injection peak
on that column (Goodrich et al., 2006). Even after switching
to a polar DB-WAX GC column and a solvent-free, static
headspace approach, the common, all-purpose SPME fiber
(100 µm PDMS) was insufficient, necessitating the use of a
hybrid SPME fiber (65 µm DVB-PDMS) (Goodrich et al., 2006).
The researcher should optimize methods for their system and
question, both to enhance the sensitivity and consistency of data
analysis and to minimize costs, especially when high replication
is needed. Method optimization may involve tradeoffs between
slower GC runs needed to resolve all peaks to baseline (Adams,
2001) and faster runs promoting more data replication per unit
of analytical time (Eisen et al., 2022). Truncated GC programs
that accelerate oven temperature ramps during intervals when
few peaks are eluting can shave run times and costs (Doubleday
et al., 2013).

Compound identification and removal
of contaminants

Chemical analysis using GC-MS provides a wealth of
information that can be used to identify individual compounds

in complex floral scents (Box 3). We recommend a combination
of approaches to provide improved specificity and confidence
in identifications, recognizing that some approaches may not
be possible for some compounds. Tentative identification of
a compound generally begins with performing an automated
search of an unknown mass spectrum against a mass spectral
library that generates a list of candidate compounds ranked by
similarity. However, many reference compounds have similar
mass spectra, and not all compounds are present in MS
libraries, so the top result should only be treated as a tentative
identification, and compounds with library match scores below
90% (or some other justified level) should be treated as
unknowns (Box 3; criterion 3). For compounds emitted at
low levels relative to the chromatographic background, or that
nearly co-elute with other compounds, it is often helpful to
perform deconvolution or subtract the mass spectrum adjacent
to the peak of interest before a library search. Considering price
and comprehensiveness, users may select from large universal
libraries such as NIST, Wiley, MassBank (free and open source,
Horai et al., 2010), and the Golm Metabolome Database (free,
Hummel et al., 2013), or libraries specific to plant compounds
such as the Adams Essential Oils Library (Adams, 2001),
the MassFinder Terpenoids Library, the Flavor and Fragrance
Natural and Synthetic Compounds Library (FFNSC), or the
Mass Spectra for Chemical Ecology database (MACE, free,
Schulz and Möllerke, 2022).

To improve on the tentative identification provided by a
library search, a researcher can compare the Kovats retention
index (RI, a standardized retention time calculated by running a
series of n-alkanes with the same GC method) of an unknown
compound to values in the literature provided in databases
such as The PheroBase (El-Sayed, 2021), the NIST Chemistry
WebBook (Linstrom and Mallard, 2001), Adams (2001), and
FFNSC (Box 3, criterion 2). While this approach can narrow
the list of candidate compounds, there are multiple ways in
which RIs may be calculated, which could generate some
degree of noise when comparing calculated RIs to published
values (discussed in Stashenko and Martínez, 2012). Researchers
using temperature-programed (rather than isothermal) GC-MS
separation of volatile blends will need to calculate RIs (and
compare with published data) using the equation of Van Den
Dool and Kratz (1963). One challenging aspect of compound
identification using RIs is that published values can vary due
to factors reviewed by Babushok (2015), who provides standard
deviations and confidence intervals for essential oil components
identified on the most commonly used polar and non-polar
GC columns (see Babushok et al., 2011). Calculated RIs falling
outside of these distributions for published values on the same
GC column should be considered false positives.

The most rigorous way to confirm a tentative identification
of a compound is to run a reference standard of the known
compound on the same GC column and program (Box 3,
criterion 1). This approach is often unavailable to investigators
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BOX 3 Criteria used to identify unknown compounds resulting from GC-MS analysis.

