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Ecosystem transformations to altered or novel ecological states are accelerating 
across the globe. Indicators of ecological resilience to disturbance and resistance 
to invasion can aid in assessing risks and prioritizing areas for conservation and 
restoration. The sagebrush biome encompasses parts of 11 western states and 
is experiencing rapid transformations due to human population growth, invasive 
species, altered disturbance regimes, and climate change. We built on prior use of 
static soil moisture and temperature regimes to develop new, ecologically relevant 
and climate responsive indicators of both resilience and resistance. Our new 
indicators were based on climate and soil water availability variables derived from 
process-based ecohydrological models that allow predictions of future conditions. 
We  asked: (1) Which variables best indicate resilience and resistance? (2) What 
are the relationships among the indicator variables and resilience and resistance 
categories? (3) How do patterns of resilience and resistance vary across the area? 
We assembled a large database (n = 24,045) of vegetation sample plots from regional 
monitoring programs and derived multiple climate and soil water availability variables 
for each plot from ecohydrological simulations. We used USDA Natural Resources 
Conservation Service National Soils Survey Information, Ecological Site Descriptions, 
and expert knowledge to develop and assign ecological types and resilience and 
resistance categories to each plot. We used random forest models to derive a set of 
19 climate and water availability variables that best predicted resilience and resistance 
categories. Our models had relatively high multiclass accuracy (80% for resilience; 
75% for resistance). Top indicator variables for both resilience and resistance included 
mean temperature, coldest month temperature, climatic water deficit, and summer 
and driest month precipitation. Variable relationships and patterns differed among 
ecoregions but reflected environmental gradients; low resilience and resistance 
were indicated by warm and dry conditions with high climatic water deficits, and 
moderately high to high resilience and resistance were characterized by cooler and 
moister conditions with low climatic water deficits. The new, ecologically-relevant 
indicators provide information on the vulnerability of resources and likely success 
of management actions, and can be used to develop new approaches and tools for 
prioritizing areas for conservation and restoration actions.
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Introduction

Ecosystem transformations to altered or novel ecological states are 
accelerating across the globe as a result of human perturbations (Díaz 
et al., 2019) and the introductions and invasions of exotic species that 
often co-occur with these perturbations (Richardson and Gaertner, 
2013; Early et al., 2016). Ongoing climate change is a pervasive, added 
stressor, which is not only altering ecosystem processes and disturbance 
regimes, but changing the areas of climatic suitability for invasive species 
(Nolan et al., 2018). Prioritization of ecological restoration and other 
management activities where they are likely to have the greatest benefits 
is essential for addressing this rapid change (Tolvanen and Aronson, 
2016). Science-based prioritization of restoration and other management 
activities in national and regional planning can contribute to creation of 
sustainable landscapes that maintain both biodiversity and ecosystem 
services (Brondizio et al., 2019).

Recently, ecological resilience concepts have been operationalized 
to aid understanding of the environmental factors and ecosystem 
attributes that determine the recovery potentials of ecosystems and that 
are needed for effective prioritization (Hirota et al., 2011; Levine et al., 
2016; Chambers et al., 2019a; Yao et al., 2021). Ecological resilience 
(resilience) is the capacity of ecosystems to reorganize and regain their 
fundamental structure, processes and functioning (i.e., recover) when 
altered by stresses, like longer and more severe drought, and by 
disturbances, such as altered fire regimes (Holling, 1973; Scheffer, 2009). 
Developing an understanding of resistance to invasive species is 
increasingly important because of the transformative properties of 
invaders (Richardson and Gaertner, 2013). Resistance to invasion 
(resistance) is a function of the abiotic and biotic attributes and 
ecological processes of an ecosystem that limit the population growth of 
an invading species (D'Antonio and Thomsen, 2004). Resistance to 
invasion differs among exotic species because it depends on (1) soil and 
climate suitability for establishment and persistence the invader, and (2) 
interactions of the invader with the plant community (Chambers et al., 
2014a; Brooks et al., 2016).

At the landscape scales relevant to management, the resilience 
and resistance of ecosystems vary across environmental gradients 
and can be  quantified using measures of environmental factors, 
including climate, topography, soils, and potential biota (Hirota 
et al., 2011; Chambers et al., 2019a; Yao et al., 2021). In dryland 
regions of the United States, these environmental factors form the 
basis of a landscape-scale classification of ecological site types by 
the USDA Natural Resources Conservation Service, i.e., the 
Ecological Site Descriptions (USDA Natural Resources Conservation 
Service [USDA NRCS], 2022a). Disturbances and stresses that 
change the structure and composition of plant communities, such 
as inappropriate livestock grazing, and alter disturbance regimes, 
such as nonnative plant invasions, can affect the recovery and 
likelihood of invasion of an ecological site. If these disturbances and 
stresses are severe enough, they may result in transitions to 
alternative states as illustrated by state-and-transition models 
(USDA Natural Resources Conservation Service [USDA NRCS], 

2022a). Indicators of resilience and resistance provide information 
on the likelihood of transitions to alternative states and effectiveness 
of management actions (Briske et  al., 2008; Crist et  al., 2019; 
Chambers et al., 2019a).

Climate and soil water availability are highly effective indicators of 
resilience and resistance and the likelihood of change in dryland 
ecosystems (Bestelmeyer et al., 2015). Vegetation dynamics in drylands, 
including the environmental suitability for an invasive species and the 
likelihood of transitions to alternative states, are determined largely by 
climate and soil water availability (Stephenson, 1990; Shriver et al., 2018; 
O’Connor et al., 2020). These areas have high sensitivity to the landscape 
variations in climate that influence soil water availability, including 
patterns of both temperature and precipitation (Renne et al., 2019), and 
are prone to degradation and vulnerable to climate change (Burrell 
et al., 2020).

Environmental indicators based on process-based ecohydrological 
models provide the basis for evaluating both the current effects of 
environmental conditions and the long-term impact of climate change 
on dryland resilience and resistance. Quantifying ecologically relevant 
changes in water availability is difficult in drylands because the response 
of vegetation to moisture and temperature conditions is not easily 
explained by meteorological indices or even simple water balance 
models (McColl et al., 2022). Indicators of resilience and resistance need 
to be  sensitive to future interactions among global changes and 
vegetation, notably the influence of future increases in atmospheric 
carbon dioxide (CO2) on plant water use and overall water use efficiency 
(Ainsworth and Long, 2005). Indicators that ignore these effects 
overestimate the ecological severity of future drought conditions and 
provide misleading impressions about long-term ecological impacts 
(Bradford et al., 2019; Young et al., 2021; McColl et al., 2022). Process-
based ecohydrological models include these effects and have been used 
in drylands to evaluate the impacts of changes in climate and drought 
metrics on plant communities, keystone sagebrush species, and 
recruitment processes under both recent and future environmental 
conditions (e.g., Gremer et al., 2018; Palmquist et al., 2021; Schlaepfer 
et al., 2021).

Indicators of resilience and resistance can be  coupled with 
assessments of current ecological conditions, based on the types and 
numbers of disturbances or geospatial analyses of the magnitude of 
stresses, to develop effective prioritization schemes (Chambers et al., 
2017, 2019a,b; Crist et al., 2019). For example, in drylands, analyses of 
the effects of livestock grazing and wildfire provide insights into the 
causes of plant invasions and current ecological conditions (e.g., 
Williamson et  al., 2020), but these analyses do not provide direct 
information on the likely responses to changes in grazing management 
or active restoration. Evaluating resilience and resistance as a separate 
component of risk analyses, along with the prevailing disturbances and 
stressors, provides necessary information for determining the feasibility, 
types, and economic viability of management actions (Chambers et al., 
2017; Ricca et al., 2018; Crist et al., 2019). Evaluating current ecological 
conditions relative to potential conditions based on resilience and 
resistance indicators provides information on the degree of departure 
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and is also useful for determining appropriate management actions 
(Chambers et al., 2017; Crist et al., 2019).

