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Two main hypotheses have been proposed to explain the contemporary 

distribution of Antarctic terrestrial biota. We assess whether the current distribution 

of maritime Antarctic populations of the freshwater copepod Boeckella 

poppei is the result of (1) a post-Last Glacial Maximum (LGM) colonization, or 

whether (2) the species survived in regional glacial refugia throughout the LGM 

and earlier glaciations. Using 438 specimens from 34 different sampling sites 

across Southern South America, South Georgia, South Orkney Islands, South 

Shetland Islands, and the Antarctic Peninsula, we analyzed mitochondrial and 

nuclear sequences to uncover patterns of genetic diversity and population 

structure. We also performed median-joining haplotype network, phylogenetic 

reconstruction, and divergence time analyses. Finally, we  evaluated past 

demographic changes and historical scenarios using the Approximate Bayesian 

Computation (ABC) method. Our data support the existence of two clades with 

different and contrasting biogeographic histories. The first clade has been present 

in maritime Antarctica since at least the mid-Pleistocene, with the South Orkney 

Islands the most likely refugial area. The second clade has a broader distribution 

including southern South America, South Georgia, South Shetland Islands, and 

the Antarctic Peninsula. The ABC method identified long-distance dispersal 

(LDD) colonization event(s) from southern South America to South Georgia 

and the maritime Antarctic after the LGM deglaciation, supporting more recent 

colonization of Antarctic locations. The current Antarctic and sub-Antarctic 

distribution of B. poppei is likely derived from two independent biogeographic 

events. The combination of both (1) post-LGM colonization from southern South 

America and (2) longer-term persistence in in situ regional refugia throughout 

glacial periods challenges current understanding of the biogeographic history 
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of Antarctic freshwater biota. Re-colonization of ice-impacted Antarctic areas 

would have occurred following a LDD and Establishment model, pointing to 

the existence of possible post-dispersal barriers, despite widely assumed high 

passive dispersal capacity in freshwater invertebrates.

KEYWORDS

Antarctic-Magellan connection, centropagidae, last glacial maximum, 
monopolization hypothesis, phylogeography, refugia

Introduction

During the Quaternary, Antarctica experienced multiple 
glacial–interglacial cycles (Gersonde et al., 2005; Hassold et al., 
2009). These cycles of ice sheet expansion and contraction across 
the Antarctic continent and its continental shelf are widely 
assumed to have caused severe extinction at high latitudes, leaving 
a legacy of impoverished polar and sub-polar terrestrial biotas. 
The contemporary freshwater fauna of the maritime Antarctic 
(i.e., Antarctic Peninsula and Scotia Arc archipelagos) and 
sub-Antarctic is extremely simple in terms of species richness and 
community structure, and generally includes only a very small 
number of insects and crustaceans, and smaller invertebrate 
groups such as tardigrades, rotifers, nematodes, and microscopic 
Protozoa (Chown and Convey, 2016; Convey, 2017).

Two main hypotheses have been proposed to explain how 
Quaternary events have shaped the contemporary distribution, 
demography, and genetic structure of higher latitude terrestrial 
and freshwater biota (Bennet et al., 1991; Taberlet et al., 1998). 
The dispersal hypothesis suggests that this biota results from 
postglacial colonization from lower latitudes, through range 
expansion during deglaciation (Hewitt, 2004). The contrasting 
in situ refugia hypothesis suggests that some high latitude biota 
survived in regional refugia throughout multiple Pleistocene 
glacial cycles, including the very extensive Last Glacial 
Maximum (LGM; ~20,000 years before present, YBP), and 
expanded from these following deglaciation (Provan and 
Bennett, 2008). Relatively few continental phylogeographic 
studies are available in the Southern Hemisphere, and 
freshwater ecosystems remain particularly under-researched 
(Avise and Ayala, 2017). Evidence of in situ refugia during at 
least the LGM and generally on much longer timescales has 
been suggested in mosses (Pisa et  al., 2014; Biersma et  al., 
2018b, 2020a), springtails (Stevens and Hogg, 2003; 
McGaughran et  al., 2010; Carapelli et  al., 2017, 2020), 
nematodes (Maslen and Convey, 2006), midges (Allegrucci 
et al., 2012), mites (Mortimer et al., 2011; van Vuuren et al., 
2018; Brunetti et al., 2021) and tardigrades (Short et al., 2022). 
On the other hand, although to a smaller number of 
phylogeographic studies in plants (Wouw et al., 2008; Fasanella 
et al., 2017; Biersma et al., 2020b), have proposed more recent 
post-LGM dispersal from northern locations.

In support of the post-LGM hypothesis, Pugh et al. (2002) 
listed only 101 freshwater crustacean species known to occur in 
Antarctica and on the Southern Ocean islands, representing <2% 
of the global non-marine crustacean fauna of ca. 6,000 species. In 
the apparently complete absence of paleoendemic crustaceans on 
the continent, they suggested that the Antarctic was likely (re-)
colonized by freshwater fauna during the Holocene by dispersal 
from the sub-Antarctic islands and southern continents, primarily 
South America, or possibly even more recently through direct 
human assistance. However, recent evidence has questioned these 
conclusions, suggesting that freshwater Crustacea persisted on the 
Antarctic continent throughout glacial cycles. Cromer et al. (2006) 
documented the presence of the freshwater cladoceran 
Daphniopsis studeri throughout the entire sediment core of a lake 
in the Larsemann Hills, continental Antarctica, which has been in 
existence for up to 130,000 YBP, between the last interglacial 
period and the present day (Hodgson et al., 2005). This is, to date, 
the only documented example from the freshwater realm 
providing direct evidence supporting persistence and subsequent 
re-expansion of Antarctic freshwater fauna from in situ refugia.

