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The unprecedented urbanization recently has inevitably intensified the

changes in land use morphology. However, current studies on land use

primarily analyze a single morphology, ignoring the relationships between

different land use morphologies. Taking the northern slope of the Tianshan

Mountains (NSTM) as the study area, this article quantifies the spatiotemporal

pattern of land use change, and estimates trade-offs and synergies between

dominant (patch density, largest patch index, and landscape shape index)

and recessive (land use efficiency, land use intensity, and agricultural non-

point source pollution) morphologies to fully understand the dynamic

characteristics of land use. Results showed bare areas and grassland were

always predominant land use types, and land use change from 1990 to

2020 was characterized by the increase of impervious surfaces and the

decrease of bare areas. The strongest trade-off was found between largest

patch index and land use intensity, while the synergy between landscape

shape index and land use intensity was strongest. There are significant

disparities in terms of temporal and spatial patterns of trade-offs/synergies.

The correlation coefficients in different study periods were much smaller

than their estimations in the whole region, and the trade-offs/synergies in

the eastern NSTM were basically identical with the whole relationships. The

findings reveal the interactions among various land use characteristics, and

provide significant references for coordinated land management and regional

high-quality development.
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Introduction

Land systems are not only the surface covered by natural
and artificial elements, but also the utilization of land by
human beings. Land systems are complex and highly associated
with climate change, food security, and regional inequality in
the 2030 Agenda for Sustainable Development Goals (SDGs)
(Fujimori et al., 2022; Meyfroidt et al., 2022; van Marle
et al., 2022). This indicates that the efficient management
and sustainable development of land systems will be of
utmost importance to achieving SDGs in the following years.
Recently, China has experienced unprecedented urbanization
with increasing population, which inevitably intensifies the
evolution of land systems (Zuo et al., 2018; Liu et al., 2021;
He et al., 2022). Land use change refers to the transformation
of land use morphology in a region during a certain period
driven by human activities (Long et al., 2014). The concept of
land use morphology was firstly proposed by Grainger (1995),
who defined it as the overall pattern of actual land cover in a
region at a given time. With the continuous social and economic
changes, Long and Li (2012) enriched the connotation of the
traditional quantity and distribution of land use morphology,
and argued that land use morphology could be represented
by dominant and recessive morphologies. Specifically, land use
dominant morphology represents the directly visible features
of land use, such as areas and spatial patterns, which is highly
connected with the landscape patterns of land use. While land
use recessive morphology refers to quality embodied in land use,
such as property rights, functions, management mode, input,
and output (Qu et al., 2021).

At present, studies of land use dominant morphology mainly
focus on land use transition research (Long et al., 2021). Much
attention had paid to the evolution of land use structure and
the changes in the proportion of various land use categories
(Ouedraogo et al., 2016; Buckley Biggs, 2022). They found that
the proportions and areas of artificial land, especially urban
construction land, gradually increased during the process of
urbanization and industrialization, while those of natural land,
such as forest, grassland, and unused land, displayed significant
decreasing trends simultaneously. Some indices, such as gross
gain, gross loss, and change rate, were also calculated to evaluate
the temporal characteristics of land use during a certain period
(Sumari et al., 2020; Duan et al., 2021; Chen et al., 2022). Recent
empirical analysis validated the spatiotemporal differentiation
of certain land use categories, primarily including cropland and
impervious areas (Cai et al., 2020; Yang et al., 2021; Ray et al.,
2022), and further discovered the hotspot characteristics of land
use on the regional scale or explored the driving forces of land-
use spatial distribution (Zhu et al., 2021). In terms of the studies
of land use recessive morphology, scholars mainly concentrated
on the changes in land use function (Schiavina et al., 2022). It
was defined as goods and services provided by different land use
categories in order to meet the demands of human activities.
Considerable progress had identified land use function from

the aspects of production, living, and ecology, by establishing a
comprehensive index system (Meng et al., 2022). Besides, some
literatures measured the degree of human activities on land
use (Howison et al., 2018; Yin et al., 2020; Zhou et al., 2022),
and captured the changes in fixed input or economic output
efficiency per unit of land in a certain administrative region
(Guo and Shen, 2015; Jiang et al., 2021).

Overall, most of the current studies on land use
morphology primarily analyze a single morphology, but
ignore the interactions between land use dominant and
recessive morphologies. The loss of natural land not only
reshapes the dominant landscape patterns of land use but also
intensifies its recessive input and output. Natural land has
consistently transferred into artificial land with the increasing
human activities. The landscape patterns of land use became
fragmented and dispersed over time. Simultaneously, the
input and output embodied in land use increased sharply.
There normally exists a positive correlation between dominant
landscape patterns and recessive intensity of land use. In some
certain cases, the dominant and recessive morphologies of
land use do not present a positive correlation theoretically.
For example, extensive management of land use has altered
its dominant landscape patterns, but it does not bring
corresponding economic benefits. Besides, some nature reserves
take advantage of their abundant ecologic resources to attract
sightseers without altering the dominant morphology of land
use. It achieves a better combination of economic development
and land protection. In summary, dominant and recessive
morphologies of land use are concurrent, and it is of great
importance to investigate their relationships to fully understand
the dynamic characteristics of land use.