Criterion 1: co-chromatography and MS-match with an authentic standard, preferably on two different stationary phases (GC columns). Criterion 1 should be
sufficient for compounds that are common to floral scent blends and have straightforward chemistry (e.g., methyl salicylate), but may not be sufficient for
compounds whose stereochemistry is unknown (due to chiral centers, positional isomers or stereoisomers with potential differences in biological function).
Criterion 1 would be sufficient in the case of co-chromatography with authentic enantiomers on a chiral GC column.
Criterion 2: in the absence of an authentic standard, through the combination of standard retention indices (RI) and MS libraries, with reference to other
published studies on an appropriate GC column. Criterion 2 may be necessary when standards are not easily obtained but may be deduced through
co-chromatography with essential oils for which high quality analyses have been published (e.g., zingiberene in ginger essential oil; Millar, 1998).
Criterion 3: absence of published RI value, but MS library fit is high (>90%) or confidence can be drawn from key mass spectral ion fragments. Criterion 3 is not
definitive but is relevant when VOCs appear in metabolic series, such as phenylethyl esters with a common base peak of m/z 104, or aliphatic ethyl esters with m/z
88 (Arguello et al., 2013), or when the nitrogen rule is used to evaluate putative pyrroles and piperidines (Moré et al., 2019).
Absent Criteria 1, 2 or 3, compound identity remains unknown. In such cases it is best to either present the full mass spectrum or to list it in descending order (for
consistency, we suggest listing the top 10 m/z fragments in descending order of% abundance, including [by definition] the base peak and, when possible, the
molecular ion) with fragment abundance expressed as% relative to the base peak (most abundant MS ion = 100%).

who do not have chemical supplies, may not be affordable when
a large number of compounds need to be purchased and may
not be practical when a compound is not commercially available.
However, some researchers amass collections of authentic
standards and often are willing to share aliquots with colleagues
for peak identification.

Volatile blends include structural variants such as positional
isomers, cis/trans isomers and enantiomers, which often
require additional analytical methods to determine absolute
configuration. For example, GC analysis with a chiral column
was needed to separate enantiomers of lilac aldehydes and
alcohols (Dötterl et al., 2007), whereas derivatization reactions
were required to determine the double bond positions and
cis/trans conformations of medium chain alkenes in yuccas
(Tröger et al., 2019). Thus, mass spectral library matches alone
are insufficient to determine whether a given flower emits cis-
or trans-β-ocimene, or the (+) or (−) enantiomers of β-pinene,
compounds that are common floral scent constituents (Knudsen
and Gershenzon, 2006). Thus, when the NIST mass spectral
library returns “D-limonene” as a best fit to a sample spectrum,
it is inappropriate in the absence of a chiral GC column.

A challenge of interpreting GC-MS data is the presence
of chromatographic artifacts and impurities, which can arise
at several stages of collection (see Section “Sample collection”
above) and analysis. Supplementary material 3 summarizes
the most common ambient contaminants in GC-MS analyses,
derived from the apparatus (oven bags, plastic tubing,
glassware), growth chamber or greenhouse air, dirty solvents,
or fume hoods. Many of these sources are eliminated in natural
settings, but in such cases other contaminants arise related to
sample transport and storage, community complexity (e.g., ants
within headspace chamber, strongly scented neighboring plants)
or the researchers themselves (lotions, dirty hands, breath
lozenges, insect repellent and sunscreen). Usually, contaminants
can be identified due to their presence in ambient controls
(see Section “Compound filtering”), but contamination may be
specific to a faulty tube, pump or vial. Although novel floral
volatiles are identified each year (e.g., Maia et al., 2019; Milet-
Pinheiro et al., 2021), by now there is a clear sense of what

kinds of compounds can be produced by flowers. Investigators
new to floral scent analysis should be skeptical of phthalates,
silanes or squalene (in tubing), xylenes or halogenated phenols
(in solvents), as well as nonanal and decanal (human skin
contaminants; see Supplementary material 3). Compounds
such as limonene and benzaldehyde constitute special cases, as
they are nearly ubiquitous floral scent components (Knudsen
et al., 2006) but also are commonly found as low abundance
ambient contaminants. When these compounds are genuinely
floral, the collection of headspace samples from larger numbers
of flowers or for longer collection times should increase GC
peak areas significantly over those of accompanying ambient
controls.