The Southern Hemisphere copepod genus Boeckella includes 
42 species distributed in Australia, New Zealand, Tasmania, New 
Caledonia, South America, maritime and continental Antarctica, 
and various sub-Antarctic and cool-temperate oceanic islands 
(Maturana et al., 2019). Fourteen species are recognized across 
South America, Antarctica, and the sub-Antarctic region. Among 
them, B. poppei (Mrázek, 1901) is the only species reported from 
lakes across sub-Antarctic islands, the maritime and continental 
Antarctic as well as from higher latitudes in southern South 
America (Maturana et  al., 2019). Paleolimnological studies of 
post-LGM-formed lakes have revealed B. poppei in the basal 
sediments in lakes on Signy Island, South Orkney Islands, and on 
the northern Antarctic Peninsula, both dated to 5,500 years (Jones 
et al., 2000; Gibson and Zale, 2006). Similar analyses of the Amery 
Oasis lakes demonstrated that B. poppei has been present for at 
least 10,000 years (Bayly et al., 2003; Bissett et al., 2005).

Contemporary Antarctic inland fauna is restricted to ice-free 
areas, which contribute between only 0.18% (Burton-Johnson 
et al., 2016) and 0.44% (Brooks et al., 2019) of the entire continent. 
During periods of glacial maxima, ice-free areas were further 
reduced, particularly at low altitudes where the majority of 
terrestrial habitats occur today. Precise locations of refugia remain 
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unclear (Convey et al., 2020), in part because of the relatively low 
spatial resolution in most existing glaciological models. However, 
there are candidate areas that fulfill the requirements for refugia 
across maritime and continental Antarctica. Areas subject to 
geothermal activity, which can maintain ice-free terrain in 
otherwise glaciated regions, have been proposed as potential 
refugial locations in some parts of Antarctica (Convey and Smith, 
2006; Fraser et al., 2014). In parts of the maritime Antarctic, areas 
of volcanic activity existed during the Pleistocene; in particular, 
the South Sandwich Islands and parts of the South Shetland 
Islands are currently active or have been so since and during the 
LGM (Fraser et al., 2014). Although many lakes were frozen to 
their base during glacial maxima, some lakes with permanent ice 
cover may have provided plausible refugia over glacial–interglacial 
cycles for certain taxa, for example in East Antarctica (Cromer 
et al., 2006). However, the generality of lake persistence through 
full glacial cycles remains to be demonstrated.

Antarctic biota possess many adaptations to extreme 
environmental conditions. Cryptobiosis has been reported in 
different life stages of many terrestrial and freshwater taxa in 
response to extreme desiccation, freezing temperatures, anoxia, 
and osmotic stress. The presence of resistant eggs has been 
reported in B. poppei from the Antarctic Peninsula (Almada et al., 
2004), Signy Island (Heywood, 1970), and the South Shetland 
Islands (Reed et  al., 2021). Jiang et  al. (2012) suggested that 
B. poppei eggs could survive for a mean of 47 y (maximum 196 y) 
in sediments of two South Shetland Islands lakes.

The presence of suitable habitats in combination with such 
survival adaptations further supports the potential for rapid 
colonization of lakes soon after their formation, consistent with 
the local refugial hypothesis. The presence of biota very soon 
after estimated times of glacial retreat has been interpreted as 
being consistent with local refugial sites from which 
recolonization would be rapid and straightforward, rather than 
requiring occasional and stochastic long-distance recolonization 
from remote refugia (Carapelli et al., 2017; Maturana et al., 2020). 
It has also been proposed that copepods such as B. poppei have 
very low autonomous dispersal potential, reducing the likelihood 
of long-range post-glacial dispersal (Maly and Bayly, 1991; Pugh 
et al., 2002; Scheihing et al., 2009). In analogous recent studies of 
many elements of the Antarctic terrestrial biota (including 
interstitial groups such as nematodes and tardigrades, whose 
species-level diversity overlaps in terrestrial and freshwater 
habitats), a strong pattern of long-term persistence over multi-
million year timescales is emerging (Biersma et al., 2020a; see 
review in Convey et  al., 2020; Baird et  al., 2021). Hence, a 
hypothesis of long-term persistence in glacial refugia for B. poppei 
must be seriously considered.

To critically assess these two hypotheses (local extinction vs 
refugial survival) as applied to Antarctic freshwater crustaceans, 
we performed molecular and phylogeographic analyses, including 
widespread sampling of B. poppei in Antarctica, the sub-Antarctic 
islands, and southern South America. We evaluated the timescales 
of persistence of maritime and sub-Antarctic populations, 

assessing divergence times, phylogeographic structure, and past 
demographic changes across regions. The refugial hypothesis is 
examined in detail, with candidates for possible historical 
Antarctic freshwater refugia identified over multiple glacial cycles.

Materials and methods

Sample collection and taxonomic 
identification

Boeckella individuals were collected from lakes, ponds and 
other freshwater bodies using a zooplankton net (200 μm pore 
diameter) within five sampling areas (i-v) and three biogeographic 
regions (1–3): (1) maritime Antarctic (MA), including: (i) South 
Shetland Islands (62°S 61°W; SSI), (ii) Antarctic Peninsula (67°S 
67°W; AP), and (iii) South Orkney Islands (60°S 45°W; SOI); (2) 
sub-Antarctic: (iv) South Georgia (54°S 36°W; SG); and (3) (v) 
southern South America (51°S 72°W; SA; Figure 1; for more detail 
see Supplementary Table S1). We used only sampling sites that 
contained specimens belonging to the “nominal B. poppei” clade 
representing the type species, as identified by Maturana et  al. 
(2021). Subsequent morphological and molecular analyses were 
conducted following Maturana et al. (2021).