Nowadays, trade-off analysis has become an important
method to manifest the relationships of multiple systems
(Bradford and D’Amato, 2012). The trade-off is generally
described as the status where a specific system benefits at the
cost of others (Hamilton et al., 2019). A wealth of studies
investigated the links and interactions among multiple natural
ecosystem services (Howe et al., 2014; Cord et al., 2017;
Geng et al., 2022), and some scholars recently explored the
trade-offs/synergies between natural and artificial ecosystems
such as multiple land use functions (Fan et al., 2021; Zhu
et al., 2021; Meng et al., 2022), but it is relatively scarce
to quantify the trade-offs and synergies of different land use
characteristics. To fill this research gap, this article focused
on the relationships between land use dominant and recessive
morphologies. Taking the northern slope of the Tianshan
Mountains (NSTM), an important developing area with a fragile
environment in China, as the study area, we investigated the
changes in land use and its landscape metrics based on land
use data in 1990, 1995, 2000, 2005, 2010, 2015, and 2020. Next,
the spatiotemporal characteristics of land use change in the
NSTM from 1990 to 2020 were examined. Finally, land use
dominant and recessive morphologies at the whole and county
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scales were estimated by incorporating land use and socio-
economic datasets. On this basis, their trade-offs and synergies
between land use morphology were qualified through Pearson
correlation analysis. The findings contribute to revealing the
interactions among various land use morphologies, and provide
significant references for coordinated land management and
regional high-quality development.

Materials and methods

Study area and data source

The northern slope of the Tianshan Mountains (NSTM)
is located in the inland center of the Eurasian continent

(Figure 1). It covers 79◦53′E-96◦23′E and 40◦52′N-47◦14′N
with an area of three hundred and ninety-six thousand square
kilometers, accounting for 23.8% of the total area of Xinjiang
Uygur Autonomous Region. The terrain, ranging from −192
to 5,166 m, is high in the Tianshan Mountains and low in
the surrounding basins. The NSTM includes areas of Urumqi
City, Karamay City, Bortala Mongol Autonomous Prefecture,
Changji Hui Autonomous Prefecture, Hami City, Tacheng
Administrative Office, Turpan City, Kuytun City, and four
county-level cities (i.e., Shuanghe City, Wujiaqu City, Huyanghe
City, and Shihezi City). The NSTM is the main area of
urbanization and economic development in the autonomous
region, whose GDP accounts for more than 60% of that in
Xinjiang. The NSTM has a typical continental climate with
hot-dry summer and cold-long winter, and the temperature

FIGURE 1

(A) The location of the NSTM. (B) The elevation of the NSTM derived from the ASTER Global Digital Elevation Model at 30 m, and downloaded
from the Geospatial Data Cloud of China. (C) The spatial patterns of land use of the NSTM in 2020 derived from GLC_FCS30. The
corresponding relationships between the land use classification used in this study and the original system of the dataset are also depicted.
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changes greatly from morning to night, and its annual average
temperature is 6–7.2◦C. The annual average precipitation ranges
from 20 to 400 mm, but the annual evaporation amount
reaches 1,817 mm. Geological feature is mainly characterized by
limestone, sedimentary rock, carbonate, and silicate rock in the
NSTM. There are various soil types in the NSTM, including gray
brown desert, brown soil, chestnut, chernozem, gray cinnamon,
and meadow soil.

Data used in this study are primarily obtained in two ways.
Firstly, the Global land-cover product with fine classification
system at 30 m (GLC_FCS30) is employed in the study due
to its high spatial resolution and long time series, which
is freely available at https://doi.org/10.5281/zenodo.3986872.
Validation results have shown the overall accuracy and kappa
coefficient of this product are 0.825 and 0.784 in terms of nine
major land-cover types, which is higher than GlobaLand30 and
FROM_GLC products. This dataset, extracted from Landsat
remote sensing images and high-quality training data from
Global Spatial Temporal Spectra Library, provides a detailed
classification system containing 29 land cover types (Zhang X.
et al., 2021). Considering the land use structure of the study
area, a new classification system is established by reclassing land
use types into seven groups: cropland, forest land, grassland,
water bodies, bare areas, sparse vegetation, and impervious
surfaces. The data processing of land use was implemented
using ENVI 5.3 and ArcGIS 10.8 software platform. The land
use data every 5-year interval (i.e., 1990, 1995, 2000, 2005,
2010, 2015, and 2020) are employed to identify the changes
in land use morphology. According to the land cover of the
NSTM in 2020, land cover type displayed obvious divergence
in the study area. Specifically, cropland was mainly distributed
in the north of the study area, while forest land, grassland,
and sparse vegetation were roughly distributed along the
Tianshan Mountains due to elevation gradients. Bare areas
were the largest land surface cover, accounting for 61.2% of
the total area, which was distributed in the eastern study area.
The distributions of water bodies were scattered, including
Sayram Lake, Ebinur Lake, and Kashgar River Basin. Impervious
surfaces were mainly distributed in the center of Urumqi City,
Shihezi City, Kuytun City, Karamay City, and other cities.
Secondly, socio-economic data are collected from the Xinjiang
Uygur Autonomous Region1 and their affiliated districts and
counties.

