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Editorial on the Research Topic

Ecophysiological adaptations associated with animal migration

Seasonal migration to track favorable environmental conditions and resources is a
widespread strategy across all animal taxa, including insects, fish, birds, and mammals.
Migration distances can range from meters to tens of thousands of kilometers (Hansson
and Åkesson, 2014). This period is often resource-demanding (Sapir et al., 2011)
and migrants regularly encounter challenging conditions en route, including extreme
and/or fluctuating temperature, humidity, solar radiation, osmotic stress, pathogen
pressure, pollution, and hypoxia (Figure 1). Migrants cope with these challenges via a
multitude of physiological adaptations (e.g., McCormick and Saunders, 1987; Piersma
and Van Gils, 2011; Gwinner, 2012; Cooper-Mullin and McWilliams, 2016; Hegemann
et al., 2019), which can conflict with other important annual-cycle and life-history
events such as growth, reproduction and molt. Migration therefore represents one
of the most significant physiological challenges in the life of an animal, yet our
understanding of the interplay between different physiological adaptations and the
currencies involved (energy, nutrients, time, etc.) is still limited (Hegemann et al., 2019).
To better understand the ecology and evolution of migration and to highlight important
directions for future work, this Research Topic presents studies demonstrating recent
advancements in our knowledge of the ecophysiological underpinnings of migration at
different stages and scales.
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Preparing for migration

Animals typically undergo dramatic physiological and
behavioral changes in preparation for migration (McCormick
and Saunders, 1987; Piersma and Van Gils, 2011), with the
accumulation of energy reserves being particularly important
for endurance migrants (Guglielmo, 2018). Many species
accumulate significant amounts of fuel before their seasonal
migration starts and this is usually controlled by endogenous
programs (Maggini and Bairlein, 2010; Maggini et al., 2017).
Cornelius et al. show that even facultative migrants, i.e., animals
that migrate irregularly in response to changing conditions, can
quickly increase their fat stores when necessary.

Other changes prior to migration often include
reorganization of body composition to reduce maintenance
costs for tissues not necessary during endurance exercise
(Piersma et al., 1999; Piersma and Van Gils, 2011). Piersma
et al. show that Bar-tailed Godwits (Limosa lapponica) shrink
their digestive tract but maintain a higher relative size of their
heart and flight muscles while accumulating fuel stores. This
poses a particular challenge to animals that stop to replenish
depleted fuel stores during migration. Refueling at stopover
sites starts at a low rate (i.e., little food is converted to body
mass) to accumulate lean mass, followed by a hyperphagic
phase to accumulate fat stores, and a final phase to reallocate
protein from the digestive system to flight muscle synthesis to
facilitate further migration (Handby et al.; Guglielmo et al.).
These processes have been studied most intensively in birds, and
further work is needed to confirm that similar dramatic changes
in body composition occur in other migratory animals.

Dealing with variable or changing
abiotic conditions along the route

Migration poses countless challenges and mortality is
highest during the migratory period in many animals (e.g.,
Sillett and Holmes, 2002; Klaassen et al., 2014; Kantola et al.,
2019). Individuals must be prepared to meet high energetic
demands and cope with additional environmental challenges,
which can vary substantially along migratory routes (Figure 1).
One of the most predictable abiotic changes migrants can
experience as they move across geographic areas is a change
in photoperiod, somewhat akin to ‘jet lag’ in humans, and
requiring re-organization of circadian rhythms. Two studies in
this Research Topic show that migratory animals are particularly
proficient in responding to changing photoperiod, both in the
circadian rhythms of body temperature in migrating geese
(Eichhorn et al.) and daily migratory activity in two passerine
species (Åkesson et al.).

Migrating animals often cross ecological barriers, where
little to no opportunities for resting or refuelingmay be available.
Successful crossing of these barriers can be highly dependent

on current environmental conditions, thus requiring individuals
to carefully choose when to embark on the journey (Fransson
et al., 2008; Deppe et al., 2015; Dossman et al., 2016). An
impressive example for long barrier crossings among insects
is the globe skimmer dragonfly (Pantala flavescens), which is
hypothesized to migrate from India to East Africa by crossing
the Indian Ocean. Hedlund et al. used an energetic flight model
and wind trajectory analysis to show that this transoceanic
migration is possible, but likely requires the capacity to select
favorable winds.