DNA preparation and sequence editing

We extracted DNA from complete specimens using the 
DNeasy Blood & Tissue Kit protocol modified for a small amount 
of tissue (see Appendix S1 in Data Source). Three DNA loci were 
amplified: one segment of the fast-evolving mitochondrial 
cytochrome c oxidase subunit I (cox1), and two slower-evolving 
segments of the nuclear DNA (nucDNA) 28S rRNA gene and the 
Internal Transcribed Spacers 1 and 2 (ITS hereafter). For 
molecular protocols we  followed Maturana et  al. (2021) (see 
Appendix S2, S3  in Data Source). Sequences were manually 
quality controlled, examined, assembled, and edited using 
GENEIOUS 10.2.2 (Kearse et  al., 2012). Alignments were 
obtained using MUSCLE (Edgar, 2004) with standard settings. 
For cox1, synonymous codon usage was determined using the 
“effective number of codons” value (ENC, Wright, 1990) from 
DnaSP 5.0 (Librado and Rozas, 2009). This statistic has a value 
between 20 (extremely biased codon usage) and 61 (totally 
random codon usage).

Genetic diversity and genealogical 
reconstruction in Boeckella poppei

Genetic polymorphism levels were determined for each locus 
using standard diversity indices including number of haplotypes (k), 
number of segregation sites (S), haplotype diversity (H), average 
number of pairwise differences (Π), and nucleotide diversity (π) for 
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each of the five sampling areas, including the entire MA (SOI, SSI, 
and AP), sub-Antarctic SG, and SA using DnaSP v5.10.01 (Librado 
and Rozas, 2009). We estimated the number of private alleles per 
sampling area and region as a proxy to assess the potential existence 
of refugia (Maggs et al., 2008). Neutrality tests (Tajima’s D and Fu’s FS) 
were performed to assess deviation from the neutral model.

Genealogical relationships were estimated for mitochondrial 
and nuclear markers by constructing a median-joining haplotype 
network (Bandelt et  al., 1999) using PopArt.1 Prior to this, 
haplotypes of nuclear sequences from heterozygous individuals 
were determined using the algorithms provided by PHASE 
(Stephens and Donnelly, 2003) in DnaSP.

Genetic and phylogeographic structure

We estimated levels of genetic differentiation for each locus 
among the five analyzed areas through mean pairwise differences 
(ΦST, using Kimura-2P genetic distances) and haplotype frequencies 

1 http://popart.otago.ac.nz

(FST) in ARLEQUIN v3.5.2.2 (Excoffier and Heckel, 2006), using 
10,000 permutations to assess significance. To test statistical 
significance of differentiation, we  performed a permutation test 
(20,000 iterations). The p-value for pairwise ΦST and FST between 
populations was corrected using the false discovery rate correction 
(FDR; Benjamini et al., 2005).

Phylogenetic reconstruction

We performed phylogenetic analyses using the entire 
cox1 + ITS +  28S rRNA dataset, combined in SequenceMatrix 
software v1.8 (Vaidya et al., 2011). Nucleotide substitution models 
and the optimal partitioning scheme were selected separately for 
each gene using the corrected Akaike Information Criteria (AICc) 
in PartitionFinder v2.1 (Guindon et al., 2010; Lanfear et al., 2017). 
The GTR + Ι + Γ model was used for cox1 and the HKY model for 28S 
rRNA and ITS. For analyses of cox1, 28S, and ITS, the tree was 
rooted with B. vallentini, based on previous phylogenetic 
reconstructions in Boeckella (Maturana et al., 2021).

Phylogenetic reconstructions were conducted in a maximum 
likelihood (ML) framework in MEGA X (Kumar et al., 2018), and via 

FIGURE 1

Boeckella poppei sampling areas. (1) Maritime Antarctic: (i) South Shetland Islands (violet): King George, Robert, Greenwich, Livingston, and 
Deception Islands, (ii) Antarctic Peninsula (blue): Avian, Horseshoe, and Alexander Islands, (iii) South Orkney Islands (orange): Signy Island; (2) sub-
Antarctic: (iv) South Georgia (pink); and (3) southern South America (red). Inset: current distribution range of B. poppei is highlighted in purple. 
Base map produced by MAGIC, British Antarctic Survey. Bathymetry - GEBCO Compilation Group (2021) GEBCO 2021 Grid (doi:10.5285/
c6612cbe-50b3-0cff-e053-6c86abc09f8f). Coastlines  - data from the SCAR Antarctic Digital Database, accessed 2022.
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Bayesian Inference (BI) in MrBayes v.3.2.6 (Ronquist and 
Huelsenbeck, 2003). Tree node support values for ML analyses were 
assessed through bootstrap (BS) with the full heuristic search option 
and 1,000 pseudoreplicates (Felsenstein, 1981). Bayesian inference 
posterior probabilities (PP) were estimated using the Markov chain 
Monte Carlo algorithm (MCMC), running four chains for 50 × 106 
generations with trees sampled every 500 generations. The initial 10% 
of the parameter values were discarded as “burn-in.” Convergence 
was assessed by checking that split frequencies had an average 
standard deviation below 0.01 and all parameters had effective sample 
sizes (ESS) > 200 using Tracer v.1.6 (Rambaut et al., 2014). Maximum 
clade credibility trees were generated using TREEANNOTATOR 
2.4.7 (Bouckaert et al., 2014) and visualized with FigTree 1.4.2.2

Divergence time estimations

Phylogenetic reconstruction and divergence time analyses 
were performed in BEAST v.2.4.6 (Bouckaert et al., 2014) using 
the cox1 dataset and applying a relaxed lognormal molecular 
clock. The molecular clock model was selected following Bayesian 
Model Selection with nested sampling (Russel et al., 2019) using 
the NS package implemented in BEAST v.2.6.7. The nucleotide 
substitution model HKY + Ι + Γ was selected using the corrected 
Akaike Information Criteria (AICc) in PartitionFinder v2.1 as 
above. We  included cox1 haplotypes of B. vallentini and 
B. brasiliensis as outgroups. A Birth-Death model speciation prior 
was used for branching rates in the phylogeny, four chains were 
run three times for 20 × 106 generations, and trees were sampled 
every 2,000 generations. Based on the absence of a fossil record for 
Boeckella and no direct estimates of mutation rates for cox1 being 
available for copepods, the time of the most recent common 
ancestor (TMRCA) was estimated using a conservative cox1 
mutation rate of 1.8% per site per million years, as estimated for 
limnic amphipods (Copilaş-Ciocianu et  al., 2019), and in 
accordance with other estimates for crustaceans (Knowlton and 
Weight, 1998; Lessios, 2008). Convergence was checked in Tracer 
v.1.6 to ensure all ESS values were >1,000. A maximum clade 
credibility with median node heights was generated using 
TREEANNOTATOR 2.4.7 and visualized with FigTree 1.4.2.