Land use change indices

Land use change indices have been used to quantify the
characteristics of land use change during a certain period
(Sumari et al., 2020; Duan et al., 2021). The gross gain and gross

1 http://tjj.xinjiang.gov.cn/

loss are the most basic components at the category level. They
are calculated as follows:

Gi = P+i − Pii (1)

Li = Pi+ − Pii (2)

where Gi denotes the gross gain of category i during a certain
period, which is given by P+i minus Pii. Li denotes the gross loss
of category i during a certain period, which is given by Pi+minus
Pii. P+i and Pi+ are the percentage of the area in category i at the
final time and the initial time of a certain period, respectively. Pii
represents the area that shows the persistence of category i.

Based on the above two basic components, other
components of land use change can be estimated: net change,
swap change, total change, and change rate (Chen et al., 2022).
The net change shows the change percentage of a certain land
use type during the study period, which is given by the gross
gain minus the gross loss. The calculation formula is:

Ni = Gi − Li = P+i − Pi+ (3)

where Ni is the net change of category i during a certain period.
The swap change is quantitatively calculated by twice the

minimum of the gross gain and the gross loss, which is expressed
as follows:

Si = 2 × min(Gi, Li) (4)

where Si is the swap change of category i during a certain period.
The total change reflects the sum of changed areas of a

certain land use type during the study period. The calculation
formula is as follows:

Ti = Gi + Li (5)

where Ti is the total change of category i during a certain period.
The change rate represents the changing trend of a certain

land use type during the study, which is expressed as follows:

Ri =
Ni

Pi+
(6)

where Ri is the change rate of category i during a certain period.

Land use morphology indices

Land use change refers to the spatiotemporal changes in land
use morphology driven by social and economic development.
It is acknowledged that there are two formats to describe
land use morphology, i.e., dominant morphology and recessive
morphology (Long and Li, 2012).

Dominant morphology
Landscape pattern indicators have been widely used to

analyze landscape composition and spatial structure among
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patches within a category or region level (Lausch et al., 2015;
Li et al., 2017; Yang et al., 2019; Sumari et al., 2020; Müller
et al., 2022). Land use change is always accompanied by changes
in landscape characteristics, which has directly transformed
the landscape fragmentation, concentration, and connectivity.
Therefore, the dominant morphology is quantitatively estimated
by landscape pattern indicators in this study. In accordance
with previous studies (Ma et al., 2019; Wu and Lu, 2021; Fu
et al., 2022), patch density (PD), largest patch index (LPI),
and landscape shape index (LSI) are selected and calculated
using the Fragstats 4.2 software. Kubacka et al. (2022) have
also proved there are no strong relationships among PD, LPI,
and LSI, which can overcome multivariable multicollinearity in
terms of different indicators and provide reliable information to
explore the land use dominant morphology. The definitions and
calculation formulas of the selected landscape metrics are listed
in Table 1.

Recessive morphology
Studies of land use recessive morphology mainly

concentrated on the changes in land use efficiency (Jiang et al.,
2021; Schiavina et al., 2022), land use intensity (Tan et al., 2022;
Zhou et al., 2022), and its environmental effects (Searchinger
et al., 2018; Hong et al., 2021; DeFries et al., 2022; van Marle
et al., 2022). The efficiency of land use directly reflects the level
of socio-economic development (Yu et al., 2019). Compared
with the primary industry, manufacturing and service industries
are more efficient and productive obtained from land use. Land
use efficiency (LUE) is expressed as the economic output
per unit of land in this study. Land use intensity (LUI) is
employed to evaluate the status of land development within a
region. Referring to Xu et al. (2020), a specific weight value is
assigned to each basic land use type by considering the extent
of human activities and fixed inputs. Seven land use types are
reclassed into five new groups: high-use-intensity artificial land,
low-use-intensity artificial land, high-use-intensity natural land,
mid-use-intensity natural land, and low-use-intensity natural
land. The LUI index is calculated by the weighted sum of each
reclassed group. Agricultural system, accounting for about
30% of global greenhouse gasses, is a major source of climate
change (Clark et al., 2020; Foong et al., 2022; Wang et al., 2022).