Here, we developed new ecologically-relevant indicators of resilience 
and resistance for the sagebrush biome based on climate and soil water 
availability variables derived from process-based ecohydrological 
models. The sagebrush biome (Jeffries and Finn, 2019) is a dryland 
region that extends across parts of 11 states in the western United States 
and that is experiencing rapid ecological transformations. The sagebrush 
biome encompasses about 1,186,900 km2 and less than 46% still supports 
sagebrush ecosystems (Miller et al., 2011). Across the biome, human 
population growth is resulting in urban and exurban expansion (Knick 
et al., 2011). Climate change is causing increases in temperature, and in 
many areas, reduced snowpack and more extreme precipitation and 
drought events (IPCC, 2022). In the eastern part of the biome, additional 
stressors include land conversion to agriculture and oil and gas 
development (Hanser et al., 2011). In the west, the most critical stressors 
are invasion by exotic annual grasses and altered fire regimes (Bradley 
et al., 2018; Chambers et al., 2019b). Recent studies estimate that the 
exotic annual grass, Bromus tectorum (cheatgrass), is present in high 
abundance (≥15%) across almost a third (21 million ha) of the 
Intermountain West (Bradley et al., 2018). The continuous fine fuels 
created by the annual grasses, longer fire seasons, and more extreme fire 
weather due to climate change are resulting in development of grass – 
fire cycles and transformation of native ecosystems to exotic annual 
grasslands at a rate of about 200,000 ha per year (Smith et al., 2021).

Strong climatic gradients and highly variable topography across the 
sagebrush biome influence both the types of stressors and disturbances 
and the relative resilience and resistance of ecosystems. Differences in 
relationships between seasonality of precipitation and temperature and 
thus, soil water availability, influence plant functional type dominance 
(Lauenroth et al., 2014), plant establishment potential (Schlaepfer et al., 
2021), and competitive interactions with invasive annual grasses 
(Bradford and Lauenroth, 2006). The western part of the biome typically 
receives most of its precipitation in winter and spring, has more deep 
soil water storage, and is dominated by woody species, which are more 
effective at using deep soil water (Lauenroth et al., 2014). Much of the 
eastern part of the biome receives a higher proportion of summer 
precipitation and is dominated by perennial grasses. Both resilience and 
resistance have been suggested to increase with increasing summer 
precipitation. This has been attributed to the ability of the perennial 
grasses that dominate under this precipitation regime to recover after 
fire and other disturbances and to out-compete exotic annual grasses 
(Prevéy and Seastedt, 2014; Larson et al., 2017).

Previous applications of resilience and resistance concepts in the 
sagebrush biome relied on soil climate regimes (soil temperature and 
moisture) as indicators of resilience and resistance (Maestas et al., 2016; 
Chambers et al., 2017). These regimes, which are mapped as part of the 
U.S. National Cooperative Soil Survey (USDA Natural Resources 
Conservation Service [USDA NRCS], 2022c), integrate several different 
climatic variables including temperature, precipitation and their 
seasonality. Resilience and resistance indicators based on soil temperature 
and moisture regimes have been used to develop prioritization strategies 
for fire prevention and management, invasive species management, 
conservation of species habitat, and restoration (Chambers et al., 2017, 
2019b; Ricca et al., 2018; Crist et al., 2019; Rodhouse et al., 2021). The 
strengths of using soil temperature and moisture regimes as indicators of 
resilience and resistance are that they can be linked directly to Ecological 
Site Descriptions (USDA Natural Resources Conservation Service 
[USDA NRCS], 2022b) and can be scaled from project areas to large 

landscapes. The weaknesses are the static nature of the soil temperature 
and moisture regimes, differences in soil mapping protocols across state 
boundaries, and algorithms that prevent developing appropriate 
projections of climate change effects (Bradford et al., 2019).

We used ecologically-relevant and climate responsive climate and 
soil water availability variables to develop new indicators of resilience 
and resistance that span the diverse environmental conditions in the 
sagebrush biome. We asked three questions: (1) Which climate and soil 
water availability variables best indicate resilience and resistance? (2) 
What are the relationships among the indicator variables and resilience 
and resistance categories? and (3) How do patterns of resilience and 
resistance vary across the study area? To increase applicability to 
management, we used the soil survey information and ecological site 
descriptions commonly used by managers as the foundation of our 
approach. To expand our ability to characterize resilience and resistance 
in a rapidly changing environment, we  used climate and soil water 
availability variables from process-based ecohydrological simulations in 
our predictive models. We  developed indicators of resilience and 
resistance for the sagebrush biome that can be used in prioritization 
schemes for the conservation and restoration of sagebrush ecosystems. 
We provided considerations for a warming environment.

Materials and methods

Study area

We focused on seven Level III EPA ecoregions within the sagebrush 
biome that exhibit different environmental characteristics and ecosystem 
attributes, including the Northern Basin and Range, Snake River Plain, 
Central Basin and Range, Wyoming Basins, Colorado Plateau, Middle 
Rockies, and Northwestern Great Plains (US Environmental Protection 
Agency [US EPA], 2022). The Cold Deserts in the west (Northern Basin 
and Range, Central Basin and Range, Snake River Plain) are 
characterized by mid-latitude climates with warm to hot summers, cold 
winters, and winter-dominated precipitation (Supplementary Table 1; 
Wiken et al., 2011). These ecoregions largely support shrub-steppe and 
shrubland vegetation. The Cold Deserts in the east (Wyoming Basin, 
Colorado Plateau) have a continental climate with warm to hot and dry 
summers and cool to cold and wet winters. The proportion of summer 
precipitation increases across a west to east gradient in these ecoregions 
resulting in vegetation that is characterized largely by shrublands in the 
west but transitions to warm-season grass dominance in the east. The 
Middle Rockies ecoregion in the Western Cordillera is characterized by 
high elevation mountains and foothills, cool to warm, short summers, 
very cold winters, and relatively high precipitation. Upper elevations are 
dominated by coniferous forests, the foothills are partly wooded or 
shrub-dominated, and the intermontane valleys are grass-or shrub-
covered. The Northwestern Great Plains ecoregion in the West-central 
Semi-arid Prairies has a mostly dry, mid-latitude climate characterized 
by warm to hot summers and cold winters. Climate patterns favor 
grassland communities although sagebrush species are present.

Developing the database

Plot data
We analyzed vegetation sampling plots from regional monitoring 

efforts to derive our indicators of resilience (RSL) and resistance (RST), 
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evaluate differences in climate and soil water availability among RSL and 
RST categories, and assess variation in RSL and RST across ecoregions. 
Sampling plots originated from the USDOI Bureau of Land Management 
Assessment Inventory and Monitoring (AIM) TerrADat and LMF 
databases, USDA Forest Service Forest Inventory and Analysis (FIA) 
database, Rehabilitation Success Project (RSP), and Sagebrush Treatment 
Evaluation Project (SageSTEP) database. The records included spatial 
locations of sampling, date of sampling, and vegetation present. Plant 
species nomenclature generally followed the USDA Plants database 
(USDA Natural Resources Conservation Service [USDA NRCS], 2022b).