Inference of demographic history of 
Boeckella poppei

We estimated population dynamics through time for each 
demographic unit using the Bayesian Skyline Plot (BSP) method 
implemented in BEAST v2.4.7, based on the cox1 marker. We used a 
population substitution rate of tenfold the evolutionary rate (18% per 
million year) to estimate the TMRCA of each demographic unit, as 
this more accurately reflects the rate at which new haplotypes appear. 

2 http://tree.bio.ed.ac.uk/software/figtree

This better accounts for the time-dependence of molecular evolution 
at population level, brings divergence estimates closer to the present, 
and avoids over-estimation of recent splits in intraspecific lineages 
(Ho et al., 2008, 2011). As suggested by these authors, molecular 
studies at population level display much higher substitution rates (i.e., 
within clades) than the mutation rates (i.e., fixed mutations among 
clades) inferred from phylogenetic analyses. Although this 
interpretation of time dependence remains controversial (Emerson 
and Hickerson, 2015; Ho et al., 2015; Cabrera, 2021), a growing 
number of studies provide empirical evidence that phylogenetic 
mutation rates overestimate the date of recent phylogeographic 
processes (Burridge et al., 2008; Ho et al., 2008; Ney et al., 2018). For 
example, in katydid insects the intraspecific mutation rate calibrated 
with a post-Pleistocene event was 14.4%–17.3% per million years, 13 
times greater than the phylogenetic mutation rate (Ney et al., 2018). 
Similar corrections have been implemented in population-based 
studies of several Antarctic organisms, including fin whales (Pérez-
Alvarez et al., 2021), copepods (Maturana et al., 2020), sea urchins 
(Diaz et  al., 2018), gentoo penguins (Vianna et  al., 2017), algae 
(Billard et al., 2015) and limpets (González-Wevar et al., 2011). The 
two independent MCMC calculations were run for 50 × 106 
generations (sampled every 1,000 iterations), discarding the first 10% 
of parameter values as burn-in. The convergence of runs was 
confirmed with Tracer v1.6.

Historical scenarios

To assess the influence of glacial cycles on demographic history 
and genetic structure, we used DIYABC v.2.0.4 (Cornuet et al., 2008) 
for inference based on the Approximate Bayesian Computation 
(ABC) method (Beaumont et al., 2002) to evaluate the long-term 
persistence of maritime Antarctic populations of B. poppei and the 
existence of putative refugia within the species’ distribution. 
Different scenarios were built to examine competing hypotheses 
based on population structure, phylogenetic and demographic 
inference, using cox1 analyses (for more details see Appendix 1).

Posterior probabilities of scenarios were estimated using 
historical, demographic, and mutational parameters drawn from 
prior distributions. Scenarios were compared in DIYABC using 
(1) a logistic regression of the 1% of simulated data closest to the 
observed data; (2) a “direct” principal component analysis to 
visualize similarity of the observed and simulated statistics for 
each analysis. We evaluated possible refugia for each of the main 
clades/haplogroups obtained from phylogenetic reconstruction.

Results

Occurrence of Boeckella poppei and 
molecular sequence data

Within the framework of this four-year study (2015–2018), 
we sampled 173 freshwater sites within the reported distribution 
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of B. poppei. Among these, 85 were in southern SA, 10  in the 
Falkland/Malvinas Islands, 12 in SG and 66 in the MA (SOI = 16, 
SSI = 37, AP = 13). Since we used the “nominal B. poppei” clade 
following the type species criteria, Falkland/Malvinas Islands and 
many SA locations were excluded from further analyses. In total, 
438 individuals of B. poppei were obtained from 34 different 
sampling sites (SA = 3, SG = 2, SSI = 18, AP = 4, SOI = 7; Figure 1; 
Supplementary Table S1).

The greatest number of sequences was obtained for cox1 
(n = 438), followed by ITS (n = 157) and 28S (n = 97). We did not 
recover any missing data at each DNA marker. Alignments of cox1, 
28S, and ITS consisted of 420, 655, and 649 bp, respectively. The 
cox1 alignment did not include insertions/deletions or stop codons, 
and no evidence for codon bias was detected (ENC = 39.20). The 
mitochondrial cox1 locus included 50 variable sites (11.9%), with 
28 (6.7%) being parsimony informative. The nuclear regions 
showed less genetic variation, with 28S and ITS containing 1 and 6 
variable sites and 1 and 2 parsimony informative sites, respectively.

Genetic diversity

Global mitochondrial haplotype diversity (Hd) was 0.882, 
with small variations among sampling locations, areas and 
biogeographic regions (Supplementary Table S2). Within the MA, 
SOI and AP exhibited the highest diversity (Hd = 0.816 and 0.812, 
respectively). Despite the higher number of individuals (n = 210), 
lakes (n = 18) and locations (five islands; Supplementary Table S1), 
the SSI had lower haplotype diversity (Hd = 0.726) compared with 
other locations within the MA. However, SSI displayed the highest 
number of nucleotide differences (Π) and nucleotide diversity (π). 
SG had the lowest haplotype and nucleotide diversity (0.647 and 
0.002, respectively). In contrast, SA exhibited high genetic 
diversity for both metrics (Hd = 0.813, π = 0.007, n = 68).