Chromatogram to data table pipeline
After volatiles are collected and analyzed by GC, there are

several data processing steps that create a table of emissions
of each confirmed floral volatile compound in each sample
that can be used for analysis. These steps include peak
picking, alignment, and integration, compound identification,
filtering compounds by comparison to ambient controls, and
quantification of emission rates from peak areas. As the
accuracy of the filtered emissions table affects all downstream
analyses, we advocate adopting data processing protocols that
are robust, reproducible, and clearly presented. Our survey
of 509 floral scent studies (see Supplementary material 2)
conducted from 2005 to 2019 found that while 85% of studies
described how compounds were identified, only 28% collected
ambient controls and 9% reported if or how those controls
were used in filtering the dataset (detailed methods and results
in Supplementary material 1). Therefore, many studies are
not reporting methods in sufficient detail to make studies
accessible to a broad audience. We argue that this gap in
methodological and reporting practices is a serious problem
for this growing field, but one that can be solved by using
a well-documented data processing pipeline. As the steps
in each experiment will depend on the analytical method,
software, and dataset size, we offer the following flexible
guidelines for implementing each step and encourage authors
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to report all relevant parameters and procedures. We present
a new R package, bouquet, that enables easy implementation
and reporting of the compound filtering steps (see Section
“Compound filtering”).

Data pre-processing
Analyses that rely on detecting, identifying, and quantifying

hundreds of previously unknown compounds consistently in
tens to hundreds of biological samples require data pre-
processing steps that overcome some of the unique challenges
of raw GC-MS datasets. First, compounds that co-elute from
the GC column form overlapping chromatographic peaks that
are difficult to integrate and identify. Various signal processing
algorithms have been devised to deconvolute overlapping peaks
into separated pure mass spectra that can be better matched to
reference databases and quantified (reviewed in Du and Zeisel,
2013; Domingo-Almenara et al., 2016). Second, retention times
drift slightly among batches of samples, so peaks must be aligned
across the dataset before comparison. Performance of numerous
peak alignment algorithms has been compared (Koh et al., 2010;
Coble and Fraga, 2014; Niu et al., 2014). Third, compounds
present at low amounts are often not recognized initially by
peak detection algorithms in all samples, so to avoid coding
these small amounts as zero, they can be filled in by integrating
ions present in other samples at that retention time (Katajamaa
and Orešič, 2007; Domingo-Almenara et al., 2016; Müller et al.,
2020). Modern implementations of these three algorithms and
others for pre-processing of large GC-MS datasets are given
in Box 2.

Quantification with standards
There are several techniques available for quantifying

volatiles by conversion of integrated peak areas into relative
abundances (percentage analysis) or absolute emission rates
(e.g., mass emitted per hour per g fresh weight) using internal
or external standards (reviewed in Qualley and Dudareva, 2014;
Ruiz-Hernández et al., 2018). Presenting data as emission rates,
which can be presented in different units, rather than peak
areas enables comparisons across study systems that may require
different sampling methods (for instance, different numbers of
flowers enclosed, or different collection windows). For both
liquid extraction-based dynamic headspace and stir-bar static
headspace methods, an internal standard can be added (to the
sample after elution, or to the stir bar before collection) to
facilitate quantification in ng of the internal standard (Qualley
and Dudareva, 2014; Ruiz-Hernández et al., 2018). Alternatively,
calibration curves of external standards can be calculated by
running replicated (three or more times) dilution series of
standards with known concentrations spanning several orders
of magnitude across the linear range of the detector. For thermal
desorption methods, internal standards and dilutions can be
pipetted directly onto the trapping material, while dilutions
can be injected in solvent for solvent-based methods. Due to

differences in mass spectral fragmentation patterns, response
factors differ among and within compound classes (terpenoids,
benzenoids, aliphatics, etc.), so at least one standard of each
compound class should be included in the mixture.