FIA vegetation data included cover values for species not designated 
as weeds from the initial land condition class (CONDID = 1). The AIM 
LMF and TerrADat databases provided plant cover and presence from 
line point intercept methods and a species inventory of the plot. The RSP 
and SageSTEP database included plant cover from a similar line point 
intercept method. Our data cleaning aligned plant symbols to our 
species reference list and screened for duplicates and errors. For each 
database, we  considered each spatial location and sampling year a 
distinct sampling event.

We used sample plots that represented salt desert, sagebrush, and 
pinyon-juniper woodland ecosystems. Because forested ecosystems 
occur inside the sagebrush biome’s perimeter, we identified and excluded 
plots with forest tree species (Abies concolor, A. grandis, A. lasiocarpa, 
Larix occidentalis, Pinus albicaulis, P. aristate, P. contorta, Picea 
engelmannii, or Picea pungens). Plots with Populus tremuloides or 
Pseudotsuga menziesii were excluded if focal sagebrush species 
(Artemisia sp.) did not occur in the plot.

Climate and soil water availability data
We estimated climatic conditions representative of each sample plot 

by extracting values from publicly available gridded meteorological data 
sets. We generated long-term (1980–2019) climate norms representing 
the mean and variation of various forms of air temperature and 
precipitation. Climate data at the plot locations used for initial model 
training were derived from Daymet Annual and Monthly Climate 
Summaries at 1-km resolution (Version 4; Thornton et al., 2020a,b).

We simulated climate and water availability metrics based on daily 
pools and fluxes of water balance using the SOILWAT2 ecohydrological 
model (SOILWAT2 v6.2.1; R packages rSOILWAT2 v5.0.1 and rSFSW2 
v4.3.1). SOILWAT2 is open-source and details are available in Github 
repositories (Schlaepfer and Andrews, 2021; Schlaepfer and Murphy, 
2021). SOILWAT2 is a process-based ecosystem water balance 
simulation model with a daily time step, multiple soil layers, snowpack 
dynamics, multiple vegetation types responsive to atmospheric CO2 
concentrations, and hydraulic redistribution. We  applied methods 
described in Bradford et al. (2014) to estimate relative composition of 
woody plants and grasses (C3 and C4 types) as well as monthly biomass, 
litter, and root distributions from climate conditions. The model has 
been used and validated successfully in dryland ecosystems in North 
America and globally (e.g., Bradford et al., 2014, 2019; Renne et al., 
2019; Schlaepfer et al., 2021; Zhang et al., 2021).

We produced two sets of simulation runs with SOILWAT2; the first 
to provide metrics at the plot locations used for initial model training 
and the second to produce metrics for projecting the RSL and RST 
indicators across the sagebrush biome. Inputs for the first set of 
simulation runs included daily meteorological data from Daymet at 
1-km resolution (Thornton et al., 2020a,b) and soil specifications from 
July 2020, gNATSGO (USDA Natural Resources Conservation Service 
[USDA NRCS], 2020), i.e., depth profile and soil properties for each 

horizon representing the dominant soil component of the soil map unit 
where a plot occurs. For the second simulations, we  developed 
simulation units (n = 97,275) with complete spatial coverage across the 
sagebrush biome. The simulation units consisted of gNATSGO soil map 
unit polygons (n = 65,682), and to increase resolution within large soil 
map units, polygons of intersections between gridMET grid cells (daily 
meteorological dataset, Abatzoglou, 2013) and map units, if such an 
intersection covered more than 50% of a gridMET grid cell (n = 31,593). 
Inputs for the simulation units of the second set of runs included daily 
meteorological data from the climatologically nearest gridMET grid cell 
and soil depth profile and soil properties for each horizon representing 
the dominant soil component of soil map units from July 2020, 
gNATSGO.

We used the climate data and associated ecohydrological simulations 
to define a set of ecologically relevant metrics that represent spatial and 
temporal variation in temperature and plant-accessible moisture 
conditions across the soil profile. These metrics, described in Chenoweth 
et al. (2022), quantify overall growing conditions, seasonal variability 
and timing of moisture, occurrence of extreme drought conditions, and 
conditions that assess potential suitability for establishment of perennial 
plants in drylands.

Developing the ecological types and 
resilience and resistance categories

We used the USDA Natural Resources Conservation Service Soil 
Survey Information (USDA Natural Resources Conservation Service 
[USDA NRCS], 2022c) and Ecological Site Descriptions (USDA 
Natural Resources Conservation Service [USDA NRCS], 2022b) that 
are widely used by managers across the biome as the foundation of 
our approach. We began by developing ecological types for each of 
the seven ecoregions based on the available soil and ecological site 
information. Ecological types are a category of land with a 
distinctive (i.e., mappable) combination of environmental 
components, specifically, climate, geology, geomorphology, soils, 
and potential natural vegetation (Winthers et al., 2005). We obtained 
data from the Soil Survey Information (USDA Natural Resources 
Conservation Service [USDA NRCS], 2022c) for all ecological sites 
listed in each ecoregion. The data included ecological site ID and 
name, Major Land Resource Area, and select climate, soils, 
landform, vegetation composition, and productivity data for each 
soil map unit component with an identified ecological site. To 
facilitate assignment of ecological sites to ecological types, 
we retained all ecological sites with unique IDs and used the values 
for the map unit component with the highest acreage. The ecological 
sites were grouped into ecological types based on similarities in 
climate, soils, and vegetation as well as the concept for the site as 
indicated by the ecological site description. The ecological types 
were coded according to soil temperature regimes – cryic (C), frigid 
(F), and mesic (M). Because of the importance of the timing of 
available soil water, types were also coded as ustic (U) if they had an 
ustic (summer moist) soil moisture regime. To facilitate 
comparisons, similar ecological type names were used to describe 
similar groups of ecological sites and a cross-walk of ecological 
types was created for the ecoregions.

Natural resource experts categorized the relative RSL and RST 
of the ecological types in each ecoregion (Supplementary Table 2). 
To facilitate comparison across ecoregions, the RSL categorization 
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was based largely on the abiotic characteristics, i.e., climate and 
soils, that determined the ecological type’s potential response to 
disturbance (Chambers et al., 2014a). A critical question was how 
quickly and to what degree could an ecological type recover after 
disturbances like inappropriate livestock grazing or wildfire. 
We  expected that RSL would generally increase as precipitation 
increased until temperature became limiting to plant growth and 
reproduction. Exceptions were where soil chemistry (e.g., electrical 
conductivity, sodium absorption ratio) or physical conditions (e.g., 
coarse fragments, depth to restrictive layer) were limiting. To obtain 
consistent ratings among ecological types for resistance to annual 
grass invasion, categorization focused on B. tectorum. Climate 
suitability and soils were considered the primary determinants of 
RST, but resource availability and competition from perennial 
herbaceous species were also considered (Chambers et al., 2014a). 
The expert assigned categories for RSL and RST were Low (“L”), 
Moderately Low (“ML”), Moderate (“M”), Moderately High (“MH”), 
and High (“H”).

We classified vegetation sampling plots that lacked an assigned 
ecological site ID in the plot database (42%) into ecological types using 
a supervised classification process (see Supplementary Exhibit 1). In 
brief, we trained random forest models for each ecoregion using plots 
with known ecological types and a set of abiotic variables that minimized 
multicollinearity, showed potential for differentiating plots in 

multivariate space, and were relevant within the ecoregion. We used the 
abiotic variables for the plots with assigned ecological site IDs and 
presence/absence data for key native species that represented the 
different ecological types in the ecoregions to inform the models. 
We  predicted the most likely ecological type for the plots lacking 
assigned ecological site IDs using the trained final models.