The cox1 median-joining network identified 75 distinct 
haplotypes, 71 of which were private, including 49 unique 
haplotypes (Supplementary Table S2; Figure  2). Two main 
haplogroups separated by three mutational steps were 
distinguished (HG1 and HG2; Figure 2). HG1 included individuals 
from SSI (King George, Robert, Greenwich, and Deception 
Islands) and SOI. The central haplotype (H1) was frequent (17%) 
and shared by both localities (SSI = 92.3%, SOI = 7.7%). HG2 
included individuals from SSI (King George, Robert, and 
Livingston Islands), AP, SG, and SA. This haplogroup also had a 
frequent and central haplotype (H = 27%) distributed in all 
localities where it occurred (SSI = 69%, SG = 17.6% and 
AP = 13.4%). Within HG2, SA populations did not share 
haplotypes with any MA populations. Each sampling area was 
characterized by the presence of a single haplogroup, except for 
SSI where both haplogroups were present. Within SSI, both 
haplogroups coexisted primarily on King George Island and to a 
lesser extent Robert Island. However, Deception, Livingston, and 
Greenwich islands contained only one of the two haplogroups 
(Supplementary Figure S3).

The haplotype networks constructed for the five sampling 
areas (AP, SSI, SOI, SG, and SA) showed the different 
topologies more clearly (inset Figure  2). The SSI network 
represents the most expanded genealogy, with the two 
haplogroups separated by eight mutational steps. However, 
when the two haplogroups were examined separately 
(hereafter SSI1 and SSI2), each was characterized by a star-like 
topology and short genealogy. Similarly, the network from SG 
showed a star-like topology and short genealogy. Tajima’s and 
Fu’s neutrality tests were both negative and significant for 
these locations (Supplementary Table S2). In contrast, the 
networks from AP, SOI, and, particularly, SA exhibited more 
expanded genealogies.

The 28S locus had extremely low global genetic diversity with 
only two haplotypes (Supplementary Figure S4A). One was 
dominant, shared among all sampling areas, and the other was 
only present in SA. The global genetic diversity for ITS was higher 
(Supplementary Figure S4B), with six haplotypes. A dominant 
haplotype was shared across all five areas, but the other haplotypes 
were exclusively present in one of SSI, AP or SA.

Genetic and phylogeographic structure

We estimated genetic differentiation using only the cox1 dataset, 
since low genetic diversity in the nuclear markers precluded further 
analyses (Supplementary Table S2; Supplementary Figures S4A,B). 
Overall, B. poppei displayed strong genetic and phylogeographic 
structure across sampled areas, with all ΦST and FST values being 
highly significant, except for FST between SG and AP 
(Supplementary Table S5). SOI and SA had the highest, significant, 
values for all comparisons with both indices.

Phylogenetic and divergence time 
estimation

Multi-locus phylogenetic reconstruction identified the 
divergence of the two main clades (A and B) with high PP and BS 
support (Supplementary Figure S6). However, relationships within 
each clade were not completely resolved with low support values. 
Molecular dating analysis based on cox1 provided estimates of 
divergence times across the sampled regions (Figure 1).

Based on the interpretation of outgroup specimens, 
previous phylogenetic and ancestral area reconstruction 
analyses of the genus (Maturana et al., 2021), divergence time 
estimates suggest B. poppei originated from an SA ancestor, 
with Antarctic diversification during the mid-Pleistocene at 
994,090 YBP (95% height posterior density (95HPD): 
1.5 M–586,090 YBP). This period included an early major 
branching event with strong PP support (PP = 1) between a 
clade containing SSI1 and SOI specimens (hereafter clade A, 
Figure  3) and a clade containing the SSI2, AP, SG, and SA 
specimens (hereafter clade B, Figure 3).
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Past demographic events

Based on Bayesian phylogenetic reconstruction, haplotype 
network, and phylogeographic structure analyses, we evaluated 
the two haplogroups from the SSI (SSI1 and SSI2) as two 
independent demographic units. SSI1 included haplotypes from 
Deception, Greenwich, Robert, and King George Islands, while 
SSI2 included haplotypes from Livingston, Robert, and King 
George Islands. The remaining four geographic areas were 
considered as independent demographic units.

Bayesian Skyline Plot analyses derived from the 10× corrected 
substitution rate (Figure  4) provided historical population 
dynamic patterns and dates for TMRCA for the six demographic 
units (SSI1, SSI2, SOI, SG, AP, and SA). TMRCA obtained for SSI1, 
SSI2 and SG, were very similar at ca. 10,000 YBP (10,861, 10,750, 
and 10,872, respectively). SOI had the oldest TMRCA at ca. 
24,230 YBP (95% HPD 7,743–45,568 YBP), followed by AP 

(16,898 YBP; 95% HPD 4,746–32,589). Overall, the date for the 
onset of population expansion within most sampling areas from 
the maritime and sub-Antarctic regions was estimated at ca. 
7,000 YBP (Figure 4), with the exception of both demographic 
units identified within SSI (SSI1 and SSI2), for which population 
expansion was estimated around 4,000 YBP. For the Patagonian 
B. poppei population, we did not detect a population expansion 
signal, and estimated a TMRCA of 38,095 YBP.