Agricultural non-point source pollution (ANSP) caused by
intensive chemical fertilizer consumption greatly contributes
to the decline of ecological environment, and further threatens
food security in the country (Zhang Y. et al., 2021; Plunge
et al., 2022). Therefore, the chemical fertilizer consumption
per cropland area is employed to represent the environmental
effects of land use. The definitions and calculation formulas of
the selected variables are listed in Table 2.

Trade-off/synergy analysis

Based on the long-time series data from 1990 to 2020,
the relationships between land use dominant and recessive
morphologies are evaluated using correlation analysis.
Compared with other methods, like Spearman correlation
analysis, Pearson correlation analysis is capable of capturing
information embedded in the sample data, and has been widely
used in the relationships between two variables (Zhu et al., 2021;
Bai et al., 2022; Ren et al., 2022). Pearson correlation analysis is
employed and the calculation formula is as follows:

r (Xi,Yi) =

∑N
i = 1 (Xi − X)(Yi − Y)√∑N

i = 1 (Xi − X)
2 ∑N

i = 1 (Yi − Y)
2

(7)

where r (Xi,Yi) represents the Pearson correlation analysis
between X and Y . Xi and Yi are the estimated value of land use
dominant and recessive morphologies in region i. X and Y are
their average values, respectively. N is the number of regions.

We used the Stata 16 software to estimate the correlation
coefficients (r) and significance tests (P). The positive coefficient
represents a trade-off relationship between different indicators,
meaning both land use morphologies increase or decrease
simultaneously. Otherwise, a synergy relationship occurs
when the coefficient is negative, indicating an increase
in one land use morphology leads to the decrease in
another. In this regard, the relationships between land
use dominant and recessive morphologies are classified
into seven types: high synergy (r > 0, P < 0.01),
middle synergy (r > 0, 0.01 < P < 0.05), low synergy
(r < 0, 0.05 < P < 0.1), high trade-off (r < 0,P < 0.01),

TABLE 1 Description of land-use dominant morphology index.

Index Significance Formula

PD PD reflects the degree of landscape fragmentation. It is calculated by the number
of patches involving the corresponding patch type divided by the total landscape
area.

PD = ni
Ai

LPI LPI reflects the concentration degree of patches. It is calculated by the largest
patch of the corresponding patch type divided by the total landscape area.

LPI = maxaij
Ai

LSI LSI reflects the degree of shape complexity. It is calculated by 0.25 times the total
length of edge divided by the square root of the total landscape area.

LSI = 0.25Ei√
Ai

ni is the number of patches of category/region i. Ai is the total landscape area of category/region i. aij is the area of patch j of category/region i. Ei is the total length of the edge of
category/region i.
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TABLE 2 Description of land-use recessive morphology index.

Index Significance Formula

LUE LUE reflects the economic output of land use, which is accompanied by the level of
socio-economic development. It is calculated by the output of GDP in a certain region divided
by its corresponding impervious area.

LUE = GDPi
AiI

LUI LUI reflects the degree of human activities on land use. It is calculated by the sum of each
land-use group multiplied by its weight value.

LUI =
∑5

j = 1
Aij
Ai
·Wj

ANSP ANSP reflects the environmental effects of land use. It is calculated by the chemical fertilizer
consumption per cropland area, that is, the consumption of chemical fertilizer in a certain
region divided by its corresponding farmland area.

ANSP = CFCi
AiF

GDPi is the output of GDP of region i. AiI and AiF are the impervious area and farmland area of region i, respectively. Ai is the total area of region i. Aij is the area of group j in region
i. Wj is the weight value of group j. The weight values of high-use-intensity artificial land (i.e., impervious surfaces), low-use-intensity artificial land (i.e., cropland), high-use-intensity
natural land (including forest land, grassland, and water bodies), mid-use-intensity natural land (i.e., sparse vegetation), and low-use-intensity natural land (i.e., bare areas) are set to 5, 4,
3, 2, and 1, respectively. CFCi is the chemical fertilizer consumption of region i.

middle trade-off (r < 0, 0.01 < P < 0.05), low trade-off
(r < 0, 0.05 < P < 0.1), and insignificance (P > 0.1).

Results

Land use and landscape characteristics
in the northern slope of the Tianshan
Mountains

The proportions of land use types and their changes from
1990 to 2020 are shown in Figure 2. Overall, though the
proportion of each land use type changed over time, the order of
their proportions approximately remained the same. Bare areas
and grassland were always predominant land use types from
1990 to 2020 in the NSTM, and their proportions both showed
downward trends over time. The proportions of impervious
surfaces and water bodies always were in the last two land use
types in the NSTM, and their values both displayed upward
trends over time. Specifically, bare areas decreased from 64.89 to
61.20% from 1990 to 2020, while impervious surfaces gradually
and consistently increased from 0.33 to 0.77%. The trends
of cropland, sparse vegetation, and forest land increased in
fluctuation.