Determining the best indicators of resilience 
and resistance

We identified those climate and soil water availability variables that 
best indicated the RSL and RST categories from the plot database by 
training random forest models of RSL and RST. Because so few sample 
plots were categorized as High in either RSL or RST, we pooled those 
plots with Moderately High plots (“H+MH”). We selected an a priori set 
of 19 climate and soil water availability variables from a set of 95 metrics 
based on climate, soils, and ecohydrological modeling (Table 1) that 
were ecologically relevant. Pearson’s correlation coefficients showed that 
out of 171 unique pairwise correlations for the 19 variables, only 16 had 
an absolute value greater than 0.6, and nine had an absolute value 
greater than 0.7 (Supplementary Figure 1).

We randomly split the data set into a training/analysis set (0.70) and 
a test/assessment set (0.30), stratified by RSL and RST categories. 

TABLE 1 Variables used in the analyses.

Temperature (mean 1980–2019) Water availability (mean 1980–2019)

Mean temperature Annual mean air temperature (°C; Temp_mn) Mean climatic 

water deficit

Annual evapotranspiration subtracted from annual potential evapotranspiration 

(mm; CWD_mn)

Mean temp coldest 

month

Mean air temperature of the coldest month (°C; 

Temp_coldestmonth_mn)

Mean dry degree 

days

Annual cumulative degree days with daily mean air temperature above 5°C, no 

snow cover, and soil water potential <−3.0 MPa from 0 to 100 cm depth (degree 

days; DDD_mn)

Mean diurnal 

range temp

Mean of the daily range of air temperature (°C; 

Temp_diurnal_range_mn)

Mean deep 

drainage

Annual deep drainage, i.e., water leaving the soil profile (mm; Deep_drainage_

mn)

Precipitation (mean 1980–2019) Mean duration 

dry soil intervals

Annual mean length of dry soil interval (DSI) where all soil layers at 0–100 cm 

depth have soil water potential < −1.5 MPa (d; DSI_duration_mn)

Mean precipitation Annual precipitation (mm; PPT_mn) Interannual variability (CV or SD 1980–2019)

Mean PPT driest 

month

Precipitation for the driest month (mm; PPT_

driestmonth_mn)

CV 

evapotranspiration

Coefficient of variation for annual evapotranspiration (mm; ET_CV)

Mean PPT rain Mean annual precipitation received as rain (mm; 

PPT_Rain_mn)

CV potential 

evapotranspiration

Coefficient of variation for annual potential evapotranspiration (mm; PET_CV)

Seasonality of moisture (mean 1980–2019) CV precipitation Coefficient of variation for annual precipitation (mm; PPT_CV)

Monthly CV 

climatic water 

deficit month

Annual mean of coefficient of variation among 

monthly climatic water deficits (mm; CWD_

monthly_CV_mn)

SD temp coldest 

month

Standard deviation of air temperature during the coldest month (°C; Temp_

coldestmonth_SD)

Mean PPT July, 

August, September

Precipitation received in July, August, and 

September (mm; PPT_JAS_mn)

SD temp hottest 

month

Standard deviation of air temperature during the hottest month (°C; Temp_

hottestmonth_SD)

Mean correlation 

PPT with temp

Correlation between monthly precipitation 

amount and monthly mean air temperature 

(Cor_PPT_Temp_mn)

Mean correlation 

CWD with temp

Correlation between monthly climatic water 

deficit and monthly mean air temperature (Cor_

CWD_Temp_mn)

Climate data were obtained from DayMet (for initial model development) or gridMET (for projection across the biome) for 1980 to 2019. Soil water availability data were derived from SOILWAT2 
simulations. All variables were initially calculated on an annual basis, which was then used to calculate interannual means (mn), coefficients of variation (CV), or standard deviations (SD).
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FIGURE 1

Maps of the most highly ranked predictor variables of resilience and 
resistance for the study area. Black lines indicate Level III EPA 
ecoregion boundaries (US Environmental Protection Agency [US EPA], 
2022).

Because of imbalanced sample sizes among RSL and RST categories, 
we performed synthetic minority over-sampling (i.e., SMOTE) so that 
all sample sizes were approximately equal (Chawla et  al., 2002). 
We standardized the continuous abiotic variables to a mean of 0 and unit 
variance, and tuned a random forest model on the training data using 
the accuracy statistic estimated from 10-fold cross-validation to select 
an optimal number of randomly sampled variables as candidates at each 
split (i.e., “mtry” parameter). The resulting model was assessed by its 
performance in classifying the cross-validation set within ecoregions, 
and the final model fitted to the training data set. This final model was 
used to generate predicted RSL and RST indicators for all plots, and the 
classification performance was evaluated from test set results. The 
supervised classification was performed using “tidymodels,” “themis,” 
“caret,” and “randomForest” packages in R version 4.1.2 (R Core 
Team, 2021).

We evaluated differences in climate and soil water availability among 
RSL and RST categories by identifying the most important indicators of 
RSL and RST among the set of 19 variables. We used the Jenks natural 
breaks algorithm (Jenks and Caspall, 1971) to suggest five break points 
separating the distribution of the permutation-based mean decreases in 
accuracy (MDA) values. The influence of the different indicators on RSL 
and RST within the top groups as defined by the Jenks natural breaks 
were evaluated by examining the distributions of the raw data, 
accumulated local effect plots (Biecek, 2018), and 2-way partial 
dependence plots (Greenwell, 2017). The 2-way partial dependence plots 
showed the patterns of random forest predictions within each level of 
RSL and RST in response to changes in two indicator variables 
simultaneously and were used to explore interactions between variables.

Mapping the indicators and comparing the 
ecoregions

To develop maps of the RSL and RST categories, we first compiled 
the indicator variables from the random forest models across the 
ecoregions within the study area. The primary spatial units were derived 
from gNATSGO (USDA Natural Resources Conservation Service 
[USDA NRCS], 2020). Where large map unit polygons dominated a grid 
cell, we used spatial units that represented the intersections between the 
map unit polygons and the 4-km grid of gridMET (Abatzoglou, 2013). 
Indicator variables were determined as described above and used by the 
random forest model to predict both RSL and RST categories for each 
spatial unit.

To assess variation in RSL and RST across ecoregions, we summed 
the proportion of the area within each ecoregion occupied by each 
category of RSL and RST. We restricted our summaries to those portions 
of the ecoregions occupied by sagebrush and pinyon juniper ecosystems 
within the rangelands data layer (Reeves and Mitchell, 2011) and 
excluded portions of the ecoregions which fell outside of the sagebrush 
biome perimeter.

Results

Resilience and resistance indicator variables

The climate and soil water availability variables selected for inclusion 
in the random forest models showed large differences across the study 
area due to changes in temperature associated with latitude and 

elevation, changes in seasonality of precipitation across an east to west 
longitudinal gradient, and regional soils and topography (Figure  1; 
Supplementary Figure 2). The random forest models that were derived 
from these variables had relatively high multiclass accuracy (80% for 
RSL and 75% for RST) and predicted the rarer classes well 
(sensitivity = 78% for RSL and 75% for RST). However, the accuracy and 
sensitivity of the random forest predictions for the RSL and RST 
categories differed among ecoregions due to variation in numbers of 
ecological types, numbers of sample plots within types, and complexity 
of ecological types (Supplementary Figure 3; Supplementary Tables 3, 4). 
Despite this, the percentage of plots with correct predictions of RSL was 
95 to 96% in all ecoregions except the Wyoming Basin, which had 92% 
correct. For RST the percentage of plots with correct predictions was 93 
to 96% with 90% in the Wyoming Basin.