Historical scenarios

For clade A, we compared the posterior probabilities of two 
scenarios, reflecting the presence of this clade in only two 
locations (SOI and SSI). In Scenario 1, we proposed SOI as a 
refugium, with a post-glacial colonization of SS11 area, while 
Scenario 2 considered SSI1 as a refugium with postglacial 

FIGURE 2

Haplotype network for Boeckella poppei, based on 438 mtDNA cox1 sequences spanning the species’ distribution. Neighbor-joining network 
illustrating the distribution of haplotypes across lakes in southern South America, South Georgia, the South Orkney Islands, the South Shetland 
Islands, and Antarctic Peninsula. Circles sizes are proportional to haplotype frequency. Color key indicates sampling areas illustrated in Figure 1.

https://doi.org/10.3389/fevo.2022.1012852
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Maturana et al. 10.3389/fevo.2022.1012852

Frontiers in Ecology and Evolution 08 frontiersin.org

colonization of SOI (Supplementary Figure S7, Clade A). For the 
more widespread clade B, we compared the posterior probability 
of refugia in the MA and sub-Antarctic regions (Scenario 1) with 
that of SA as the main refugium and post-glacial colonization of 
MA and sub-Antarctic regions (Scenario 2). Then, we evaluated 
which localities within the MA (SSI2 and AP) and SG were the 
most likely locations of refugia (under Scenario 1), or to 
be colonized from SA (Scenario 2). The historical constructed 
models are included in Supplementary Figure S7.

For clade A, ABC supported SOI, rather than SSI, hosting the 
most likely refugia, providing the highest posterior probability with 
both approaches (direct 0.988; logistic 0.997;  Supplementary Table S8). 
For clade B, ABC supported post-glacial recolonization from SA to 
SG and MA, providing the highest posterior probability with both 
approaches (direct 1.000; logistic 0.999). For recolonization from SA, 
AP was the most likely area to be colonized first (direct 0.634; logistic 
0.5810), followed by SG (direct 0.254; logistic 0.346) and finally SSI 
(direct 0.112; logistic 0.074).

Discussion

This study is the first molecular phylogeographic study of a 
freshwater crustacean across the maritime Antarctic, 
sub-Antarctic islands, and South America, as well as the first 
large-scale biogeographic analysis of a species within the 
freshwater copepod genus Boeckella. Our data are consistent with 
previous phylogenetic analyses and ancestral geographic 
reconstructions of Boeckella in suggesting a South American 
origin of B. poppei, with subsequent colonization of the Maritime 
Antarctic (South Shetland Is., South Orkney Is., and the Antarctic 
Peninsula) and sub-Antarctic South Georgia during the 
mid-Pleistocene. Based on mtDNA and nucDNA sequences, 
we identified two distinct clades currently distributed in (A) the 
SOI and SSI and (B) SSI, AP, SG, and SA. Based on intraspecific 
phylogeographic and demographic inferences and ABC-based 
biogeographic scenarios, this finding suggested two separate and 
independent southwards colonization events across the Drake 
Passage. The first occurred during the mid-Pleistocene (clade A), 
while the second was a post-LGM event (clade B). Furthermore, 
the existence of two clades whose origin considerably predates the 
LGM, albeit assessed using a conservative molecular evolutionary 
rate, suggests the presence of at least two historical refugia within 
the present distribution of the species.

Long-term persistence of Boeckella 
poppei in the maritime Antarctic

The exclusive distribution of clade A in the SSI and SOI 
suggests that some populations have persisted in  local refugia 
within these archipelagos through multiple glacial cycles within at 
least the second half of the Pleistocene and, given the HPD range, 
plausibly longer. This is not compatible with a hypothesis that 
contemporary populations south of the Antarctic Polar Front 
(APF) are derived from Holocene recolonization events from 
South America. Rather, they support the long-term persistence of 
B. poppei in the maritime Antarctic, adding further support to the 
recently-recognized and recurring pattern of long-term 
persistence across a range of Antarctic terrestrial invertebrate, 
plant and microbial biota (see Convey et al., 2020, and citations 
therein, Verleyen et al., 2021).

South Orkney Islands as a putative 
refugium

Based on the high genetic diversity, extended network 
topology, oldest demographic growth, and TMRCA of Antarctic 
clade A, we  infer that refugia were present in the SOI. The 
biogeographic scenario of colonization of the SSI from SOI refugia 
was also supported by ABC analyses. The SOI are a group of 
relatively small islands located south of the APF, between 60°36′S 
46°13′W and 60°41′S 44°18′W, and harbor the northern-most 

FIGURE 3

Historical biogeography and divergence times of B. poppei 
across South America, maritime and sub-Antarctic biogeographic 
regions using cox1. The maximum clade credibility tree shows 
the median divergence time estimates with 95% height posterior 
density (95HPD) calculated with a mutation rate of 1.8% per site 
per million years [based on Copilaş-Ciocianu et al. (2019)]. 
Different colors represent different regions and geographical 
ranges (also see Figure 1). Only high posterior probability support 
values (>0.85) are shown next to all major branches.
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occurrence of clade A. Hodgson et al. (2014), based on analyses of 
sediment cores from extant lakes on the island, inferred a 
minimum deglaciation age for Signy Island of 7,292–
7,517 YBP. They also suggested, in line with Clapperton (1990), 
that the SOI would have been covered by LGM and/or earlier ice 
expansion. Such glacial history would appear to prohibit the 
existence of freshwater bodies, although alternative habitats may 
still have been available on snow and ice surfaces, and glacial 
moraines, that could host freshwater communities (Fountain 

et al., 2004). Such habitats, including cryoconite holes, ice-based 
and moraine-edge melt pools, and smaller moraine ponds, are 
likely to have existed in summer even during glacial maxima, and 
B. poppei occurs in some of these forms of water bodies today. 
Another possibility is provided by epishelf lake habitats which are 
freshwater directly overlying seawater, or freshwater systems with 
a direct marine connection through a conduit underneath an ice 
shelf (Laybourn-Parry and Pearce, 2007). Two contemporary 
epishelf lakes at Beaver Lake in the Amery Oasis (East Antarctica) 