Compound filtering
An important part of the chromatogram to data table

pipeline is determining which compounds will be included in
the final dataset; compounds could be excluded if they are
present in the control samples, if they are rare in the dataset, or
if they are known contaminants (see Compound identification
above). As mentioned above, there are many sources of
undesired chemical background in floral scent chromatograms:
compounds that originate from the environment, vegetative
tissue, or sampling apparatus (e.g., nylon bags, storage
vials), compounds produced by impurities or breakdown
of the trapping material, and compounds originating from
the instrument (the autosampler, inlet, or GC column) (see
Supplementary material 3). This background can be effectively
reduced during data processing by contrasting floral samples
with control samples of ambient air and/or vegetative tissue
(see Section “Experimental design”). Our survey of volatile
processing methods revealed four strategies for comparing
samples with controls that each have advantages and drawbacks.
First, one may exclude any compounds present in the controls;
this is straightforward but may be too stringent if floral volatiles
occur at low levels in vegetative tissue or the ambient air. Second,
one may subtract the average amounts of each compound
found in controls from each sample; this strategy isolates
contributions from floral tissues from those in leaves or the
environment but may result in negative values or contaminants
that are reduced but not entirely eliminated from the dataset.
Third, one may exclude compounds in the controls unless
they occur at several-fold (e.g., four times) greater amounts
in samples on average or on the particular date of sampling.
Fourth, one may exclude compounds in the controls unless
they pass a statistical test (amounts in samples significantly
greater than those in controls). Due to the large number of
comparisons involved in conducting statistical tests on the levels
of hundreds of compounds in floral and control samples, we
recommend controlling the number of false positives using
the false discovery rate method. Because the third and fourth
strategies do not rely on a uniform operation as the exclusion
or subtraction methods do, these methods allow for custom
thresholds for inclusion depending on the background level of
noise but may exclude rare floral compounds.

After background compounds have been removed, manual
filters can focus the final dataset on common or high-emission
volatiles, although these should be applied with caution if
volatile diversity or differences in minor compounds are of
interest. Note that such an approach can miss entirely a
compound that is responsible for pollinator attraction, as seen
for example in the case of a minute quantity of species-specific

Frontiers in Ecology and Evolution 11 frontiersin.org

https://doi.org/10.3389/fevo.2022.1006416
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1006416 October 19, 2022 Time: 10:20 # 12

Eisen et al. 10.3389/fevo.2022.1006416

indole emission attracting hawkmoths (Bischoff et al., 2015).
Authors may choose to exclude compounds that only occur
rarely, using a threshold of the count or frequency of occurrence
in each species, population, or treatment group. Compounds
with low emissions may also be excluded with a minimum
threshold for the largest peak encountered across samples.
Finally, known contaminants (Supplementary material 3) or
compounds that elute outside the retention time range of
most floral volatiles may be excluded (e.g., early eluting small
molecules such as CO2 or late-eluting phthalates or other
contaminants).

To perform all these filtering steps in an easily documented
and customizable data processing pipeline, we developed the
R package bouquet, available for download at https://github.
com/jmpowers/bouquet. This package enables users to start
with a dataset of integrated and identified peaks, and associated
sample metadata, and perform filtering steps of their choosing
(described above). As such, this package differs from the
recently developed gcProfileMakeR (Perez-Sanz et al., 2021),
which enables users to identify metabolites that are produced
constitutively or non-constitutively. Supplementary material 4
provides an introductory vignette with an example dataset, and
complete documentation of each function is included in the
package. Users first load a table of integrated and identified peaks
from a batch of floral samples and ambient and/or vegetative
controls. The format of this initial table is flexible to allow
inputs from many instrument-specific software packages as well
as freely available tools like AMDIS and OpenChrom. Next,
the user loads the experimental metadata with information on
the type of sample, experimental treatments or groups, and
some measure of biomass or flower number used to standardize
emission rates. The user can then perform the filtering steps
of their choosing (all filtering steps described above are
implemented), and combine the filters using logical operators.
For example, to be included in the dataset, a compound may
need to be present in floral samples at four times the average of
ambient controls and occur in at least 5% of floral samples. The
resulting filtered dataset is then ready for downstream analyses.
The package includes a plot_filters function to visualize which
compounds passed the filtering steps by color and position
(Supplementary material 3). One plot shows the rarity and
maximum amount of each compound, with points sized by
the average amount. Another plot shows how mean amounts
compare in samples vs. controls. These visual diagnostics
can show whether likely floral compounds are erroneously
filtered out, or if contaminants are being kept in the current
filtering scheme. Whereas this software automates the process of
filtering volatiles for large numbers of chromatograms, it is best
combined with some manual inspection of chromatograms to
ensure that key floral volatiles have not been missed, for example
due to overlap of peaks, and with consideration of previously
known sources of volatiles (e.g., Chapurlat et al., 2019).