We derived five Jenks natural breaks for variable importance from 
the permutation-based mean decreases in accuracy (MDA) for RSL and 
RST. Variables in the first natural break for the RSL categories had 
MDAs ranging from 17.0 to 14.4% and were, in order of importance, 
mean temperature (Temp_mn) followed by climatic water deficit 
(CWD_mn) and mean precipitation (PPT_mn; Figure 2). The three 
variables in the second break had MDAs ranging from 11.8 to 9.8% and 
included coldest month temperature (Temp_coldestmonth_mn), 
summer precipitation (PPT_JAS_mn), and driest month precipitation 
(PPT_driestmonth_mn). Only one variable, Temp_mn, was in the first 

https://doi.org/10.3389/fevo.2022.1009268
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Chambers et al. 10.3389/fevo.2022.1009268

Frontiers in Ecology and Evolution 07 frontiersin.org

natural break for RST and its MDA was 14.6% (Figure 2). Variables in 
the second natural break for RST had MDAs ranging from 12.0 to 10.0% 
and were, in order of importance, PPT_JAS_mn, Temp_coldestmonth_
mn, and CWD_mn. Variables in the third natural break had MDA 
values between 6 and 8.0% for both RSL and RST.

The predictor variables in the first two Jenks natural breaks generally 
exhibited distinct differences among the four RSL and RST categories 
and the categories showed clear separation in the random forest models 
(Figures 3, 4; Supplementary Figures 4, 5). Mean annual temperature 
(Temp_mn) was consistently important. RSL-H+MH had substantially 
lower Temp_mn than RSL-L (Figure  3). Temp_mn of RSL-M and 
RSL-ML were intermediate between RSL-H+MH and RSL-L and fairly 
similar. In the model, RSL-M and RSL-H+MH were separated from 
RSL-ML and especially RSL-L between Temp_mn of about 0 to 6°C. At 
about 7.5°C, RSL-L showed clear departure from the other categories. A 
progressive increase in CWD from RSL-H+MH to RSL-L existed and 
the four RSL categories had fairly unique values (Figure 3). In the model, 
all four categories were distinct from one another at CWD_mn below 
about 450 mm. At CWD_mn above about 700 mm, RSL-L separated 
from the other categories. Precipitation increased from RSL-L to 
RSL-H+MH and the four RSL categories had relatively distinct values of 
PPT_mn (Figure 3). RSL-L was distinct from the other categories below 
PPT_mn of about 375 mm. RSL-H+MH and M separated from one 
another and especially ML at close to 450 mm.

The temperature of the coldest month was lower for RSL-H+MH 
than RSL-L and the values for the four categories were relatively 
distinct despite high variability (Figure 3). In the model, all four 
categories were clearly separated below Temp_coldestmonth_mn of 
about −4°C. Above −4°C, the categories became inverted and RSL-L 

and RSL-M showed clear departures from RSL-ML and 
RSL-H+MH. Summer precipitation was higher for RSL-H+MH than 
RSL-L and the RSL categories were relatively unique (Figure 3). A 
precipitation seasonality gradient occurred across the study area, 
and all four categories were highly variable. In the model, RSL-L 
separated clearly from the other categories at values of PPT_JAS_mn 
higher than about 75 mm. Precipitation during the driest month was 
higher for RSL-H+MH than RSL-L, although RSL-H+MH was 
highly variable (Figure 3). RSL-M and RSL-ML were intermediate 
between the other two categories but overlapped with one another. 
In the model, there was clear separation between RSL-L and the 
other categories between PPT_driestmonth_mn of about 2 
and 5 mm.

Similar to RSL, RST-H+MH had lower temperatures than RST-L 
(Figure 4). However, Temp_mn of RST-ML and RST-M were more 
distinct. In the model, RST-M and RST-H+MH separated from RST-L 
at Temp_mn of about 7.5°C as for RSL. Summer precipitation was much 
lower for RST-L than for RST-H+MH and, although variable, was 
strongly skewed towards 0 mm. RST-M and RST-ML were intermediate 
between RST-L and RST-H+MH and also had high variability (Figure 4). 
In the model, RST-L and RST-ML were distinct from RST-M and 
RST-H+MH below PPT_JAS_mn of about 50 mm of precipitation. 
RST-ML was fairly distinct between PPT_JAS_mn of 50 and 100 mm, 
and RST-M and RST-H+MH split from RST-L at about 70 mm. 
Temperature during the coldest month increased from RSL-H+MH to 
RSL-L, but variability within the different categories was large (Figure 4). 
In the model, RST-L and RST-ML were distinct from RST-M and 
RST-H+MH below Temp_coldestmonth_mn of about −7.0°C. RST-L 
showed clear departure from the other categories at about −2.5°C. CWD 
also increased from RSL-H+MH to RSL-L (Figure 4). Clear separation 
of both RST-L and RST-ML from RST-M and RST-H+MH existed below 
CWD_mn of about 500 mm. At about 650 mm, RST-L separated from 
the other categories.

Relationships among indicator variables and 
resilience and resistance categories

The 2-way partial dependence plots showed the relationships among 
the highly ranked variables and helped illustrate the major characteristics 
of the categories. Additional climate and soil water availability variables 
that provided information about the RSL categories included the 
duration of dry soil intervals (DSI_duration_mn), correlation of 
temperature with precipitation (Cor_PPT_Temp_mn), and dry degree 
days (DDD_mn); those for RST included the monthly correlation 
between temperature and precipitation and mean precipitation 
(Figure 2). The predicted classification probabilities reflected the global 
averages for the study area, so the plotted probabilities for the RSL and 
RST categories with the fewest predictions had the lowest global 
averages and thus lower partial dependence plot probabilities.

In general, the characteristics of the resilience and resistance 
categories reflected the strong environmental gradients across the 
sagebrush biome. RSL-L was characterized by the highest mean 
temperatures and temperatures during the coldest month, while 
RSL-H+MH had the lowest mean temperatures and temperatures 
during the coldest month (Figure 5; Supplementary Table 5). RSL-L had 
large CWDs and not only low mean precipitation but also low 
precipitation during the driest month and in summer. In contrast, 
RSL-H+MH had low CWD and high mean precipitation as well as 

A

B

FIGURE 2

Climate and water availability variables ranked by permutation-based 
Mean Decrease in Accuracy (MDA) for the best random forest models 
of (A) resilience (overall model accuracy = 0.80, sensitivity = 0.78) and 
(B) resistance (accuracy = 0.75, sensitivity = 0.74) for the study area. 
Dashed lines indicate Jenks natural breaks dividing the set into five 
groups.
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FIGURE 3

Accumulated local profile (ALE) plots and halfeye/box plots for the most highly ranked indictors of resilience. The ALE plots show effects of the focal 
variable on the random forest classification conditioned on the effects of other variables in the model. Halfeye/boxplots illustrate density of the raw data 
combined with a boxplot showing the median at the box’s center, the first and third quartiles (25th and 75th percentiles) as the box’s hinges, and whiskers 
extending to the largest and smallest values no further than 1.5 times the interquartile range from the hinge. Additional outliers are plotted as open circles.

higher precipitation during the driest month and in summer. RSL-L was 
characterized by long dry soil intervals and high number of dry degree 
days, while RSL-H+MH exhibited the opposite characteristics 
(Supplementary Figure 6; Supplementary Table 5). RSL-ML and RSL-M 
had intermediate characteristics and followed the expected pattern, 
although RSL-M was more similar to RSL-ML than to RSL-H+MH 
(Figure 5; Supplementary Figure 6; Supplementary Table 5).