Environmental conditions can also be unpredictable,
including extreme weather events or challenging temperatures.
Snow buntings (Plectrophenax nivalis), for example, maintain
cold endurance during spring migration, presumably to cope
with cold temperatures en route and at their Arctic breeding
grounds (Le Pogam et al.). On the other end of the spectrum,
desert-crossing passerines facing high temperatures during
stopover adjust their activity patterns according to their
species-specific dehydration risk (Paces et al.). These results
show that flexible behavioral and physiological responses to
challenging abiotic conditions are crucial for migrating animals
to successfully complete migration.

Physiological trade-o�s to facilitate
successful migration

Coping with the high resource costs of migration often
requires physiological trade-offs with other traits, such as
growth, breeding and predator evasion. To deal with these
trade-offs, two main strategies can be used: (i) minimizing
the time spent migrating, i.e., traveling fast even if expensive,
and (ii) minimize the total energy cost of migration, i.e.,
traveling at speeds that conserve energy (Alerstam and
Lindström, 1990; Hedenström and Alerstam, 1997; Alerstam
et al., 2003). Clerc et al. use two migrating bat species in
which both time-minimizers and energy-minimizers co-occur
within the same population, providing an excellent study
system to test predictions. Using several cutting-edge techniques
to estimate energetic state, they demonstrate that the two
strategies can extend to the intraspecific level, as migratory
strategies seem to vary between sexes, and that thermoregulation
(specifically torpor in bats) might be an important regulator of
stopover decisions.

During migration, animals often have to reallocate resources
and this may affect several physiological systems including the
immune system (Buehler et al., 2010). The immune system is
important for survival (e.g., Wilcoxen et al., 2010; Hegemann
et al., 2015; Roast et al., 2020), particularly in migrants which
cope with novel diseases and high risk of disease transmission
(Altizer et al., 2011; Westerdahl et al., 2014). Yet, trade-offs
with other demands of migration can lead to modulation of
immune function while migrating (e.g., Owen and Moore, 2006,
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FIGURE 1

Migrating animals of all taxa experience a multitude of challenges during their seasonal migrations. In this Research Topic, we collected 14
papers that investigate several of those challenges in di�erent taxa including insects, fish, birds and mammals.

2008; Buehler et al., 2008, 2010; Eikenaar and Hegemann, 2016;
Hegemann et al., 2018; Eikenaar et al., 2020). Hegemann et
al. extend this knowledge by showing that immune function
differs among species and among individuals depending on
migratory strategy and timing. Nevertheless, migrants are
exposed to varying pathogen landscapes as they move (Altizer
et al., 2011; Westerdahl et al., 2014; Hall et al., 2016),
which may compound the physiological challenges already
experienced. For example, gut parasites have been thought
to disrupt osmoregulation in salmon moving from fresh- to
saltwater, but Finlay et al. did not find such effects, suggesting
that fish either cope with the presence of parasites or that
negative effects become apparent at a later stage of infection.
Further studies investigating varying immune function and its
interactions with infection rates are of paramount importance
to understand how parasite and disease exposure influence
migratory animals (Binning et al., 2022), particularly in the
context of predicting future disease outbreaks and pandemics
(Carlson et al., 2022).

Endurance exercise such as migration can also lead
to relatively high oxidative stress (Costantini et al., 2008,
2019; Jenni-Eiermann et al., 2014), necessitating appropriate
defense mechanisms (Eikenaar et al., 2022). McWilliams
et al. provide a comprehensive review showing that birds
can adjust their diet to augment their defenses by, for

example, consuming foods rich in antioxidants. Furthermore,
Cooper-Mullin and McWilliams show in a field experiment
that recovering from oxidative damage may be an important
function of migratory stopovers in addition to refueling.
These studies further illustrate the complexity of the
physiological adaptations required for animals to successfully
complete migrations.

Conclusions and outlook

Migration allows many species to survive and thrive in
dynamic environmental conditions, by exploiting diverse
parts of the planet on a seasonal basis. However, migration
also poses considerable risks and challenges for animals,
often requiring trade-offs among physiological and behavioral
processes. The collection of papers in this Research Topic
shows how technological and analytical advancements
permit the study of migratory strategies and physiological
mechanisms in increasing detail. Importantly, many studies
are now possible directly in the field or during short-
term captivity, which eliminates many biases related to
long-term captive experiments. Current rapid advances
in tracking technologies should further accelerate our
possibilities (Jetz et al., 2022). We anticipate a vibrant
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future for research on the ecophysiological adaptations
associated with migration, and hope this Research Topic
inspires future studies to elucidate the mechanisms of
physiological adaptations, particularly in non-avian species and
across multiple physiological systems. Such studies are also
crucial to understand the potential role of physiological
flexibility in responses to anthropogenic disturbances
and rapidly changing environmental conditions under
global change.
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