The landscape patterns of each land use type from 1990 to
2020 were obtained (Figure 3). The PD of sparse vegetation
and grassland were largest, and their values exhibited increasing
trends over time. Water bodies and impervious surfaces had
lower PD than other land use categories, and they were basically
unchanged during the study period. According to the results of
LPI, bare areas had the largest values mainly due to their vast
areas, and their values were 10 times more than others. There
existed substantial differences in LPI among different land use
types. As for the LSI at the category level, sparse vegetation
and grassland ranked as the top two among various land use
types, while water bodies and impervious surfaces were low. The
values of six categories (except cropland) displayed increasing
trends from 1990 to 2020. Overall, the LPI of various land use

types were roughly proportional to their areas. The PD and
LSI of cropland showed a decreasing trend, while the values of
LPI increased over time, indicating the cropland in the NSTM
gradually became concentrated and integrated in the past three
decades. The values of water bodies and impervious surfaces
were low in terms of three landscape metrics, mainly due to
their small areas. But impervious surfaces had larger PD and LSI,
and smaller LPI than water bodies, indicating that impervious
surfaces were more dispersed and fragmented in the NSTM.

Temporal and spatial patterns of land
use change in the northern slope of
the Tianshan Mountains

Four variables, i.e., net change, swap change, total change,
and change rate, were evaluated to identify the land use change
at the category level during the 5-year intervals (Figure 4).
Land use categories with larger proportions, such as bare areas
and grassland experienced the net losses during all intervals.
The areas of forest land and cropland experienced a slight
net loss in the last decade. The net changes of impervious
surfaces from 1990 to 2020 were always positive, indicating
the areas of impervious surfaces increased consistently. As
for the swap change index, bare areas, grassland, and sparse
vegetation experienced the largest values, followed by cropland,
then forest land and water bodies. It should be noticed that the
swap changes of impervious surfaces were nearly zero because
impervious surfaces were hardly transferred out. The larger
the land use category areas, the larger their total changes. The
total change of bare areas was largest among various land use
types. Land use categories with small proportions, such as water
bodies and impervious surfaces, and experienced very small
total changes. The change rates of impervious surfaces were
above 10% during all intervals, and the fastest period was from
2000 to 2005, of which the value was 25.18%. The change rates
of bare areas and grassland were negative from 1990 to 2000.
Though the net loss of bare areas was greater than those of
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FIGURE 2

Sankey plot of land use change in the NSTM. Stacked vertical bars represent the proportions of various land use types from 1990 to 2020. Lines
between each pair of bars visualize the changes of each land use type in the 5-year interval. The thickness of each line represents the
proportion of the corresponding land-use area that experiences the persistence or transition.

grassland, the change rates of bare areas were smaller due to
their high proportion and vast areas.

To clearly understand the general condition of land use
change in the NSTM, temporal and spatial patterns of land
use change from 1990 to 2020 were depicted. According to
the estimated results in Figures 5A,C, more than 20% of the
total area in the NSTM experienced land use change, and the
transformations of bare areas, grassland, and sparse vegetation
were predominant during the past three decades.

From the perspective of outflow based on land use structure
in 1990 (Figures 5A,B), 41.51% of cropland had transformed
into other land use categories in 2020, primarily including
grassland, sparse vegetation, and bare areas, which mainly
covered Jimsar County, Urumqi City, Urumqi County, Changji
City, and so on. 25.60% of forest land had transformed into other
land use categories, primarily including grassland, cropland,
and bare areas, which mainly covered Yumin County, Tacheng
City, Jinghe County, Shuanghe City, and so on. 35.41% of
grassland had transformed into other land use categories,
primarily including cropland, sparse vegetation, and bare areas,
which mainly covered Toli County, Emin County, Usu City,
Wenquan County, and so on. 54.51% of sparse vegetation had
transformed into other land use categories, primarily including
bare areas, cropland, and grassland, which mainly covered Mori
Kazak Autonomous County, Qitai County, Hutubi County,

Shihezi City, and so on. 11.30% of bare areas had transformed
into other land use categories, primarily including sparse
vegetation, grassland, and cropland, which mainly covered
Yizhou District, Barkol Kazak Autonomous County, Gaochang
District, Usu City, Kuytun City, and so on. 19.03% of water
bodies had transformed into other land use categories, primarily
including grassland, and bare areas, mainly covering Ebinur
Lake Watershed in Jinghe County. Only 0.07% of impervious
surfaces in 1990 had transferred into other land use categories
in 2020.