FIGURE 4

Historical demographic trends. Bayesian Skyline Plots (BSP) for genetic groups found in the five sampling areas of B. poppei, based on cox1. 
Effective population size trends (Ne) calculated using the 10× corrected substitution rate of the standard estimate. The y-axis shows the product 
of effective population size (Ne) and generation length in a log scale, while the x-axis shows time before present. The median estimate (solid black 
line) and 95% highest probability density (HPD) limits (colored area) are shown. The thick dashed line represents the time of the most recent 
common ancestor (TMRCA).
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and Ablation Lake, Alexander Island, host B. poppei populations 
(Heywood, 1977; Bayly et  al., 2003; Bissett et  al., 2005). Since 
we were unable to obtain samples from this part of the species’ 
distribution, we cannot confirm that these epishelf lakes were 
indeed refuge sites. However, evidence from morphology (Bayly 
et al., 2003), sediments (Cromer et al., 2006; Gibson and Bayly, 
2007), and molecular data (Bissett et al., 2005) all suggest the long-
term presence of B. poppei in this region. The putative existence of 
other refugia in situ within continental Antarctica overturns 
previous suggestions of the extinction of inland biota in the 
continent during not only the most recent glaciation but also 
many previous glaciations in the area.

A parallel line of inference can be drawn from the apparent 
contradiction between terrestrial biological and glaciological 
evidence from Alexander Island, the world’s second largest island 
(after Greenland), located off the west coast of the Antarctic 
Peninsula at the southern limit of the Maritime Antarctic. Multiple 
lines of evidence supporting long-term terrestrial biological 
persistence, including remarkably high levels of diversity and 
endemism of the soil nematode fauna (Maslen and Convey, 2006), 
the presence of the endemic and apparently ancient springtail 
Friesea topo (Greenslade, 1995; Carapelli et  al., 2020) and the 
presence of a basal clade of the Antarctic tardigrade genus 
Mesobiotus (Short et al., 2022) in terrestrial oases in south-eastern 
Alexander Island (71–72°S), strongly challenge current 
glaciological reconstructions, which do not support this area 
being refugial.

Post-glacial (re-)colonization from South 
America

Representatives of clade B spanned a broader distribution 
than clade A, including the AP, SSI, SG, and southern SA, 
suggesting a more complex history. Patagonian populations of 
B. poppei were characterized by high genetic diversity, extended 
network topology, an older TMRCA, and had no signal of past 
demographic growth. Such genetic and demographic patterns 
suggest that B. poppei in this region maintained a significant 
effective population size during at least the last glacial cycle despite 
the advances of the Patagonian Ice Sheet (PIS) over large portions 
of the western side of southern Patagonia (Clapperton, 1993; 
Davies et al., 2020). Large populations could have persisted in this 
region even during glacial maxima, probably in freshwater systems 
such as ice-dammed lakes formed by glacial over-deepening to the 
east, moraines, and marginal melt water channels (Sagredo et al., 
2011; Lovell et al., 2012). In contrast, contemporary populations 
representing clade B located south of the APF (SG, SSI2, and AP) 
exhibited lower genetic diversity, star-like topologies, and evidence 
of post–LGM demographic expansion. Such patterns may reflect 
past contraction-expansion processes in response to climate 
oscillations, as frequently noted in phylogeographic studies of 
species affected by the LGM (Hewitt, 2004; Provan and Bennett, 
2008; Marko et al., 2010). Such patterns of demographic expansion 

detected during the glaciation process could have followed either 
(1) a strong genetic bottleneck due to drastic reductions in 
population size in SG or other maritime Antarctic refugia during 
the last glacial period, and/or (2) a founder effect associated with 
post-glacial recolonization of SG and/or the maritime Antarctic 
from southern SA.

Based on ABC simulations of these two biogeographic 
scenarios for clade B, we  suggest the most likely scenario is 
postglacial recolonization from southern SA to SG and the 
MA. Under this scenario, this clade of B. poppei would have 
dispersed and colonized sub- and maritime Antarctic regions 
during the Holocene through long-distance dispersal and 
establishment (LDDE, Crisp et al., 2011). The precise location of 
these colonization event(s) is unclear, but the pattern of haplotype 
distribution on the Antarctic Peninsula, including private alleles 
currently only known from this region (red haplotype network 
inset in Figure 2), along with the oldest MRCA across the members 
of clade B, suggest the southern Antarctic Peninsula as the most 
likely candidate. Furthermore, among the alternative biogeographic 
scenarios tested using ABC simulations, the Antarctic Peninsula 
was assessed as the most probable area for recolonization from 
southern SA (63.4%), although SG (25.4%) could not be rejected 
(Supplementary Table S8; Supplementary Figure S7).

Support for the hypothesis of recent Antarctic recolonization 
of clade B from southern SA might raise doubt over the scenario 
of much longer-term persistence of clade A in the South Orkney 
Islands. The possibility exists that haplotypes from Clade A 
(Figures  2, 3, respectively) were not sampled in southern 
SA. However, our sampling took place over 4 years, across multiple 
locations in southern Patagonia and the Falkland/Malvinas 
Islands, including remote locations such as Horn Island (Cape 
Horn archipelago) and the Diego Ramirez Islands. Among 100 
visited SA sites, we successfully located B. poppei in only three 
locations close to Tierra del Fuego (Chilean Patagonia). Moreover, 
shared haplotypes among these sampling sites would suggest no 
missed diversity. This unexpectedly low presence in southern SA 
decreases the likelihood that representatives of Clade A are present 
but overlooked in this region, and supports the hypothesis of long-
term persistence of MA populations in SOI refugia.

Long-distance dispersal and 
establishment

For both clades the biogeographic scenarios proposed here, 
including the geographic expansion from in situ SOI refugia to 
SSI1 for clade A and the colonization of SG, SSI2, and AP from 
southern SA for clade B, require LDDE. For physically isolated 
ecosystems such as those that host B. poppei, the two main LDDE 
vectors generally proposed are wind and birds (Figuerola and 
Green, 2002; Hawes et al., 2007; Viana et al., 2016). LDDE also 
requires that propagules have physiological features supporting 
dispersal, such as zooplankton eggs being more resistant to harsh 
environmental conditions than their active forms in the water 
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column (Marcus, 1996; Brendonck and de Meester, 2003). In 
B. poppei, the small resistant eggs (150.3 ± 8.2 μm) reported in the 
maritime Antarctic, which may provide an overwintering strategy 
(Jiang et al., 2012; Reed et al., 2021), can also survive desiccation 
and low temperature, thereby raising the possibility of dispersal 
over long distances, such as across the Drake Passage (~900 km) 
separating southern SA from the SSI.