Statistical analysis

Even after filtering out contaminants, floral scent bouquets
often contain a large number of compounds. Scent data,
like other forms of metabolomics (Hall, 2006), are thus
inherently multivariate (van Dam and Poppy, 2008). The high
dimensionality presents challenges for statistical analysis, but
these are not unlike those in some other biological fields such
as species composition of communities (Anderson and Willis,
2003) and gene expression (Allison et al., 2006). The appropriate
method of analysis can vary as much as the ecological or
evolutionary question being asked, so our approach here
is to focus on some key points rather than attempting a
comprehensive review of methods for analysis.

A very common goal is to determine the compounds that
differ between some groups, such as different plant species,
different sites, or different experimental treatments. This is
often accomplished through some form of ordination, a way
of collapsing the multiple dimensions that differentiate the
groups into a smaller number of interpretable dimensions that
can be easily visualized in a 2 (or 3) dimensional graph. An
important decision to make in choosing an ordination analysis
is between using an unconstrained (i.e., unsupervised) method
or a constrained (supervised) method. Unconstrained methods
find axes that explain variation in the entire data set, whereas
constrained methods find axes that explain variation among pre-
defined groups (Anderson and Willis, 2003). Published studies
of floral volatiles have tended to emphasize unconstrained
methods such as principal components analysis and non-metric
dimensional scaling (NMDS), which may be more familiar
to some practitioners. These unconstrained methods are most
suited to exploratory analyses without a few specific groups to
compare. It is important to realize that the axes that explain
variation in a full data set may differ greatly from the axes that
actually separate the groups of interest. For example, consider
the case of comparing two species, in which case constrained
ordination is most appropriate. If variation reflects largely
variation in total emissions, then an unconstrained ordination
will give relatively equal weights to all compounds, even if the
primary difference between species is in a specific compound.
In the example in Figure 2, variation within species is similar
for both volatiles (covariance is equal in both dimensions),
yielding a principal component that reflects total emissions
and weights VOC 1 and 2 similarly. It does a poor job
describing the differences between the species. But the canonical
discriminant function correctly captures the species difference
(larger mean for VOC 2 and smaller mean for VOC 1 for
species 2 compared to species 1), and separates the two species
well. Such a situation will occur whenever within-species and
between-species variation show different patterns and illustrates
the importance of performing constrained ordination if the
intent is to compare specific groups.
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FIGURE 2

Illustration of unconstrained ordination vs. constrained
ordination. Species 1 (sp1) has lower average emissions of VOC 1
(mean = 3) and higher average emissions of VOC 2 (mean = 4.5)
than species 2 (sp2) (means = 4.5 and 3.5). Within both species
emissions of the two volatiles follow a multivariate normal
distribution with covariance between the volatiles equal to 0.75.
(A) Unconstrained ordination with principal components
analysis (black line) reflects total emissions, whereas constrained
ordination with canonical discriminant analysis (CDA) (gray line)
correctly captures the difference between the species.
(B) Boxplots for ordination scores. Projecting the points onto
the two axes shows that only CDA separates the two species
well. All analyses performed in R.

Both unconstrained and constrained methods of ordination
can be divided further into methods that are based on traditional
parametric statistics vs. non-parametric methods (Table 1). The
parametric methods of principal component analysis (PCA) and
canonical discriminant analysis (CDA) are based on eigenvector
analysis using Euclidean distances to define separation. For
these parametric methods, log or square root transformation of
the data may make distributions of residuals closer to fitting the
assumption of multivariate normality. In contrast, the methods
of NMDS and canonical analysis of principal coordinates (CAP