From the perspective of inflow based on land use structure in
2020 (Figures 5C,D), 58.76% of cropland had been transferred
from other land use categories in 1990, primarily including
grassland (22.23%), bare areas (20.61%), and sparse vegetation
(13.69%), which mainly covered Tacheng City, Emin County,
Shawan County, Usu City, and so on. 50.71% of forest land
had been transferred from other land use categories, primarily
including grassland, and bare areas, which mainly covered
Changji City, Hutubi County, Urumqi County, Barkol Kazak
Autonomous County, and so on. 25.95% of grassland had
been transferred from other land use categories, primarily
including bare areas, cropland, and sparse vegetation, which
mainly covered Toli County, Urumqi County, Jimsar County,
Shawan County, and so on. 62.95% of sparse vegetation had been
transferred from other land use categories, primarily including
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FIGURE 3

The changes in landscape metrics at the category level from 1990 to 2020.

bare areas, grassland, and cropland, which mainly covered
Yizhou District, Shanshan County, Wenquan County, Yumin
County, and so on. 5.97% of bare areas had been transferred
from other land use categories, primarily including grassland
and sparse vegetation, which mainly covered Jinghe County,
Bole City, Mori Kazak Autonomous County, Urumqi City,
and so on. 35.59% of water bodies had been transferred from
other land use categories, primarily including grassland, and
bare areas, mainly covering Barkol Kazak Autonomous County
and the Kashgar River Basin. 57.09% of impervious surfaces
had been transferred from other land use categories, primarily
including cropland, bare areas, and grassland, which mainly
covered Urumqi City, Changji City, Yiwu County, Kuytun City,
and so on.

Trade-off and synergy of land use
morphology

Trade-off and synergy analysis in the whole
region

We quantified the temporal patterns of land use dominant
and recessive morphologies from 1990 to 2020 in the NSTM

using land use and socio-economic datasets. On this basis, the
trade-offs and synergies between land use morphology in the
whole region were estimated. Figure 6 shows the temporal
changes in land use dominant and recessive morphologies in the
NSTM. The whole PD decreased from 2.65 in 1990 to 2.45 in
1995, and fluctuated from 2.79 to 2.98 after 2000. The whole
LPI displayed a consistent downward trend, decreasing from
59.90 in 1990 to 52.71 in 2020. The temporal trend of LSI was
more complicated than PD and LPI. LPI reached its lowest value
in 1995, which was similar to that of PD. It decreased in the
first decade of the new century and increased in the following
decade, whose largest value occurred in 2020. As for land use
recessive morphology, the whole LUE displayed an increasing
trend during the past three decades, meaning land use in the
NSTM became more efficient and productive. It increased from
0.91 in 1990 to 21.33 in 2020, and this upward trend gradually
increased in strength over time. The whole LUI also showed
an upward trend over time, increasing from 1.71 in 1990 to
1.80 in 2020. The whole ANSP increased significantly from 1990
to 2005, and fluctuated between 248.89 and 386.03 during the
following years.

The trade-offs and synergies between land use morphology
in the whole region are presented in Figure 7. The strongest
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FIGURE 4

The land use change indices at the category level of the NSTM during the 5-year intervals.

trade-off relationship occurred between LSI and LUI, while the
synergetic relationship between LPI and LUI was strongest,
indicating the degree of human activities on land use was
highly connected with land use dominant morphology index.
The correlation coefficient between PD and LUE was positive
and insignificant, indicating there was no significant synergetic
relationship between landscape fragmentation and economic
output of land use in the NSTM. The correlation coefficients
between LPI and LUE as well as ANSP were significantly
negative at the 5% level, which meant the degree of shape
complexity displayed the strong trade-off relationships with the
economic output and environmental effects of land use. The
correlation coefficients between PD and LUI as well as ANSP
were significantly positive at the 10% level, indicating the degree
of landscape fragmentation had synergetic relationships with
human activities and environmental effects of land use. The
correlation coefficients between LSI and LUE as well as ANSP
were also significantly positive at the 10% level, meaning the
concentration degree of patches had synergetic relationships
with the economic output and environmental effects of land use.

Trade-off and synergy analysis at the county
level

In this section, we firstly explored their trade-off and
synergetic relationships in 1990, 1995, 2000, 2005, 2010,
2015, and 2020 using land use morphology estimations at
the county level, as presented in Figure 8. The relationships
between dominant and recessive morphologies of land use
exhibited significant disparities over time, and the correlation
coefficients in different study periods were much smaller
than their estimations in the whole region. The relationships
between LSI and LUE were consistently negative in all periods,
indicating a county with a high degree of shape complexity
was inclined to decrease its economic output of land use. The
correlation coefficients of PD and LUI were negative, while
LPI and LUI displayed positive relationships from 1990 to
2020. It meant the counties with lower fragmentation and
higher concentration of patches were prone to experiencing
high-intensity human activities, which contributed to the
improvement of labor productivity under large-scale and
intensive production. However, the trade-off and synergetic
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FIGURE 5

Land use change from 1990 to 2020 in the NSTM. The spatial distribution (A) and its outflow proportion (B) of each category to other categories
based on land use structure in 1990. The spatial distribution (C) and its inflow proportion (D) of each category from other categories based on
land use structure in 2020.