Wind has often been invoked as a dispersal mechanism 
shaping plant and animal distributions in the Southern 
Hemisphere (Marshall and Convey, 1997; Muñoz et  al., 2004; 
Hawes, 2009; Biersma et  al., 2018a; Bohuslavová et  al., 2018; 
McGaughran et  al., 2019; Vega et  al., 2019). The prevailing 
westerly wind systems at higher southern latitudes have been 
suggested to transport pollen and small moss propagules from 
southern SA into the MA (Biersma et al., 2018a). The hypothesis 
that resistant eggs of B. poppei could have achieved multiple long-
distance colonization events through wind-related dispersal 
events is therefore plausible.

The native avifauna of the MA includes primarily seabirds 
belonging to the families Charadriidae (e.g., skuas and gulls) 
and Procellaridae (e.g., albatrosses, petrels, prions, fulmars, 
shearwaters), with vagrant species from SA also being regularly 
noted. Among these, the two skua species that occur in 
Antarctic regions (Catharacta maccormicki and C. antarctica 
lonnbergi) and the kelp gull (Larus dominicanus), spend much 
of their time on land, including frequenting freshwater bodies, 
both in the Antarctic and in the northerly parts of their 
migratory routes. Therefore, the inland behaviors of these 
species increase the chance of them being candidate vectors of 
long-distance dispersal for B. poppei at inter- and/or 
intracontinental scale.

Possible constraints and passages to new 
colonizers

Despite the existence of potential vectors, the strong 
phylogeographic structure and low number (clade A) or 
absence (clade B) of shared haplotypes between putative 
refugia and colonized areas suggest that these dispersal 
mechanisms do not permit connections with distant 
populations through regular gene flow but, rather, occur as 
extremely infrequent dispersal events. Alternatively, the strong 
genetic and phylogeographic structure may suggest the 
existence of effective constraints limiting the establishment of 
new colonizing individuals caused by the monopolization of 
resources and rapid local adaptation by the early arriving 
individuals: the “Monopolization Hypothesis” (De Meester 
et  al., 2002; Orsini et  al., 2013). This hypothesis provides a 
theoretical basis to explain the apparent paradox between high 
passive dispersal capacity and reduced gene flow among 
neighboring populations in freshwater communities (Gomez 
et al., 2000; Xu et al., 2009; Ventura et al., 2014; Maturana et al., 
2020; Ortega-Mayagoitia et  al., 2022). The distribution of 

clades A and B is consistent with this hypothesis, since 
individuals representing each clade generally do not occur in 
sympatry. As supported by our biogeographic scenario 
analyses, in Clade B SA individuals would have colonized SG, 
SSI and PA, but not SOI. The existence of a well-adapted 
resident population of B. poppei in the latter archipelago 
facilitating rapid local colonization of new suitable bodies 
(Maturana et  al., 2020), would result in a combination of 
founder effect, rapid local adaptation, and monopolization of 
available resources, reducing the establishment success of any 
subsequent immigrants from SA. However, an alternative 
explanation of mismatch between phenotype (e.g., physiology, 
phenology, or life-history traits) and ecological conditions 
(e.g., chemical composition) of accessible lakes (Ortega-
Mayagoitia et al., 2022) is also possible. While both clades A 
and B were found in the SSI, at finer scales the three lakes on 
Deception Island and one on Greenwich Island only hosted 
clade A while only clade B was found in two lakes on Livingston 
Island (see Supplementary Table S1; Supplementary Figure S3). 
On King George Island, among 10 sampling sites, two hosted 
only Clade A and six Clade B, with only two lakes hosting both 
clades. Suggestively, the latter two sites were located close to 
scientific stations and hence more vulnerable to human 
influence: Escudero (Fildes Bay) and Arctowski (Admiralty 
Bay). While there is no direct evidence of anthropogenic 
impacts on biodiversity in these lakes, there are increasing 
reports of negative impacts of human activity, almost 
exclusively in the vicinity of research stations and visitor sites 
(Hughes and Convey, 2010; Pertierra et al., 2019). Further, even 
though human–mediated movement of regionally non–
indigenous species is the most recognized problem, the 
redistribution of indigenous Antarctic species between 
biologically distinct areas within the continent may also occur, 
which risks changing their fragile terrestrial and freshwater 
ecosystems irreversibly (Frenot et al., 2005; Convey et al., 2006).

Conclusion

We critically assessed two biogeographic hypotheses, namely 
in situ persistence and postglacial (re)colonization, that have been 
proposed to explain how Quaternary events have shaped the 
distribution, demography, and genetic structure of Antarctic 
terrestrial and freshwater biota. Boeckella poppei Clade A, found 
only in the maritime Antarctic, provided evidence of long-term 
persistence through multiple glacial cycles since at least the 
mid-Pleistocene, with a potential glacial refugial location in the 
South Orkney Islands from which the South Shetland Islands were 
then colonized. Our study provides the first report suggesting 
persistence through Pleistocene glacial cycles for a freshwater 
invertebrate in the maritime Antarctic, broadening the scope of 
conclusions of recent studies limited to terrestrial ecosystems. 
Clade B, with a much wider distribution, led us to infer exceptional 
and extremely infrequent LDDE event(s) from southern South 
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America. Together, these findings reveal the complex 
biogeographic history of this Antarctic freshwater copepod and 
reconcile both in situ persistence and postglacial (re)
colonization hypotheses.
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