or distance-based redundancy analysis) do not make such rigid
distributional assumptions, as they typically use permutation
tests for significance testing (e.g., in the R package “vegan”;
Legendre et al., 2011). Another potential benefit of these
methods is that they can also use other distance measures to
define dissimilarity of two samples, such as Bray-Curtis distance
(Legendre and Anderson, 1999). For both reasons, they are
often more suitable for situations in which a large number of
samples have zero for some volatiles, which is typical for GC-
MS data. The CAP method is especially valuable for comparing
groups because it combines the features of a constrained analysis
with lack of distributional assumptions and lack of the need
for high sample sizes of traditional CDA (in which the sample
size has to exceed the number of volatiles). An alternative to
ordination is machine learning methods, such as random forests
(Cutler et al., 2007; Ranganathan and Borges, 2010). Random
forests takes bootstrap samples and fits a classification tree using
binary partitioning based on a small number of variables. Then
the observations not included in the original bootstrapping
are predicted from the trees to assess a misclassification rate.
The importance of a particular variable can be assessed by the
difference made to the misclassification rate if it is randomly
shuffled. This method is well suited to situations with a very
large number of variables (i.e., VOCs), but does not provide the
interpretability of methods like PCA and CDA in which axes are
linear combinations of variables. Some examples of application
to floral volatiles are provided by Parachnowitsch et al. (2012)
and Bischoff et al. (2014).

The problem of many variables becomes more acute when
the intent is to combine the information on floral volatiles
with other complex data, such as plant fitness to investigate
natural selection, a phylogeny to investigate macroevolution,
DNA markers to investigate genomic architecture, or a
plant-pollinator network to investigate impacts on species
interactions. Phenotypic selection analysis has long wrestled
with the problem of regressing fitness on a high dimensional
set of multivariate traits. Some solutions include projection
pursuit regression (Schluter and Nychka, 1994) and canonical
analysis (Blows and Brooks, 2003), as applied to floral traits
in Campbell et al. (2022a), penalized multivariate regression
(Gfrerer et al., 2021), and Bayesian reduced rank regression
(Opedal et al., 2022), all of which reduce dimensionality
by finding new axes that explain variation in fitness. The
latter method allows back-transforming a selection gradient
on the constructed axis to estimate selection gradients on
the original VOCs. A dimensionality reduction method for
unconstrained analysis back-transforms selection gradients
onto principal components (Chong et al., 2018). Similar issues
arise with testing for phylogenetic signature of floral scents.
Several recent papers used phylogenetic principal components
analysis to identify the global and local phylogenetic structure
of floral scents (Prieto-Benítez et al., 2016; Joffard et al.,
2020). Multivariate comparative methods are now available
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TABLE 1 Four categories of ordination methods for analyzing multivariate data, along with descriptions of whether the method is unconstrained or
constrained, when to use it, distributional assumptions, R functions and packages, and examples of use.

Method Unconstrained
or constrained

Distributional
assumptions

R function
(package)

Example of use

Principal component
analysis (PCA)

Unconstrained; use
for overall variation

Parametric: Multivariate
normality of residuals

prcomp (factoextra) Reduction of
dimensionality for
selection analysis
(Parachnowitsch et al.,
2012; Chong et al., 2018)

Canonical
discriminant analysis
(CDA)

Constrained; use to
compare groups

Parametric: Multivariate
normality of residuals

candisc (candisc) Compare different time
points in a drought
(Campbell et al., 2019)

Non-metric
dimensional scaling
(NMDS)

Unconstrained; use
for overall variation

None metaMDS (vegan) Exploration of variation
across 34 populations
(Dötterl et al., 2005)

Canonical analysis of
principal coordinates
(CAP)

Constrained; use to
compare groups

None capscale (vegan) Compare different
species (Campbell et al.,
2016) or time of day
(Powers et al., 2022)

to test evolutionary hypotheses about scent composition in a
phylogenetic framework (Adams, 2014; Goolsby, 2017). Studies
of genomic architecture have largely focused on one or a few
volatile compounds (Box 1, section 1A) and so have not yet dealt
with integrating extensive molecular marker data with the whole
suite of VOC emissions.