RST-L was characterized by high mean temperatures, relatively high 
coldest month temperatures, and high CWDs, while RST-H+MH was 
characterized by low mean temperatures as well as very cold, coldest 
month temperatures, and the lowest CWDs (Figure  6; 
Supplementary Table 6). RST-L mean and summer precipitation were 
low, and correlations between temperature and precipitation were highly 
negative meaning that most precipitation fell in winter during the 
coldest time of year (Supplementary Figure 7; Supplementary Table 6). 
RST-H+MH had the highest overall precipitation and no consistent 
correlations between temperature and precipitation meaning that 

precipitation was equally likely to fall during all seasons 
(Supplementary Figure  7; Supplementary Table  6). Similar to RSL, 
RST-ML and RST-M had intermediate characteristics and followed 
the expected pattern (Figure  6; Supplementary Figure  7; 
Supplementary Table 6).

Variation in resilience and resistance 
categories across the study area

The differences in RSL and RST categories across the study area were 
illustrated well by maps created using the random forest models to 
predict the categories for polygons based on gNATSGO soil map units 
and gridMET grid cells (Figure 7). Because the study area encompassed 
the environmental gradients across the sagebrush biome, we were able to 
predict the RSL and RST categories for the entire biome 
(Supplementary Figure 8). The strength of the probabilities for low and 
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high RSL and RST categories reflected their clear separation in the 
random forest models and the large differences in climate and soil water 
availability indicator variables (Supplementary Figure 9). Areas with 
abrupt boundaries between categories were due to differences in soil map 
unit component classifications among states or counties within states.

The proportional areas of the RSL and RST categories differed 
among ecoregions (Figures 7, 8). Both RSL-L and RST-L occurred 
across large areas of the Northern Basin and Range+Snake River 
Plain, Central Basin and Range, and Colorado Plateau; RSL-L was also 
found in the north-central Wyoming Basin. These areas had the 
highest mean and warmest coldest month temperatures and lowest 
CWDs and summer precipitation (Figure 1). Larger areas of RSL-L 
than RST-L and conversely, smaller areas of RSL-ML than RST-ML, 
occurred in parts of the north-central Wyoming Basin, southeast 
Central Basin and Range and Colorado Plateau. This was likely 
because RST-ML was characterized by moderately high summer 
precipitation, which also occurred in areas of the Central Basin and 
Range, Colorado Plateau, and Wyoming Basin with RST-ML 
(Figure 1).

RSL-M and RST-M covered the greatest areas in the Middle 
Rockies, Northern Basin and Range+Snake River Plain, and especially 
Wyoming Basin and Northwestern Great Plains (Figure 8). Areas with 
RSL-M and RST-M in the Middle Rockies and Northern Basin and 
Range+Snake River Plain were typically mountainous, while those in 
the Wyoming Basin and Northwestern Great Plains were characterized 
by high plains. All of these areas had moderately low mean and coldest 

month temperatures as well as moderately high CWDs and summer 
precipitation (Figure  1). RSL-M+MH and RST-M+MH occurred 
primarily in cold mountainous areas with high mean precipitation and 
low CWDs and covered the largest areas in the Middle Rockies with the 
Northwestern Great Plains a distant second.

Distinct patterns existed in the important indicator variables across 
the study area (Figure  1), and the indicator variables differed 
significantly between most ecoregions when analyzed by RSL and RST 
categories (Figures 9, 10). The RSL and RST categories typically had 
similar differences. An exception was the Middle Rockies, which had 
low sample sizes and high variability, especially for RSL-L and 
RST-L. The Northern Basin and Range+Snake River Plain had 
moderate temperatures and CWDs, high mean precipitation, but the 
lowest summer precipitation (Figures 9, 10). The Central Basin and 
Range had relatively high mean temperatures and CWDs across 
categories as well as relatively low summer and driest month 
precipitation. The Colorado Plateau had the warmest temperatures as 
well as low mean precipitation and high CWDs. The Colorado Plateau 
receives monsoonal precipitation and had the highest 
summer precipitation.

The Wyoming Basin had among the coldest mean temperatures and 
lowest mean precipitation, but moderate summer and driest month 
precipitation and CWDs (Figures 9, 10). Coldest month’s temperature 
was consistently low across RSL and RST categories. RSL categories 
generally had larger differences than RST categories. The Middle 
Rockies had low mean and coldest month temperatures and the lowest 

FIGURE 4

Accumulated local profile (ALE) plots and halfeye/box plots for the most highly ranked predictors of resistance. The ALE plots show effects of the focal 
variable on the random forest classification conditioned on the effects of other variables in the model. Halfeye/boxplots illustrate density of the raw data 
combined with a boxplot showing the median at the box’s center, the first and third quartiles (25th and 75th percentiles) as the box’s hinges, and whiskers 
extending to the largest and smallest values no further than 1.5 times the interquartile range from the hinge. Additional outliers are plotted as open circles.
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FIGURE 5

Two-way partial dependence plots (PDP) showing interactions between the six most highly ranked indicators for resilience. Lighter colors show higher 
probability of classification. Units for indicators are centered to a mean of 0 and scaled to unit variance.

CWDs. Mean precipitation was generally high and summer precipitation 
moderate. RSL and RST categories had similar differences. The 
Northwestern Great Plains lacked RSL-L and RST-L categories and had 
moderate mean temperatures, low coldest month temperatures, and 
relatively high summer and driest month precipitation. This ecoregion 
had the smallest differences among categories for all variables.

Discussion

We developed landscape-scale indicators of resilience to 
disturbance (RSL) and resistance to B. tectorum invasion (RST) for 
seven ecoregions that span the diverse environmental conditions in 
the sagebrush biome. To ensure applicability to management, our RSL 
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and RST indicators were closely aligned with the U.S. National 
Cooperative Soil Survey (USDA Natural Resources Conservation 
Service [USDA NRCS], 2022c) data and Ecological Site Descriptions 
(USDA Natural Resources Conservation Service [USDA NRCS], 
2022a) commonly used by managers to evaluate ecosystem recovery 
potential and determine appropriate management activities. To 
increase our ability to characterize RSL and RST in a rapidly changing 
environment, we  used ecologically-relevant climate and water 
availability variables from ecohydrological simulations in our 
predictive models. The indicator variables that we  derived 
differentiated both RSL and RST categories well and provided new 
insights into the important climate, water availability, and ecological 
drought metrics driving ecosystem recovery and annual grass 
invasions across the study area. The new indicators improve the 
ability to evaluate current levels of RSL and RST, project likely 
changes in a warming environment, and develop more effective 

prioritization schemes for the conservation and restoration of 
sagebrush ecosystems.

Resilience indicator variables and categories

Evaluating how indicators of RSL and RST vary across 
environmental gradients provides insights into the conditions that 
determine a system’s capacity to recover following disturbance and resist 
invasion by exotic species. The most highly ranked indicator variables 
in our RSL model, mean temperature, precipitation, and climatic water 
deficit, were a function of the strong environmental gradients that occur 
across the study area. These variables were similar to those that indicate 
RSL in dryland ecosystems both globally and regionally (Rigge et al., 
2019; Yao et al., 2021). The second ranked indicator variables in the 
model, coldest month temperature, summer precipitation, and driest 

FIGURE 6

Two-way partial dependence plots (PDP) showing interactions between the four most highly ranked indicators for resilience. Lighter colors show higher 
probability of classification. Units for indicators are centered to mean of 0 and scaled to unit variance.
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A B

FIGURE 7

Maps of predicted (A) resilience and (B) resistance for the study area with Level III EPA ecoregions and states delineated (US Environmental Protection 
Agency [US EPA], 2022). Areas that do not support the focal ecosystems are shown in light yellow (“NA”).