FIGURE 6

(A) The changes in global land use dominant morphology from 1990 to 2020 in the NSTM. (B) The changes in global land use recessive
morphology from 1990 to 2020 in the NSTM.

relationships of other land use morphology indicators were up
and down over time, which means different counties in the
NSTM exhibited their individual characteristics, so there was
no fixed relationship between land use dominant and recessive
morphologies.

Moreover, distinct spatial patterns of various counties were
identified through the trade-off analysis, as shown in Figure 9.
There are significant disparities in terms of spatial patterns
of trade-offs/synergies. The relationships in the east of the

NSTM were basically identical with the whole region. A possible
reason was that eastern counties, including Yizhou District,
Shanshan County, Barkol Kazak Autonomous County, and
Mori Kazak Autonomous County, are located at the Turpan
Hami basin with vast desert and Gobi, and their proportion
of bare areas was 20% higher than the average value according
to the land cover in 2020. The supply of artificial land
was insufficient for the demand of increasing population, so
natural land had transformed into impervious surfaces to
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FIGURE 7

The global trade-offs/synergies between dominant and
recessive morphologies of land use in the NSTM. *, **, and ***
denote the significance level of 0.1, 0.05, and 0.01, respectively.

FIGURE 8

The temporal patterns of trade-offs/synergies between land use
dominant and recessive morphologies.

promote economic development, which was consistent with
the characteristics of land use in the whole region. However,
the middle-south regions, including Huyanghe City, Kuytun
City, Shawan County, and Usu City, displayed the opposite
relationships with the NSTM. It was found that the infilling
type of land use was dominant in these counties, representing
the newly added patches were filled into or spread along
the edge of the old land patches. The temporal patterns of
PD and LSI decreased over time, while LPI increased. One
explanation for this phenomenon could lie in the geographical
conditions of these counties. They are located at the foot
of Tianshan Mountains with smooth terrain, and there are
sufficient water resources provided by rivers and streams,
which is instrumental in mechanized operations, so their land
use morphology became compact and integrated over time.
Besides, some counties, including Bole City, Fukang City,
Jinghe County, Manas County, Qitai County, and Wenquan
County, showed insignificant relationships between land use
dominant and recessive morphologies. Though the economic
output and fertilizer input of land use significantly increased
in the past three decades, their land use structure changed
slightly, and land use dominant landscape patterns experienced

minor changes within a small range. Therefore, the correlation
coefficients between land use morphology in these counties were
insignificant.

Discussion

This study explored the spatiotemporal patterns of land
use and landscape changes, and the trade-offs of land use
morphology. The NSTM has experienced rapid economic
development over the past decades, leading to extensive
land use and insufficient land supply. The proportion of
cropland increased in fluctuation, and its change rate was
much lower than that of impervious surfaces. One reason for
this phenomenon was that the improvement of agricultural
technology greatly increased crop production efficiency, and less
cropland was required to achieve the food demand brought by
the increasing population (Coomes et al., 2019). Another reason
could lie in the extensive utilization of construction land. It
is acknowledged that the pace of land-oriented urbanization
is faster than that of demographic urbanization (Long et al.,
2021). The areas of forest land increased recently mainly due to
the implementation of environmental protection policies, and
the ecological function of land use has gained more and more
attention nowadays (Ma et al., 2019; An et al., 2022). It should be
noticed that the land use in the NSTM became more fragmented
over time according to the changes in landscape patterns, which
pose serious threats to the efficient utilization and sustainable
development of land systems.

The changes in land use dominant morphology presented
the landscape complexity increased in the NSTM, and land use
became more fragmented and dispersed over time. The whole
LPI was determined by the largest patch of bare areas. Vast
bare areas transformed into other land use categories in the
context of agricultural development, thus decreasing its patch
areas. Besides, in the initial stages of economic development
before 1995, the old land use type was primarily filled up with
new patches, and land use morphology became compact. Then
the outlying type became predominant during the period of
1995–2000, and the degree of landscape fragmentation and
shape complexity in the NSTM greatly increased. After the
implementation of China’s western development strategy in
2000, the landscape patterns of land use showed a volatile
trend over time. The whole LUE and LUI increased due to
the consistent transformation from natural land to artificial
land and its GDP increased from 16.63 billion yuan in 1990 to
903.47 billion yuan in 2020. Compared with the trend of LUE,
the upward trend of LUI gradually became slight over time. It
was mainly because technological innovations and management
practices had significantly promoted the quality of land use with
fewer land resource utilization (Tan et al., 2021). The change in
ANSP lied in the fact modern agricultural mechanization with
high fixed costs was less effective in smallholder farms. Previous
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FIGURE 9