Examination of the role of scent in generating links in
plant-pollinator networks is particularly challenging because
both scent and the links between plants and pollinators are of
high dimension. Few investigators have taken on this challenge
(Junker et al., 2010). One remarkable study of a Mediterranean
scrubland had 41 plant species and 168 species of insect visitors
to flowers (Kantsa et al., 2018), with 10,400 links between
individual VOCs and insect visitation (Kantsa et al., 2019).
Analysis shows two general ways that such a large number of
links can be handled. The first approach is to collapse floral
volatiles into groups chosen on the basis of prior knowledge,
which could reflect biochemical pathways (Junker, 2017) or
prior knowledge of perception on the part of the visitors, such as
the use of electroantennogram responses to identify volatiles to
keep in the analysis (Schiestl et al., 2011; Chapurlat et al., 2019).
In this case, the authors grouped VOCs into the chemical classes
of aliphatics, benzenoids, phenylpropanoids, monoterpenes,
and sesquiterpenes (Kantsa et al., 2018). They then treated
visitation by different insect species as a multivariate response
vector, using plant traits (including the chemical classes of
scent) of different plant species as predictors in a multivariate
generalized linear model. The second approach is to use
statistical methods to group links, in this case illustrated by using
network methods to identify modules in the bipartite network
of VOCs and insects (Guimera and Amaral, 2005). By looking
at both the volatile composition and the insect composition of
each module it was possible to detect associations, with one
module, for example, containing both a high proportion of
benzenoids and a high proportion of visits by bees (Kantsa

et al., 2019). Incorporation of floral volatiles into networks is
still in its infancy. In general for analysis of floral volatiles, there
is room for development and consideration of other statistical
categorization methods suitable for sparse data in which there
are fewer samples than parameters (Cao et al., 2011).

Adding biochemical context

After an analysis has identified volatiles of interest, modern
chemical databases can be leveraged to add information
on structures, biochemical pathways, and ecological and
phylogenetic context. Basic chemical information including
structures, nomenclature, physical data, and links to
relevant studies is accessible through PubChem, ChEBI,
and ChemSpider, which all have scripting interfaces for bulk
queries (Szöcs et al., 2020). Metabolic pathways for thousands
of plant volatiles can be cross-referenced in databases such
as MetaCyc (Caspi et al., 2020) and KEGG (Kanehisa and
Goto, 2000), which cover thousands of pathways across a large
taxonomic breadth. This information is useful in identifying the
general pathway that synthesizes a volatile (terpenoid, fatty acid,
shikimate, etc.), the specific enzymes involved in its synthesis,
and other volatiles that originate from the same pathway. This
knowledge can be leveraged in biosynthetic distance measures
between samples or species (Junker, 2017) that take into
account the non-independent origin of volatiles from shared
pathways. Databases such as SCENTbase (Knudsen et al., 2006),
SuperScent (Dunkel et al., 2009), and AromaDb (Kumar et al.,
2018) provide curated occurrence data across plant species, or
in the case of mVOC (Lemfack et al., 2018), from microbes
that may be found on plant surfaces. The PheroBase (El-Sayed,
2021) aggregates information on plant occurrences as well as
documented use of volatiles as behavioral signals in insects.
We encourage authors to weave this contextual data into their
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analyses and interpretation to highlight connections among the
diversity of volatiles emitted by plants.

Conclusion

Over the last 25 years, methodological and conceptual
advances have led to the rapid expansion of the field of floral
volatiles research. While studies were previously focused on
identifying and describing variation in scent in isolation, the
current challenge for the field is to determine what contributes
to variation in floral scent, what consequences this variation
has for species interactions, and how such variation evolves.
These frontiers in floral scent research have the potential to
generate broadly relevant insights into the evolution of complex
traits and the genetic architecture and ecological implications
of trait variation. However, in order for the next-generation of
floral scent research to achieve these goals, studies must become
more reproducible and transparent to facilitate comparisons
across systems, and to enable non-specialists to contribute
to the field. Here we present a set of best practices for
next-generation research in floral volatiles, from experimental
design to statistical analysis and interpretation. In particular,
we highlight the need for more reproducible workflows in the
data processing stage, and introduce an R package, bouquet, to
systematize the data cleaning steps that lead to the production
of a final dataset. While our guide is focused on floral volatiles
research, the considerations and recommendations presented
here are also relevant to many other fields that generate high-
throughput, multi-dimensional data.
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