FIGURE 8

Proportion of total area in different resilience and resistance categories 
in each of the ecoregions. Portions of ecoregions that lie outside of the 
sagebrush biome are unclassified (“NA”). NBR, Northern Basin and 
Range; SRP, Snake River Plain; CBR, Central Basin and Range; CP, 
Colorado Plateau; WB, Wyoming Basin; MR, Middle Rockies; NWGP, 
Northwestern Great Plains.

month precipitation, illustrated the influence of temperature regimes 
and precipitation seasonality on resilience and resistance within 
ecoregions. Ecoregions in the west and southeast (Northern Basin and 
Range+Snake River Plain, Central Basin and Range, Colorado Plateau) 
were warmer and drier across categories than those in the northeast 
(Middle Rockies, Northwestern Great Plains, Wyoming Basin). 
Particularly large differences existed among ecoregions in coldest 
month’s temperature. The differences among categories within 
ecoregions largely reflected the influence of topographic gradients. 
However, in the Northwestern Great Plains limited differences among 
RSL categories in all indicator variables helped explain the large 
contiguous areas of RSL-M and indicated that other variables, such as 
soil texture, were important in distinguishing among RSL categories.

FIGURE 9

Boxplots for the most highly ranked predictor variables of resilience for 
each ecoregion by resilience category. Boxplot show the median at the 
box’s center, the first and third quartiles (25th and 75th percentiles) as 
the box’s hinges, and whiskers extending to the largest and smallest 
values. NBR, Northern Basin and Range; SRP, Snake River Plain; CBR, 
Central Basin and Range; CP, Colorado Plateau; WB, Wyoming Basin; 
MR, Middle Rockies; NWGP, Northwestern Great Plains.
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Large gradients in seasonality of precipitation also exist across the 
study area, and these were reflected in the importance of summer and 
driest month’s precipitation in the models. Several studies indicate that 
areas receiving proportionately more precipitation in summer tend to 
be dominated by perennial grasses and show higher resilience to fire and 
other perturbations (Prevéy and Seastedt, 2014; Larson et al., 2017). 
We found that summer precipitation was positively related to resilience 
in all ecoregions, and across the study area, summer precipitation for 
RSL-L (43 mm) was less than half that for RSL-H+MH (103 mm). 
However, the RSL categories showed large differences in summer 
precipitation among ecoregions. The Colorado Plateau received the 
most summer precipitation across categories (RST-L = 79.8 mm and 
RST-H+MH = 131.2 mm), while the Northern Basin and Range+Snake 
River Plain received the least (RST-L = 29.5 mm and 
RST-H+MH = 48.8 mm). In all ecoregions, the importance of individual 
indicator variables in determining both RSL and RST categories were 
mediated by other highly ranked indicators. The differences in individual 
indicators like coldest month’s temperature and summer precipitation 
among ecoregions clearly illustrate the importance of evaluating the full 
set of climate and water availability variables likely to influence RSL and 
RST across landscapes as extensive and diverse as the sagebrush biome.

Important RSL indictor variables related to ecological drought 
were dry soil intervals and degree days (Chenoweth et al., 2022). The 
increase in frequency and severity of drought in recent decades is 
projected to intensify with warming temperatures (IPCC, 2022). 
Across the study area, length of dry soil intervals doubled from 
RSL-H+MH (14 days) to RSL-L (28 days), while number of dry 
degree days increased almost 4-fold from RSL-H+MH (346 days) to 
RSL-L (1,360 days). Warm and dry areas have the highest climate 
exposure (rate, magnitude, and nature of climate-induced stress). 
Areas with both high climate exposure and low ecological resilience 
are projected to have the greatest vulnerability to climate change 
(Comer et al., 2019).

Resistance indicator variables and categories

The top indicator variables for RST reflected those from distribution 
models and empirical studies, indicating the amount and seasonality of 
precipitation and winter temperature largely control resistance to 
B. tectorum. Three of these variables, climatic water deficit, coldest 
month’s temperature, and summer precipitation, were the top predictors 
for a study that used boosted regression trees and presence/absence data 
from >148,000 vegetation survey plots to evaluate the current and 
potential distribution of B. tectorum across the sagebrush biome 
(MacMahon et  al., 2021). The best predictors for a study that used 
bioclimatic envelope modeling to evaluate the distribution of B. tectorum 
in the Northern Basin and Range, Snake River Plain, and Central Basin 
and Range were summer, annual, and spring precipitation followed by 
temperature during the coldest month (Bradley, 2009). In our RST 
model, the high ranking of mean temperature partly reflected use of soil 
temperature regimes in the derivation of our ecological types and 
subsequent RST rankings.

Strong empirical evidence links summer precipitation and coldest 
month’s temperature to RST. Our rankings of RST were based primarily 
on the fundamental niche of B. tectorum, which is constrained by 
environmental conditions, but also considered the realized niche, which 
is constrained by species interactions (Chambers et al., 2014a). Higher 
summer precipitation has been shown to increase RST largely because 
of increased native perennial grass dominance and higher levels of plant 
community competition with B. tectorum (Prevéy and Seastedt, 2014; 
Larson et  al., 2017). Also, cold winter temperatures exceed the 
physiological tolerance of B. tectorum and limit germination, growth, or 
reproduction of the annual grass (Chambers et al., 2007; Bykova and 
Sage, 2012; Compagnoni and Adler, 2014). Similar to RSL, RST-L was 
characterized by high mean and coldest month’s temperatures, high 
climatic water deficit, and low summer and mean precipitation, while 
RST-H+MH was characterized by the opposite conditions. Larger areas 
of RST-ML than RSL-ML could be attributed primarily to the influence 
of summer precipitation for RST-ML in the Central Basin and Range 
and Colorado Plateau. The influence of coldest month’s temperature 
helped explain larger areas of RST-ML than RSL-ML in the Wyoming 
Basin and RST-H+MH in the Middle Rockies and Northwestern 
Great Plains.

In the western ecoregions higher RST, like higher RSL, can 
be attributed largely to lower temperatures, higher precipitation, and 
lower climatic water deficit at higher elevations (Chambers et al., 2014a). 
Progressive decreases in mean soil temperature and increases in late 
spring, fall, and October–June soil wet-days occur over the elevational 
gradients characterizing this area (Roundy and Chambers, 2021). 
Cooler temperatures and greater resource availability at higher 
elevations are associated with higher productivity, more competition 
from perennial native grasses, and greater biodiversity resulting in more 
resilient and resistant ecosystems (Bansal and Sheley, 2016; Wainwright 
et al., 2020).