The spatial patterns of trade-offs/synergies between each pair of land use dominant and recessive morphology indices. Alashankou City was set
in 2012, so the indices based on statistical data (LUE and ANSP) before its establishment is unavailable, which is denoted using blank space.

study has also shown that Chinese cropland was featured by
smaller farm size and more agricultural chemicals than others
(Wu et al., 2018). Besides, China has implemented the cultivated
land occupation-supplement policy balance to ensure food
security since 1997. Cultivated land was compensated by land
exploitation, and the quantity balance was met. But urban
expansion occupied highly productive cropland, and the quality
had decreased sharply (Cai et al., 2020). Therefore, farmers
were inclined to use more chemical fertilizers to increase crop
yields. In recent years, some advanced technologies, such as
soil testing, have been adopted to control agricultural pollution
under China’s ecological civilization construction.

Based on the trade-offs and synergies of land use
morphology, several implications are proposed for high-quality
development in the NSTM. Turpan Hami basin in the south
of the NSTM, including Gaochang District, Toksun County,
Shanshan County, Barkol Kazak Autonomous County, Mori
Kazak Autonomous County, and Yizhou District, exhibits a
synergetic relationship between PD and LSI and three recessive
morphology indices, are key ecological zones. These regions
are mainly covered by bare areas with fragile ecological
environments and scarce water resources, and are vulnerable
to land desertification, so their primary goals are to protect
biodiversity, conserve water, and prevent desertification (An
et al., 2022). County-level cities are relatively scattered in
the NSTM through establish cities in the Gobi. Landscape
fragmentation displayed a consistently increasing trend in
Shihezi City during the past three decades, and land use
morphology became more complex with the expansion of
construction land boosted by industrial structure optimization.
The role of these regions is to maintain the stability of the border
regions. Urumqi City, the economic center of the NSTM, should

take full advantage of its economy and location strength to form
the innovation-oriented development mode and strengthen
its spillover effect on surrounding regions. Overall, being an
important location of the Belt and Road Initiative, infrastructure
construction in the NSTM should be improved to strengthen
commercial and cultural links with other regions, and take
advantage of their cultural and tourism resources.

There are three prospective directions for this study that
could be further explored in the future. First, this study
identified the patterns of land use changes and their trade-offs,
but it ignores the driving mechanism of land use by integrating
geographical features and socio-economic indicators, which
requires further exploration in future research by considering
quantifiable influencing forces to enhance its accuracy and
reliability. Second, it is meaningful to establish a systematic
evaluation index system through an in-depth exploration of
the relationship between land use dominant and recessive
morphologies, which is helpful to explore various land use
modes for regional high-quality development. Finally, the
historical land use change in the past three decades was
evaluated. Future studies should predict the land use changes
in the following years under various development scenarios,
and further understand its effects on climate change, biological
diversity, and so on (Bukovsky et al., 2021; Huang et al., 2022; Li
et al., 2022).

Conclusion

Taking the NSTM, an important developing area with a
vulnerable environment in China, as the study area, this study
investigated the changes in land use and its landscape metrics
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based on land use data in 1990, 1995, 2000, 2005, 2010, 2015,
and 2020. Next, land use dominant and recessive morphologies
at the whole and county levels were estimated by incorporating
land use and socio-economic datasets. On this basis, their trade-
offs and synergies were qualified through Pearson correlation
analysis. The main conclusions are presented as follows:

(1) Bare areas were always the largest land surface cover
in the NSTM, and the proportion showed a downward
trend over time. The proportion of impervious surfaces
gradually and consistently increased from 0.33% in 1990
to 0.77% in 2020. Landscape metrics showed land use
structure became more dispersed and fragmented in the
past three decades.

(2) More than 20% of the total area in the NSTM experienced
land use change from 1990 to 2020. Typically, impervious
surfaces were primarily transformed from cropland, bare
areas, and grassland, but they were hardly transferred
into other land use categories. Bare areas and grassland
experienced the large net losses, swap changes, and
total changes, while the change rates of impervious
surfaces were highest.

(3) Among three land use dominant morphology indices, PD
and LSI increased in fluctuation. LPI decreased mainly
because vast bare areas transformed into other land use
categories. As for land use recessive morphology, LUE,
LUI, and ANSP displayed an increasing trend during
the past three decades, and this upward trend gradually
increased in strength over time.

(4) The strongest trade-off occurred between LSI and LUI,
while the synergy between LPI and LUI was strongest.
There are significant disparities in terms of spatiotemporal
patterns of trade-off and synergetic relationships. The
correlation coefficients in different study periods were
much smaller than their whole estimations, and the
relationships in the eastern NSTM were basically identical
with the whole region.
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