Increases in coldest month’s temperature and climatic water deficit 
and decreases in summer precipitation are most likely to decrease RST 
in a warming environment. Recent increases in B. tectorum at higher 
elevations in the western ecoregions (Smith et al., 2021) are a function 
of increased climate suitability, more severe fire weather, and land 
management activities. Decreased RST is likely to be exacerbated by fires 
and management treatments that increase soil water availability 
(Roundy et al., 2020) and are located in areas without sufficient perennial 
native grasses to prevent competitive release of B. tectorum (Chambers 

FIGURE 10

Boxplots for the most highly ranked predictor variables of resistance for 
each ecoregion by resistance category. Boxplot show the median at 
the box’s center, the first and third quartiles (25th and 75th percentiles) 
as the box’s hinges, and whiskers extending to the largest and smallest 
values. NBR, Northern Basin and Range; SRP, Snake River Plain; CBR, 
Central Basin and Range; CP, Colorado Plateau; WB, Wyoming Basin; 
MR, Middle Rockies; NWGP, Northwestern Great Plains.
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et al., 2014b). However, in areas of the eastern ecoregions with both high 
summer precipitation and low coldest month’s temperatures, the 
magnitude of climate change may need to be relatively greater to result 
in significant changes in RST (Prevéy and Seastedt, 2014; Larson 
et al., 2017).

Relationship of resilience and resistance 
indicators to prior categorizations

We used Soil Survey (USDA Natural Resources Conservation 
Service [USDA NRCS], 2022c) and Ecological Site Description (USDA 
Natural Resources Conservation Service [USDA NRCS], 2022a) 
information as the basis for developing our larger-scale ecological types 
and RSL and RST categories. We used the indicator variables in our 
random forest models to predict the RSL and RST categories for the soil 
map unit polygons and develop our maps. Our previous work used soil 
climate regimes (soil temperature and moisture) mapped as part of the 
Soil Survey as a single index of both RSL and RST (Maestas et al., 2016; 
Chambers et al., 2017, 2019b). These static soil climate regimes were 
limited by inconsistencies in soil map units among states and counties 
within states and by conceptual definitions for moisture limitation that 
were not designed for ecological relevance or projections of the effects 
of long-term climate change (Bradford et al., 2019).

Our new RSL and RST indicators represent a significant 
advancement of our prior categorization of RSL and RST. The indicators 
were based on widely available climate data and new soil water 
availability metrics derived from process-based ecohydrological models 
that facilitate greater understanding of the effects of both climatic 
conditions and ecological drought on ecosystem recovery (Chenoweth 
et al., 2022). They allow the use of climate change modeling to project 
how RSL and RST are likely to change in a warming environment. And 
for the first time, separate RSL and RST indicators were developed that 
differentiate resilience to disturbances, like wildfire, and resistance to a 
major ecosystem transformer, the invasive annual grass, B. tectorum. 
Importantly, the new indicators do not negate efforts that used the initial 
index of RSL and RST (e.g., Chambers et al., 2017, 2019a,b; Crist et al., 
2019; Rodhouse et al., 2021). Comparison of the soil temperature and 
moisture regimes with the new indicators illustrate the parallels and 
show that the new RSL and RST indices represent a refinement.

The approach for developing the new indicators was not without 
limitations. The use of experts to develop the ecological types and assign 
the RSL and RST categories may have influenced assignment of 
ecological sites to ecological types and of RSL and RST categories. 
Although the ecological site descriptions were developed using standard 
protocols, differences among states in the concepts used and information 
recorded also may have affected assignment of ecological sites to 
ecological types. Finally, by using soil map unit polygons to predict the 
RSL and RST categories, the differences in soil map units among states 
and counties within states were retained in the maps.

Resilience and resistance indicators as tools 
for prioritization

The new indicators increase the ability to evaluate relative RSL and 
RST across the diverse landscapes that characterize the sagebrush biome 
and to prioritize areas for conservation and restoration actions in those 
areas where they are likely to have the greatest benefits. The indicators 

provide a tool for assessing the likelihood of recovery following 
disturbances and management actions and risk of invasion and expansion 
of B. tectorum. They can be used in assessments of risks to remaining 
high-value ecosystems, including habitat for sagebrush-dependent species 
and National Parks and other conservation areas, and they provide useful 
information for prioritizing management actions (e.g., Ricca et al., 2018; 
Chambers et al., 2019a; Ricca and Coates, 2020; Rodhouse et al., 2021).

The new indicators can be used to update and refine frameworks for 
prioritizing sagebrush ecosystems for conservation and restoration 
actions based on RSL and RST (e.g., Ricca et al., 2018; Crist et al., 2019; 
Chambers et al., 2019b; Ricca and Coates, 2020; Rodhouse et al., 2021). 
In general, ecosystems with higher RSL and RST show less change after 
disturbances like wildfires, are less susceptible to invasion by B. tectorum, 
and recover more quickly than areas with relatively low RSL and RST 
(Chambers et al., 2014a,b, 2017). Also, areas with relatively large extents 
of intact native vegetation typically require less time to recover and lower 
amounts of intervention. Therefore, areas with higher RSL and RST as 
well as moderate to large extents of intact native vegetation often have the 
capacity to recover after disturbances like wildfires with minimal 
management intervention. These areas are a high priority for protective 
management strategies to maintain ecosystem connectivity as well as RSL 
and RST. Protective strategies may include reducing or eliminating 
disturbances from land uses and development, establishing conservation 
easements, practicing early detection and rapid response to invasives, and 
fire management (Crist et al., 2019).

Areas with moderate RSL and RST exhibit intermediate recovery 
potentials and susceptibility to B. tectorum (Chambers et al., 2019b). 
Priorities may include improving conditions through management 
activities such as identifying and correcting improper livestock grazing, 
reducing or eliminating new infestations of invasive plants, and restoring 
habitat (Crist et al., 2019). An emphasis on increasing perennial grasses 
and forbs can increase RST thus reducing the risk of altered fire regimes 
and transitions to invasive annuals.

Areas with relatively low RSL and RST and moderate to large extents 
of native vegetation are slower to recover from disturbances and have 
higher risk of B. tectorum invasions (Chambers et al., 2017). These areas 
often require substantial management intervention to decrease the risk 
of B. tectorum invasion and maintain or enhance ecological conditions 
after disturbance. Because these areas are at high risk of transitioning to 
alternative states dominated by invasive annuals, they also are often high 
priorities for protective management. Managers may decide to restore 
high-value resources in these areas, but the degree of difficulty and time 
frame required increase as RSL and RST decrease. In areas where climate 
change effects are projected to be severe, management actions may need 
to help ecosystems transition to new climatic regimes (Halofsky et al., 
2019; Schuurman et al., 2022).

Regional risk assessments and planning efforts will be most effective 
if existing data layers, including the new indicators of RSL and RST, are 
considered along with projected climate change effects. Recent analyses 
of landscape change indicated that warmer and drier climatic conditions 
during the last three decades, as indicated by the average aridity index, 
caused a decrease in RSL across the dryland regions of China (Yao et al., 
2021). In the sagebrush biome, higher temperatures during this same 
period were associated with declines in the cover of sagebrush, a keystone 
species and important indicator of RSL (Rigge et al., 2019). Temperature 
variables and climatic water deficit were important indicators of RSL and 
RST. Temperature explains a high proportion of the variability in soil 
water availability and ecological drought metrics for the western 
United  States, including climatic water deficit and dry degree days 
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(Chenoweth et al., 2022), and is more accurately predicted in climate 
change models than precipitation (IPCC, 2022). Climate change 
modeling could be used to project likely changes in the RSL and RST 
indicators. High to moderately high resilience and resistance are 
currently relatively rare, and although RSL and RST are likely to decrease 
with climate warming, variability in regional trends will undoubtedly 
occur. An understanding of the vulnerability of resources and likely 
success of management actions based on indicators of RSL and RST, and 
how they are likely to change in the future, can provide important 
information for assessing risks, prioritizing areas for management 
actions, and determining appropriate strategies.
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